\relax \@writefile{toc}{\contentsline {chapter}{\numberline {1}Spheroidal Dwarfs and Early Chemical Evolution of Galaxies}{1}} \@writefile{toc}{\contentsline {section}{\numberline {1.1}Introduction}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces V-band image of And VI illustrates the diffuse nature of a typical dSph system (JSG with WIYN; see also Armandroff et al. 1996). The seeing was 0.7\nobreakspace {}arcsec, the field of view corresponds to approximately 1\nobreakspace {}kpc$^2$. Orientation is north on the right and east at the top.}}{2}} \newlabel{dsph_wiyn}{{1.1}{2}} \@writefile{lot}{\contentsline {table}{\numberline {1.1}{\ignorespaces Summary of Dwarf Galaxy Properties}}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Simplified flow chart illustrating multiple evolutionary paths leading to present day dwarfs. The top shows the gravitational instability leading to collapse and yielding the gravitational potentials in the second row. Various star formation histories depend on internal and/or external factors, which lead to the range of observed dwarfs. Most galaxies, especially in dense regions, are dSphs, followed by the dI irregular dwarfs, while the transition types are least frequent.}}{3}} \newlabel{evol-paths}{{1.2}{3}} \@writefile{toc}{\contentsline {section}{\numberline {1.2}Dwarf Galaxy Evolution Time Scales}{3}} \@writefile{lot}{\contentsline {table}{\numberline {1.2}{\ignorespaces Time Scales for Dwarf Galaxy in 100\nobreakspace {}kpc Orbit around a Giant System}}{4}} \@writefile{toc}{\contentsline {section}{\numberline {1.3}Fossil Records: the Oldest Stars}{4}} \@writefile{toc}{\contentsline {section}{\numberline {1.4}Gas Supplies}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces A schematic view of environmental influences on a dwarf system located in a small galaxy group. Interactions with other systems include ram pressure stripping and tidal effects, while the intragroup medium can either remove or add gas, depending on the circumstances.}}{6}} \newlabel{sample-figure}{{1.3}{6}} \@writefile{toc}{\contentsline {section}{\numberline {1.5}Trends in Mean Metallicities}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces This figure adapted from Grebel et al. (2003) shows the mean RGB metallicity as a function of $L_{baryon}$ (see text). The lines are hand fits to illustrate the offset in RGB abundances between Local Group dSph/dE (filled circle) and dI (open diamond) galaxies. Transition type dwarfs (filled diamonds) tend to bridge the gap between dSphs and dIs.}}{7}} \newlabel{abundance_fig}{{1.4}{7}} \@writefile{toc}{\contentsline {section}{\numberline {1.6}Discussion and Conclusions}{8}} \bibcite{}{1} \bibcite{}{2} \bibcite{}{3} \bibcite{}{4} \bibcite{}{5} \bibcite{}{6} \bibcite{}{7} \bibcite{}{8} \bibcite{}{9} \bibcite{}{10} \bibcite{}{11} \bibcite{}{12} \bibcite{}{13} \bibcite{}{14} \bibcite{}{15} \bibcite{}{16} \bibcite{}{17} \bibcite{}{18} \bibcite{}{19} \bibcite{}{20} \bibcite{}{21} \bibcite{}{22} \bibcite{}{23} \bibcite{}{24} \bibcite{}{25} \bibcite{}{26} \bibcite{}{27} \bibcite{}{28} \bibcite{}{29} \bibcite{}{30} \@writefile{toc}{\contentsline {schapter}{{\normalfont \rmfamily References}}{9}} \bibcite{}{31} \bibcite{}{32} \bibcite{}{33} \bibcite{}{34} \bibcite{}{35} \bibcite{}{36} \bibcite{}{37} \bibcite{}{38} \bibcite{}{39} \bibcite{}{40} \bibcite{}{41} \bibcite{}{42} \bibcite{}{43} \bibcite{}{44} \bibcite{}{45} \bibcite{}{46} \bibcite{}{47} \bibcite{}{48} \bibcite{}{49} \bibcite{}{50} \bibcite{}{51} \bibcite{}{52} \bibcite{}{53} \bibcite{}{54} \bibcite{}{55} \bibcite{}{56} \bibcite{}{57} \bibcite{}{58} \bibcite{}{59} \bibcite{}{60} \bibcite{}{61} \bibcite{}{62} \bibcite{}{63} \bibcite{}{64} \bibcite{}{65} \bibcite{}{66} \bibcite{}{67} \bibcite{}{68} \bibcite{}{69} \bibcite{}{70} \bibcite{}{71} \bibcite{}{72} \bibcite{}{73} \bibcite{}{74} \bibcite{}{75} \bibcite{}{76} \bibcite{}{77} \bibcite{}{78} \bibcite{}{79} \bibcite{}{80} \bibcite{}{81} \bibcite{}{82} \bibcite{}{83}