
APDL Programmer's
Guide
ANSYS Release 8.1

001973
April 2004

ANSYS, Inc. is a
UL registered
ISO 9001: 2000
Company

APDL Programmer's Guide

ANSYS Release 8.1

ANSYS, Inc.
Southpointe
275 Technology Drive
Canonsburg, PA 15317
ansysinfo@ansys.com
http://www.ansys.com
(T) 724-746-3304
(F) 724-514-9494

Revision History
DateReleaseNumber
March 2002ANSYS 6.1001620
October 2002ANSYS 7.0001695*
May 2003ANSYS 7.1001788*
October 2003ANSYS 8.0001901*
April 2004ANSYS 8.1001973**

* ANSYS Documentation on CD.

** Included in ANSYS Documentation on CD and in print.

Trademark Information
ANSYS, DesignSpace, DesignModeler, ANSYS DesignXplorer VT, ANSYS DesignXplorer, ANSYS Emax, ANSYS Workbench environment, CFX, AI*Environment,
CADOE and any and all ANSYS, Inc. product names referenced on any media, manual or the like, are registered trademarks or trademarks of subsidiaries
of ANSYS, Inc. located in the United States or other countries.

Copyright © 2004 SAS IP, Inc. All rights reserved. Unpublished rights reserved under the Copyright Laws of the United States.

ANSYS, Inc. is a UL registered ISO 9001: 2000 Company

ANSYS Inc. products may contain U.S. Patent No. 6,055,541

Microsoft, Windows, Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation.
Inventor and Mechanical Desktop are registered trademarks of Autodesk, Inc.
SolidWorks is a registered trademark of SolidWorks Corporation.
Pro/ENGINEER is a registered trademark of Parametric Technology Corporation.
Unigraphics, Solid Edge and Parasolid are registered trademarks of Electronic Data Systems Corporation (EDS).
ACIS and ACIS Geometric Modeler are registered trademarks of Spatial Technology, Inc.

"FLEXlm License Manager" is a trademark of Macrovision Corporation.

Other product and company names mentioned herein are the trademarks or registered trademarks of their respective owners.

This ANSYS, Inc. software product and program documentation is ANSYS Confidential Information and are furnished by ANSYS, Inc. under an ANSYS
software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, warranties, disclaimers and remedies,
and other provisions. The Program and Documentation may be used or copied only in accordance with the terms of that license agreement.

See the ANSYS, Inc. online documentation or the ANSYS, Inc. documentation CD for the complete Legal Notice.

If this is a copy of a document published by and reproduced with the permission of ANSYS, Inc., it might not reflect the organization or physical appearance
of the original. ANSYS, Inc. is not liable for any errors or omissions introduced by the copying process. Such errors are the responsibility of the party
providing the copy.

Table of Contents

1. Introducing APDL . 1–1
1.1. What Is APDL? ... 1–1

2. Working with the Toolbar . 2–1
2.1. Adding Commands to the Toolbar ... 2–1
2.2. Modifying the Toolbar ... 2–1

2.2.1. Example: Adding a Toolbar Button ... 2–2
2.2.2. Saving Toolbar Buttons ... 2–3

2.3. Nesting Toolbar Abbreviations ... 2–3
3. Using Parameters . 3–1

3.1. Parameters ... 3–1
3.2. Guidelines for Parameter Names ... 3–1

3.2.1. Hiding Parameters from *STATUS ... 3–2
3.3. Defining Parameters ... 3–2

3.3.1. Assigning Parameter Values During Execution ... 3–2
3.3.2. Assigning Parameter Values At Startup ... 3–3
3.3.3. Assigning ANSYS-Supplied Values to Parameters ... 3–3

3.3.3.1. Using the *GET Command ... 3–3
3.3.3.2. Using In-line Get Functions ... 3–4

3.3.4. Listing Parameters ... 3–7
3.4. Deleting Parameters ... 3–8
3.5. Using Character Parameters ... 3–8
3.6. Substitution of Numeric Parametric Values ... 3–9

3.6.1. Preventing Substitution ... 3–9
3.6.2. Substitution of Character Parametric Values ... 3–9

3.6.2.1. Forced Substitution ... 3–9
3.6.2.2. Other Places Where Character Parameters Are Valid ... 3–10
3.6.2.3. Character Parameter Restrictions ... 3–11

3.7. Dynamic Substitution of Numeric or Character Parameters ... 3–11
3.8. Parametric Expressions ... 3–12
3.9. Parametric Functions ... 3–12
3.10. Saving, Resuming, and Writing Parameters ... 3–13
3.11. Array Parameters ... 3–14

3.11.1. Array Parameter Basics .. 3–15
3.11.2. Array Parameter Examples ... 3–16
3.11.3. TABLE Type Array Parameters ... 3–17
3.11.4. Defining and Listing Array Parameters ... 3–19
3.11.5. Specifying Array Element Values ... 3–19

3.11.5.1. Specifying Individual Array Values ... 3–20
3.11.5.2. Filling Array Vectors ... 3–21
3.11.5.3. Interactively Editing Arrays ... 3–21
3.11.5.4. Filling an Array From a Data File Using *VREAD 3–23
3.11.5.5. Filling a TABLE Array From a Data File Using *TREAD 3–23
3.11.5.6. Interpolating Values ... 3–27
3.11.5.7. Retrieving Values into or Restoring Array Parameter Values ... 3–29
3.11.5.8. Listing Array Parameters ... 3–29

3.11.6. Writing Data Files .. 3–30
3.11.6.1. Format Data Descriptors ... 3–30

3.11.7. Operations Among Array Parameters ... 3–32
3.11.7.1. Vector Operations ... 3–32
3.11.7.2. Matrix Operations ... 3–35

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

3.11.7.3. Specification Commands for Vector and Matrix Operations ... 3–37
3.11.8. Plotting Array Parameter Vectors ... 3–40
3.11.9. Modifying Curve Labels .. 3–44

4. APDL as a Macro Language . 4–1
4.1. What is an APDL Macro? ... 4–1
4.2. Creating a Macro ... 4–1

4.2.1. Macro File Naming Conventions ... 4–1
4.2.2. Macro Search Path ... 4–2
4.2.3. Creating a Macro Within ANSYS ... 4–3

4.2.3.1. Using *CREATE ... 4–3
4.2.3.2. Using *CFWRITE ... 4–3
4.2.3.3. Using /TEE ... 4–4
4.2.3.4. Using Utility Menu> Macro> Create Macro ... 4–4

4.2.4. Creating Macros with a Text Editor .. 4–5
4.2.5. Using Macro Library Files .. 4–6

4.3. Executing Macros and Macro Libraries ... 4–7
4.4. Local Variables ... 4–8

4.4.1. Passing Arguments to a Macro ... 4–8
4.4.2. Local Variables Within Macros ... 4–8
4.4.3. Local Variables Outside of Macros ... 4–8

4.5. Controlling Program Flow in APDL ... 4–9
4.5.1. Nested Macros: Calling Subroutines Within a Macro ... 4–9
4.5.2. Unconditional Branching: Goto ... 4–9
4.5.3. Conditional Branching: The *IF Command ... 4–9
4.5.4. Repeating a Command ... 4–11
4.5.5. Looping: Do-Loops ... 4–12
4.5.6. Implied (colon) Do Loops ... 4–12
4.5.7. Additional Looping: Do-While ... 4–13

4.6. Control Functions Quick Reference ... 4–13
4.7. Using the _STATUS and _RETURN Parameters in Macros ... 4–14
4.8. Using Macros with Components and Assemblies ... 4–16
4.9. Reviewing Example Macros ... 4–16

5. Interfacing with the GUI . 5–1
5.1. Prompting Users for a Single Parameter Value ... 5–1
5.2. Prompting Users With a Dialog Box ... 5–2
5.3. Using Macros to Display Your Own Messages ... 5–4
5.4. Creating and Maintaining a Status Bar from a Macro ... 5–5
5.5. Picking within Macros ... 5–7
5.6. Calling Dialog Boxes From a Macro ... 5–7

6. Encrypting Macros . 6–1
6.1. Preparing a Macro for Encryption ... 6–1
6.2. Creating an Encrypted Macro ... 6–1
6.3. Running an Encrypted Macro ... 6–2

I. APDL Commands Reference ... 6–3
A. APDL Gateway Commands ... A–1
B. GET Function Summary ... B–1
Index ... Index–1

List of Figures
2.1. Toolbar ... 2–1

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.vi

APDL Programmer's Guide

2.2. Adding a New Abbreviation ... 2–2
2.3. Toolbar with New Button ... 2–3
3.1. A Graphical Representation of a 2-D Array ... 3–15
3.2. A Graphical Representation of a 3-D Array ... 3–15
3.3. A Graphical Representation of a 5-D Array ... 3–16
3.4. A Graphical Representation of a Table Array ... 3–18
3.5. An Example *VEDIT Dialog Box for an ARRAY ... 3–22
3.6. An Example *VEDIT Dialog Box for a TABLE ... 3–22
3.7. A Sample 1-D TABLE Array Dialog Box ... 3–24
3.8. A Sample 2-D TABLE Array Dialog Box ... 3–25
3.9. A Sample 3-D TABLE Array Dialog Box ... 3–27
3.10. Time-History Forcing Function ... 3–28
3.11. Sample Plot .. 3–41
3.12. Sample Plot .. 3–42
3.13. Sample Plot .. 3–43
3.14. Sample Plot .. 3–44
3.15. Sample Plot With User-specified Labels .. 3–45
4.1. ANSYS Message Box for Unknown Command ... 4–2
4.2. The Create Menu Dialog Box ... 4–5
4.3. A Macro Created in a Text Editor .. 4–6
4.4. A Sample If-Then-Else Construct .. 4–11
5.1. An Example *ASK Dialog Box ... 5–2
5.2. A Typical Multiple-Prompt Dialog Box ... 5–4
5.3. A Typical Status Dialog Box ... 5–7

List of Tables
4.1. _RETURN Values ... 4–14
B.1. *GET - Get Function Summary ... B–1

APDL Programmer's Guide

viiAPDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

viii

Chapter 1: Introducing APDL

1.1. What Is APDL?

APDL stands for ANSYS Parametric Design Language, a scripting language that you can use to automate common
tasks or even build your model in terms of parameters (variables). APDL also encompasses a wide range of other
features such as repeating a command, macros, if-then-else branching, do-loops, and scalar, vector and matrix
operations.

While APDL is the foundation for sophisticated features such as design optimization and adaptive meshing, it
also offers many conveniences that you can use in your day-to-day analyses. In this guide we'll introduce you to
the basic features - parameters; macros; branching, looping, and repeating; and array parameters - and show
you some simple examples. As you become more adept at the language, you will see that the applications for
APDL are limited only by your imagination.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

1–2

Chapter 2: Working with the Toolbar

2.1. Adding Commands to the Toolbar

You can add frequently used ANSYS functions or macros to the ANSYS toolbar (creating macros is covered
starting in Chapter 4, “APDL as a Macro Language”). You do this by defining abbreviations. An abbreviation is an
alias (up to eight characters long) for an ANSYS command, GUI function name, or macro name. For example,
MATPROP might be an abbreviation for a macro that lists material properties, SAVE_DB is an abbreviation for
the SAVE command, and QUIT is an abbreviation for the Fnc_/EXIT function (which launches the Exit from
ANSYS dialog box).

The ANSYS program provides two ways to use abbreviations. You can issue the abbreviation (and execute the
macro, command, etc. that it performs) by typing it at the beginning of a command line. If you are using the
ANSYS GUI, you can also execute the macro or command by pressing the appropriate button on the ANSYS
toolbar.

The toolbar shown in Figure 2.1: “Toolbar” contains buttons that correspond to existing abbreviations.

Figure 2.1 Toolbar

While some abbreviations, such as SAVE_DB, are predefined, the abbreviations the toolbar contains and the
functions they execute are up to you. A single toolbar can hold up to 100 abbreviations (you can "nest" toolbars
to extend this number). You can redefine or delete abbreviations at will; however, abbreviations are not auto-
matically saved and must be explicitly saved to a file and reloaded for each ANSYS session.

2.2. Modifying the Toolbar

You can create abbreviations either through the *ABBR command or through the Utility Menu> Macro> Edit
Abbreviations or Utility Menu> MenuCtrls> Edit Toolbar menu items. Using one of the menu items is
preferable for two reasons:

• Clicking OK automatically updates the toolbar (using the *ABBR command requires that you use the
Utility Menu> MenuCtrls> Update Toolbar menu item to make your new abbreviation appear on the
toolbar).

• You can easily edit the abbreviation if required.

The syntax for the *ABBR command and related dialogs is

*ABBR, Abbr, String

Abbr

The abbreviation name that will appear on the toolbar button. The name can contain up to eight characters.

String
The String argument is the name of the macro or command that Abbr represents. If String is the name of a
macro, the macro must be within the macro search path. For more information about using macros, see
Chapter 4, “APDL as a Macro Language”. If String references an ANSYS picking menu or dialog box (using

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

UIDL), then specify "Fnc_string." For example, in the abbreviation definitions for "QUIT" and "POWRGRPH"
shown above, "Fnc_/QUIT" and "Fnc_/GRAPHICS" are unique UIDL function names which identify the ANSYS
picking menu or dialog box associated with the QUIT and POWRGRPH abbreviations respectively. For more
information about accessing UIDL functions, see Section 5.6: Calling Dialog Boxes From a Macro. String
can contain up to 60 characters but cannot include any of the following:

• The character "$"

• The commands C***, /COM, /GOPR, /NOPR, /QUIT, /UI, or *END

The default ANSYS toolbar has the following abbreviations predefined:

*ABBR, SAVE_DB, SAVE
*ABBR, RESUM_DB, RESUME
*ABBR, QUIT, Fnc_/EXIT
*ABBR, POWRGRPH, Fnc_/GRAPHICS

2.2.1. Example: Adding a Toolbar Button

For example, to add a button to the toolbar that calls the macro file mymacro.mac, you would enter the values
shown in the following figure in the Utility Menu> MenuCtrls> Edit Toolbar dialog box.

Figure 2.2 Adding a New Abbreviation

The new button is appended to the button bar as shown in the following figure.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.2–2

Chapter 2: Working with the Toolbar

Figure 2.3 Toolbar with New Button

2.2.2. Saving Toolbar Buttons

Toolbar buttons are not persistent from one ANSYS session to the next; however, they are saved and maintained
in the database so that any "resume" of the session will still contain these abbreviations. To save your custom
button definitions, you must explicitly save them to a file through the Utility Menu> MenuCtrls> Save Toolbar
menu item (ABBSAV command) and restore them for each session using the Utility Menu> MenuCtrls> Restore
Toolbar menu item (ABBRES command). You can do this programmatically in a macro.

Note — If any abbreviations already exist in the named file, the ABBSAV command overwrites them.

The format of the abbreviations file is the APDL commands that are used to create the abbreviations. Thus, if
you wish to edit a large set of buttons or change their order, you may find using a text editor to be the most
convenient method. For example, the following is the file that results from saving the default toolbar buttons.

/NOPR
*ABB,SAVE_DB ,SAVE
*ABB,RESUM_DB,RESUME
*ABB,QUIT ,Fnc_/EXIT
*ABB,POWRGRPH,Fnc_/GRAPHICS
/GO

The *ABB commands (the abbreviated form of *ABBR) define the buttons. The /NOPR at the top turns off
echoing to the log file while the /GO at the bottom turns log file echoing on.

2.3. Nesting Toolbar Abbreviations

The save-and-restore features described above allow you to nest abbreviations. By nesting abbreviations under
one button, you can define specialized toolbars (if you have many abbreviations, having them on a single toolbar
can be cluttered, making it difficult to find the proper button). To nest abbreviations, you simply define an ab-
breviation that restores an abbreviation file. For example, the following command defines PREP_ABR as an ab-
breviation that restores abbreviations from the file prep.abbr.

*ABBR,PREP_ABR,ABBRES,,PREP,ABBR

PREP_ABR will appear as a button on the toolbar. Clicking it will replace the existing buttons with the set of
buttons defined in the prep.abbr file.

By defining abbreviations to restore these files and including those abbreviations in the appropriate files, you
can have a virtually unlimited number of abbreviations in a given ANSYS session. You can even extend this
concept and create your own menu hierarchy by nesting several abbreviation files. If you implement such a
hierarchy, it's a good practice to add an abbreviation as a "return" button in each file to navigate back through
the menus.

Section 2.3: Nesting Toolbar Abbreviations

2–3APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

2–4

Chapter 3: Using Parameters

3.1. Parameters

Parameters are APDL variables (they are more similar to Fortran variables than to Fortran parameters). You don't
need to explicitly declare the parameter type. All numeric values (whether integer or real) are stored as double-
precision values. Parameters that are used but not defined are assigned a near-zero, or "tiny," value of approxim-

ately 2-100. For example, if parameter A is defined as A=B, and B is not defined, then A is assigned the tiny value.

ANSYS uses two types of parameters: scalar and array. The first part of this chapter discusses information that is
applicable to both types. Starting with Section 3.11: Array Parameters, the information is specific to array type
parameters.

Character strings (up to eight characters long) can be assigned to parameters by simply enclosing the string in
single quotes. APDL also provides several types of array parameters: numeric, character, string and table (a special
numeric type that automatically interpolates values).

You can use a parameter (instead of a literal number or character string) as an argument to any ANSYS command;
the parameter is evaluated and its current value is used for that argument. For example, if you assign the value
2.7 to a parameter named AA and then issue the command

N,12,AA,4

the ANSYS program will interpret the command as

N,12,2.7,4

(which defines node 12 at X=2.7 and Y=4).

Note — If array, table, or character parameters are used within a macro or input file, those parameters
should be dimensioned (if array or table) and defined within that macro or input file. If you fail to follow
this practice, ANSYS will produce error messages stating that those parameters are undefined. ANSYS
will produce the error messages even if the parameters lie within unexecuted *IF statements, as para-
meter substitution is done before the branching for the *IF is checked.

3.2. Guidelines for Parameter Names

Parameter names must:

• Begin with a letter

• Contain only letters, numbers, and underscore characters

• Contain no more than 32 characters

Examples of valid and invalid parameter names are

Valid:

ABC
PI
X_OR_Y

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Invalid:

MY_PARAMETER_NAME_LONGER_THAN_32_CHARACTERS (more than 32 characters)
2CF3 (begins with a number)
M&E (invalid character "&")

When naming parameters:

• Avoid parameter names that match commonly used ANSYS labels, such as:

– Degree of freedom (DOF) labels (TEMP, UX, PRES, etc.)

– Convenience labels (ALL, PICK, STAT, etc.)

– User-defined labels (such as those defined with the ETABLE command)

– Array type field labels (such as CHAR, ARRAY, TABLE, etc.)

• Parameter names ARG1 through ARG9 and AR10 through AR99 are reserved for local parameters. Generally,
local parameters are used in macros (see Section 4.4: Local Variables). Use of these names as "regular"
parameters is not recommended.

• Parameter names must not match abbreviations defined with the *ABBR command. For more information
about abbreviations, see Section 2.1: Adding Commands to the Toolbar.

• Do not begin parameter names with an underscore (_). This convention is reserved for parameters used
by the GUI and ANSYS-supplied macros.

• APDL programmers supporting an organization should consider naming their parameters with a trailing
underscore(_). These can displayed as a group using the *STATUS command and deleted from memory
as a group through the *DEL command.

3.2.1. Hiding Parameters from *STATUS

Section 3.3.4: Listing Parameters discusses listing parameters through the *STATUS command. You can use a
parameter naming convention to "hide" parameters from the *STATUS command. Any parameter whose name
ends in an underscore (_) will not be listed by *STATUS.

This capability was added specifically for those who are developing APDL macros for large audiences. You can
use this to build macros that your ANSYS users and other macro programmers cannot list.

3.3. Defining Parameters

Unless otherwise specified, the information in the next several sections applies to both scalar and array type
parameters. Beginning with Section 3.11: Array Parameters, the information is specific to array type parameters.

You can either assign values to parameters or retrieve values supplied by ANSYS and store these values in para-
meters. For retrieving values from ANSYS, you can use either the *GET command or the various in-line get
functions. The following sections cover these subjects in detail.

3.3.1. Assigning Parameter Values During Execution

You can use the *SET command to define parameters. The following examples illustrate a set of example para-
meters defined using *SET:

*SET,ABC,-24
*SET,QR,2.07E11

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–2

Chapter 3: Using Parameters

*SET,XORY,ABC
*SET,CPARM,'CASE1'

You can use an "=" as a shorthand way of calling the *SET command (this is the most convenient method). The
format of the shortcut is Name = Value, where Name is the name assigned to the parameter and Value is the
numeric or character value stored in that parameter. For character parameters, the assigned value must be enclosed
in single quotes and cannot exceed eight alphanumeric characters. The following are examples of "=" in use:

ABC=-24
QR=2.07E11
XORY=ABC
CPARM='CASE1'

In the GUI, you can either type the "=" directly in the ANSYS input window or in the "Selection" field of the Scalar
Parameter dialog box (accessed by the Utility Menu> Parameters> Scalar Parameters menu item).

3.3.2. Assigning Parameter Values At Startup

You can define parameters as arguments when launching ANSYS from the operating system command line.
Simply type parameter definitions after the ANSYS execution command (which is system dependent) using the
format -Name Value. For example, the following defines two parameters (parm1 and parm2) having the values
89.3 and -0.1:

ansys81 -parm1 89.3 -parm2 -0.1

It is a good practice to avoid assigning one or two character parameter names at startup to avoid conflicts with
ANSYS command line options.

Note — Remember that UNIX shells treat single quotes and many other non-alphanumeric characters
as special symbols. When defining character parameters, you must tell UNIX not to interpret the quotes
by inserting a back slash (\) before the single quotes. For example, the following defines two character
parameters having the values `filename' and `200.'

ansys81 -cparm1 \'filename\' -cparm2 \'200\'

If you use the ANSYS Launcher to start ANSYS, you can define parameters through the Interactive or Batch
menu items (using the -Name Value format described above).

If you are defining a large number of parameters at startup, you'll find it much more convenient to define these
in the start81.ans file or through a separate file that you can load through the /INPUT command instead of the
command line.

3.3.3. Assigning ANSYS-Supplied Values to Parameters

ANSYS provides two powerful methods for retrieving values:

• The *GET command, which retrieves a value from a specified item and stores it in a specified parameter.

• The in-line get functions, which can be used in operations. Each get function returns a specific value from
a specific item.

3.3.3.1. Using the *GET Command

The *GET command (Utility Menu> Parameters> Get Scalar Data) retrieves an ANSYS-supplied value for an
item (a node, an element, an area, etc.) and stores it as a user-named parameter. Various keyword, label, and
number combinations identify the retrieved item. For example, *GET,A,ELEM,5,CENT,X returns the centroid x-
location of element 5 and stores the result as parameter A.

Section 3.3: Defining Parameters

3–3APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

The format for the *GET command is:

*GET,Par,Entity,ENTNUM,Item1,IT1NUM,Item2,IT2NUM

where

• Par is the name of the parameter to store the retrieved item.

• Entity is a keyword for the item to be stored. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, etc.
For a complete list of valid keywords, see the *GET description in the ANSYS Commands Reference.

• ENTNUM is the number of the entity (or zero for all entities).

• Item1 is the name of an item for a particular entity. For example, if Entity is ELEM, Item1 will be either
NUM (the highest or lowest element number in the selected set) or COUNT (the number of elements in
the set). (For a complete list of Item1 values for each entity type, see the *GET description in the ANSYS
Commands Reference.)

You can think of the *GET command as a path down a tree structure, from general to specific information.

The following examples show the *GET command in use. The first command below gets the material attribute
(the MAT reference number) of element 97 and assigns it to parameter BCD:

*GET,BCD,ELEM,97,ATTR,MAT ! BCD = Material number of element 97
*GET,V37,ELEM,37,VOLU ! V37 = volume of element 37
*GET,EL52,ELEM,52,HGEN ! EL52 = value of heat generation in element 52
*GET,OPER,ELEM,102,HCOE,2 ! OPER = heat coefficient of element 102,face2
*GET,TMP,ELEM,16,TBULK,3 ! TMP = bulk temperature of element 16,face3
*GET,NMAX,NODE,,NUM,MAX ! NMAX = maximum active node number
*GET,HNOD,NODE,12,HGEN ! HNOD = value of heat generation at node 12
*GET,COORD,ACTIVE,,CSYS ! COORD = active coordinate system number

3.3.3.2. Using In-line Get Functions

For some items, you can use in-line "get functions" in place of the*GET command. A get function returns a value
for an item and uses it directly in the current operation. This process allows you to bypass the dual steps of
storing the value with a parameter name and then entering the parameter name in an operation. For example,
suppose that you want to calculate the average x-location of two nodes. You could do the following using the
*GET function:

1. Issue the following command to assign the x-location of Node 1 to parameter L1.

 *GET,L1,NODE,1,LOC,X

2. Issue a second *GET command to assign the x-location of Node 2 to parameter L2.

3. Compute the middle location from MID=(L1+L2)/2.

A shorter method is to use the node location "get function" NX(N), which returns the x-location of node N. You
can use it to calculate the MID location without setting intermediate parameters L1 and L2, as is shown in the
following example:

MID=(NX(1)+NX(2))/2

Get function arguments can themselves be parameters or other get functions. For instance, get function
NELEM(ENUM,NPOS) returns the node number in position NPOS for element ENUM. Combining functions
NX(NELEM(ENUM,NPOS)) returns the x-location of that node.

The following table summarizes the available get functions:

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–4

Chapter 3: Using Parameters

Retrieved ValueGet Function

Entity Status:

Status of node N (-1=unselected, 0=undefined, 1=selected)NSEL(N)

Status of element E (-1=unselected, 0=undefined, 1=selected)ESEL(E)

Status of keypoint K(-1=unselected, 0=undefined, 1=selected)KSEL(K)

Status of line L(-1=unselected, 0=undefined, 1=selected)LSEL(L)

Status of area A (-1=unselected, 0=undefined, 1=selected)ASEL(A)

Status of volume E (-1=unselected, 0=undefined, 1=selected)VSEL(V)

Next Selected Entity:

Next selected node having a node number greater than NNDNEXT(N)

Next selected element having an element number greater than EELNEXT(E)

Next selected keypoint having a keypoint number greater than KKPNEXT(K)

Next selected line having a line number greater than LLSNEXT(L)

Next selected area having an area number greater than AARNEXT(A)

Next selected volume having a volume number greater than VVLNEXT(V)

Locations:

Centroid x-coordinate of element E in global Cartesian coordinate system.
Centroid is determined from the selected nodes on the element.

CENTRX(E)

Centroid y-coordinate of element E in global Cartesian coordinate system.
Centroid is determined from the selected nodes on the element.

CENTRY(E)

Centroid z-coordinate of element E in global Cartesian coordinate system.
Centroid is determined from the selected nodes on the element.

CENTRZ(E)

X-coordinate of node N in the active coordinate systemNX(N)

Y-coordinate of node N in the active coordinate systemNY(N)

Z-coordinate of node N in the active coordinate systemNZ(N)

X-coordinate of keypoint K in the active coordinate systemKX(K)

Y-coordinate of keypoint K in the active coordinate systemKY(K)

Z-coordinate of keypoint K in the active coordinate systemKZ(K)

X-coordinate of line L at length fraction LFRAC (0.0 to 1.0)LX(L,LFRAC)

Y-coordinate of line L at length fraction LFRAC (0.0 to 1.0)LY(L,LFRAC)

Z-coordinate of line L at length fraction LFRAC (0.0 to 1.0)LZ(L,LFRAC)

Nearest to Location:

Number of the selected node nearest the X,Y,Z point (in the active coordinate
system; lowest number for coincident nodes)

NODE(X,Y,Z)

Number of the selected keypoint nearest the X,Y,Z point (in the active coordin-
ate system; lowest number for coincident keypoints)

KP(X,Y,Z)

Distance:

Distance between nodesN1 and N2DISTND(N1,N2)

Distance between keypoints K1 and K2DISTKP(K1, K2)

Distance between the centroid of element E and node N. Centroid is determined
from the selected nodes on the element.

DISTEN(E,N)

Section 3.3: Defining Parameters

3–5APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Angles:

Subtended angle between two lines (defined by three nodes where N1 is the
vertex node). Default is in radians (see the *AFUN command to select degrees).

ANGLEN(N1,N2,N3)

Subtended angle between two lines (defined by three keypoints where K1 is
the vertex keypoint). Default is in radians (see the *AFUN command to select
degrees).

ANGLEK(K1,K2,K3)

Nearest to Entity:

Selected node nearest node NNNEAR(N)

Selected keypoint nearest keypoint KKNEAR(K)

Selected element nearest node N. The element position is calculated from the
selected nodes.

ENEARN(N)

Areas:

Area of the triangle with vertices at nodes N1,N2,N3AREAND(N1,N2,N3)

Area of the triangle with vertices at keypoints K1,K2,K3AREAKP(K1,K2,K3)

Area at node N apportioned from selected elements attached to node N. For
2-D planar solids, returns edge area associated with the node. For axisymmetric
solids, returns edge surface area associated with the node. For 3-D volumetric
solids, returns face area associated with the node.

ARNODE(N)

Normals:

X-direction cosine of the normal to the plane containing nodes N1, N2,
N3

NORMNX(N1,N2,N3)

Y-direction cosine of the normal to the plane containing nodes N1, N2,
N3

NORMNY(N1,N2,N3)

Z-direction cosine of the normal to the plane containing nodes N1, N2,
N3

NORMNZ(N1,N2,N3)

X-direction cosine of the normal to the plane containing keypoints
K1,K2,K3

NORMKX(K1,K2,K3)

Y-direction cosine of the normal to the plane containing keypoints
K1,K2,K3

NORMKY(K1,K2,K3)

Z-direction cosine of the normal to the plane containing keypoints
K1,K2,K3

NORMKZ(K1,K2,K3)

Connectivity:

Element connected to node N. LOC is the position in the resulting list when
many elements share the node. A zero is returned at the end of the list.

ENEXTN(N,LOC)

Node number in position NPOS (1-20) of element ENELEM(E,NPOS)

Faces:

For 2-D planar solids and 3-D volumetric solids, element adjacent to a face
(FACE) of element E. The face number is the same as the surface load key
number. Only elements of the same dimensionality and shape are con-
sidered. A -1 is returned if more than one element is adjacent; A 0 is re-
turned if there are no adjacent elements.

ELADJ(E,FACE)

Node in position LOC of a face number FACE of element E. The face number
is the same as the surface load key number. LOC is the nodal position on
the face (for an IJLK face, LOC = 1 is at node I, 2 is at node J, etc.).

NDFACE(E,FACE,LOC)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–6

Chapter 3: Using Parameters

Faces:

Face number of element E containing the selected nodes. The face number
output is the surface load key. If multiple load keys occur on a face (such
as for line and area elements), the lowest load key for that face is output.

NMFACE(E)

For 2-D planar solids and 3-D volumetric solids, returns the area of the face
of element E containing the selected nodes. For axisymmetric elements,
the area is the full (360°) area.

ARFACE(E)

Degree of Freedom Results:

UX structural displacement at node NUX(N)

UY structural displacement at node NUY(N)

UZ structural displacement at node NUZ(N)

ROTX structural rotation at node NROTX(N)

ROTY structural rotation at node NROTY(N)

ROTZ structural rotation at node NROTZ(N)

Temperature at node N. For SHELL131 and SHELL132 elements with KEYOPT(3)
= 0 or 1, use TBOT(N), TE2(N), TE3(N), . . ., TTOP(N) instead of TEMP(N).

TEMP(N)

Pressure at node NPRES(N)

VX fluid velocity at node NVX(N)

VY fluid velocity at node NVY(N)

VZ fluid velocity at node NVZ(N)

Turbulent kinetic energy (FLOTRAN) at node NENKE(N)

Turbulent energy dissipation (FLOTRAN) at node NENDS(N)

Electric potential at node NVOLT(N)

Magnetic scalar potential at node NMAG(N)

AX magnetic vector potential at node NAX(N)

AY magnetic vector potential at node NAY(N)

AZ magnetic vector potential at node NAZ(N)

3.3.4. Listing Parameters

Once you have defined parameters, you can list them using the *STATUS command. If the *STATUS command
is issued without arguments, it provides a list of all of the currently defined parameters. The following example
shows the command and a typical listing.

*STATUS

PARAMETER STATUS- (5 PARAMETERS DEFINED)

NAME VALUE TYPE DIMENSIONS
ABC -24.0000000 SCALAR
HEIGHT 57.0000000 SCALAR
QR 2.070000000E+11 SCALAR
X_OR_Y -24.0000000 SCALAR
CPARM CASE1 CHARACTER

You can also access this information through either the Utility Menu> List> Other> Parameters or Utility
Menu> List> Status> Parameters> All Parameters menu items.

Note — Any parameters beginning or ending in an underscore (_) are not shown by the *STATUS com-
mand.

Section 3.3: Defining Parameters

3–7APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

You can check the status of individual parameters by providing these as arguments to the *STATUS command.
The following example shows the status of the ABC parameter.

*STATUS,ABC

PARAMETER STATUS- abc (5 PARAMETERS DEFINED)

NAME VALUE TYPE DIMENSIONS
ABC -24.0000000 SCALAR

You can also check the status of specific parameters through the Utility Menu> List> Other> Named Parameter
or Utility Menu> List> Status> Parameters> Named Parameters menu items.

Note — Although ANSYS allows a maximum of 5000 parameters, fewer than 5000 are available to the
user due to GUI and ANSYS macro requirements. The number of parameters defined by the user interface
(internal parameters) is listed by the *STATUS command. The command *GET,par,PARM,,MAX returns
the total number of parameters defined.

3.4. Deleting Parameters

You can delete specific parameters in two ways:

• Issue the "=" command, leaving the right-hand side of the command blank. For example, to delete the
QR parameter issue this command:

QR=

• Issue the *SET command (Utility Menu> Parameters> Scalar Parameters), but don't specify a value for
the parameter. For example, to delete the QR parameter via the *SET command issue the command as
follows:

*SET,QR,

Setting a numeric parameter equal to zero does not delete it. Similarly, setting a character parameter equal to
empty single quotes (` `) or placing blanks within single quotes does not delete the parameter.

3.5. Using Character Parameters

Typically, character parameters are used to provide file names and extensions. The desired file name can be as-
signed to a character parameter, and that parameter can be used anywhere a file name is required. Similarly, a
file extension can be assigned to a character parameter and used where appropriate (typically the Ext command
argument). In batch mode, this allows you to easily change file names for multiple runs by simply changing the
initial alphanumeric "value" of the character parameter in your input file.

Note — Remember that character parameters are limited to a total of eight characters.

The following is a list of general uses for character parameters.

• As arguments to any applicable command field (that is, where alphanumeric input is expected)

• As macro name arguments for the *USE command (Utility Menu> Macro> Execute Data Block)

NAME='MACRO' ! MACRO is the name of a macro file
*USE,NAME ! Calls MACRO

• As arguments to macro calls for *USE and for the "unknown command" macro. Any of the following macro
calls are allowed:

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–8

Chapter 3: Using Parameters

ABC='SX'
*USE,NAME,ABC

or

*USE,NAME,'SX'

DEF='SY'
NEWMACRO,DEF ! Calls existing macro file NEWMACRO.MAC

or

NEWMACRO,'SY'

3.6. Substitution of Numeric Parametric Values

Whenever you use a parameter name in a numeric command field, its value is automatically substituted. If no
value has been assigned to the parameter (that is, if the parameter has not been defined), a near-zero value

(2-100) will be substituted, usually without warning.

Note — Defining the parameter after it is used in a command does not "update" the command in most
cases. (Exceptions are the commands /TITLE, /STITLE, *ABBR, and /TLABEL. See Section 3.6.2.1: Forced
Substitution for more information.) For example:

Y=0
X=2.7
N,1,X,Y ! Node 1 at (2.7,0)
Y=3.5 ! Redefining parameter Y now does not update node 1

3.6.1. Preventing Substitution

You can prevent parameter substitution by enclosing the parameter name with single quotes ('), for example,
'XYZ'. The literal string is then used; therefore, this feature is valid only in non-numerical fields.

Conversely, you can force parameter substitution in titles, subtitles, and filenames by enclosing the parameter
name with percent signs (%). For example,

/TITLE, TEMPERATURE CONTOURS AT TIME=%TM%

specifies a title in which the numerical value of parameter TM is substituted. Note that the parameter is substituted
at the time the title is used.

3.6.2. Substitution of Character Parametric Values

Use of a character parameter in an alphanumeric command field generally results in automatic substitution of
its value. Forced substitution and character parameter restrictions are explained below.

3.6.2.1. Forced Substitution

As with numerical parameters, you can force the substitution of a character parameter value in certain cases
where substitution would not occur otherwise. This is done by enclosing the character parameter name with
percent signs (%). Forced substitution of character parameters is valid for the following commands:

• /TITLE command (Title field). Specifies titles for various printed output.

• /STITLE command (Title field). Specifies subtitles, similar to/TITLE. (You cannot access the /STITLE
command directly in the GUI.)

Section 3.6: Substitution of Numeric Parametric Values

3–9APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• /TLABEL command (Text field). Specifies text string for annotation.

• *ABBR command (Abbr field). Defines an abbreviation.

Forced substitution is also valid in the following types of fields:

• Any filename or extension command argument. These arguments apply to commands such as /FILNAME,
RESUME, /INPUT, /OUTPUT, and FILE. (Direct parameter substitution is also valid in these fields.)

• Any 32 character field: A typical example is the name of macros. (Direct substitution is not valid for these
fields.)

• As a command name in any command name field. Also as an "unknown command" macro name in field
1. For example:

R='RESUME'
%R%,MODEL,DB

The following example of the command input method shows forced substitution for a subtitle definition and
for a directory name.

A='TEST'
B='.RST'
C='/ANSYS'
D='/MODELS/'
/STITLE,,RESULTS FROM FILE %C%%D%%A%%B%

 SUBTITLE 1 =
 RESULTS FROM FILE /ANSYS/MODELS/TEST.RST

/POST1
FILE,A,RST,%C%%D% ! Read results from /ANSYS/MODELS/TEST.RST

3.6.2.2. Other Places Where Character Parameters Are Valid

In addition to the more general applications already discussed, there are some specific instances where character
parameters are allowed for added convenience. The commands which are affected and details of usage are
outlined below.

*ASK
This command may prompt you for an alphanumeric string (up to eight characters enclosed in single quotes)
which is assigned to a character scalar parameter. (You cannot access the *ASK command directly in the
GUI.)

*CFWRITE
This command writes ANSYS commands to the file opened by *CFOPEN. It can be used to write a character
parameter assignment to that file. For example, *CFWRITE,B = 'FILE' is valid. (You cannot access the *CFWRITE
and *CFOPEN commands directly in the GUI.)

*IF and *ELSEIF
Character parameters may be used for the VAL1 and VAL2 arguments of these commands. For the Oper ar-
gument, only labels EQ (equal) and NE (not equal) are valid when using character parameters. (You cannot
access the *IF and *ELSEIF commands directly in the GUI.) Example:

CPARM='NO'
*IF,CPARM,NE,'YES',THEN

*MSG
Character parameters are allowed as input for the VAL1 through VAL8 arguments. The data descriptor %C
is used to indicate alphanumeric character data on the format line (which must follow the *MSG command).

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–10

Chapter 3: Using Parameters

The %C corresponds to the FORTRAN descriptor A8. (You cannot access the *MSG command directly in the
GUI.)

PARSAV and PARRES
These commands will save character parameters to a file (PARSAV command or menu path Utility Menu>
Parameters> Save Parameters) and resume character parameters from a file (PARRES or Utility Menu>
Parameters> Restore Parameters).

*VREAD
This command (Utility Menu> Parameters> Array Parameters> Read from File) can be used to read al-
phanumeric character data from a file and produce a character array parameter. The FORTRAN character
descriptor (A) may be used in the format line which must follow the *VREAD command.

*VWRITE
This command (menu path Utility Menu> Parameters> Array Parameters> Write to File) can be used to
write character parameter data to a file in a formatted sequence. The FORTRAN character descriptor (A) may
be used in the format line which must follow the *VWRITE command.

3.6.2.3. Character Parameter Restrictions

Although character parameters have much of the same functionality as numerical parameters, there are several
instances where character parameters are not valid.

• Character parameter substitution is not allowed for the Par argument of the *SET, *GET, *DIM, and
*STATUS commands.

• Interactive editing of array parameters (*VEDIT command) is not available for character array parameters.

• Vector operation commands, such as *VOPER, *VSCFUN, *VFUN, *VFILL, *VGET, and *VITRP, do not
work with character array parameters.

• When operating on character parameters, the specification commands *VMASK and *VLEN are applicable
only to the *VWRITE and *VREAD commands.

• Character parameters are not valid in parametric expressions which use addition, subtraction, multiplication,
etc.

3.7. Dynamic Substitution of Numeric or Character Parameters

Dynamic substitution of parameters will occur for the following commands: /TITLE, /STITLE, *ABBR, /AN3D,
and /TLABEL. Dynamic substitution allows the revised value of a parameter to be used, even if the command
which uses the parameter value has not been reissued.

Example:

XYZ='CASE 1'
/TITLE,This is %XYZ%
APLOT

The title "This is CASE 1" will appear on the area plot.

You can then change the value of XYZ and the new title will appear on subsequent plots, even though you did
not reissue /TITLE.

XYZ='CASE 2'

The title "This is CASE 2" will appear on subsequent plots.

Section 3.7: Dynamic Substitution of Numeric or Character Parameters

3–11APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

3.8. Parametric Expressions

Parametric expressions involve operations among parameters and numbers such as addition, subtraction, mul-
tiplication, and division. For example:

X=A+B
P=(R2+R1)/2

D=-B+(E**2)-(4*A*C) ! Evaluates to D = -B + E2 - 4AC

XYZ=(A<B)+Y**2 ! Evaluates to XYZ = A + Y2 if A is less than B;

 ! otherwise to XYZ = B + Y2
INC=A1+(31.4/9)
M=((X2-X1)**2-(Y2-Y1)**2)/2

The following is a complete list of APDL operators:

OperationOperator

Addition+

Subtraction_

Multiplication*

Division/

Exponentiation**

Less-Than Comparison<

Greater-Than Comparison>

You can also use parentheses for clarity and for "nesting" of operations, as shown above. The order in which the
ANSYS program evaluates an expression is as follows:

1. Operations in parentheses (innermost first)

2. Exponentiation (in order, from right to left)

3. Multiplication and division (in order, from left to right)

4. Unary association (such as +A or -A)

5. Addition and subtraction (in order, from left to right)

6. Logical evaluation (in order, from left to right)

Thus an expression such as Y2=A+B**C/D*E will be evaluated in this order: B**C first, /D second, *E third, and
+A last. For clarity, you should use parentheses in expressions such as these. Parentheses can be nested up to
four levels deep, and up to nine operations can be performed within each set of parentheses. As a general rule,
avoid using blank spaces between operators in expressions. In particular, never include a blank space before the
* character because the rest of the input line (beginning with the *) will be interpreted as a comment and
therefore will be ignored. (Do not use this convention as a comment; use an exclamation point (!) for this purpose.)

3.9. Parametric Functions

A parametric function is a programmed sequence of mathematical operations which returns a single value, such
as SIN(X), SQRT(B), and LOG(13.2). The following table provides a complete list of functions currently available
in ANSYS.

Absolute value of x.ABS(x)

Absolute value of x with sign of y. y=0 results in positive sign.SIGN(x,y)

Exponential of x (ex).EXP(x)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–12

Chapter 3: Using Parameters

Natural log of x (ln (x)).LOG(x)

Common log of x (log10(x)).LOG10(x)

Square root of x.SQRT(x)

Nearest integer to x.NINT(x)

Remainder of x/y. y=0 returns zero (0).MOD(x,y)

Random number (uniform distribution) in the range x to y (x = lower bound, y
= upper bound).

RAND(x,y)

Random sample of a Gaussian (normal) distribution with mean x and standard
deviation y.

GDIS(x,y)

Sine, Cosine, and Tangent of x. x is in radians by default, but can be changed
to degrees with *AFUN.

SIN(x), COS(x), TAN(x)

Hyperbolic sine, Hyperbolic cosine, and Hyperbolic tangent of x.SINH(x), COSH(x),
TANH(x)

Arcsine, Arccosine, and Arctangent of x. x must be between -1.0 and +1.0 for
ASIN and ACOS. Output is in radians by default, but can be changed to degrees
with *AFUN. Range of output is -pi/2 to +pi/2 for ASIN and ATAN, and 0 to pi
for ACOS.

ASIN(x), ACOS(x),
ATAN(x)

Arctangent of y/x with the sign of each component considered. Output is in
radians by default, but can be changed to degrees with *AFUN. Range of output
is -pi to +pi.

ATAN2(y,x)

Numerical value of CPARM (if CPARM is non-numeric, returns 0.0).VALCHR (CPARM

Character value of numerical parameter PARM. Number of decimal places de-
pends on magnitude.

CHRVAL (PARM)

Upper case equivalent of CPARM.UPCASE CPARM

Lower case equivalent of CPARM.LWCASE (CPARM)

The following are examples of parametric functions:

PI=ACOS(-1) ! PI = arc cosine of -1, PI calculated to machine accuracy
Z3=COS(2*THETA)-Z1**2
R2=SQRT(ABS(R1-3))
X=RAND(-24,R2) ! X = random number between -24 and R2

*AFUN,DEG ! Units for angular functions are degrees
THETA=ATAN(SQRT(3)) ! THETA evaluates to 60 degrees
PHI=ATAN2(-SQRT(3),-1) ! PHI evaluates to -120 degrees
*AFUN,RAD ! Units for angular functions reset to radians

X249=NX(249) ! X-coordinate of node 249
SLOPE=(KY(2)-KY(1))/(KX(2)-KX(1))
 ! Slope of line joining keypoints 1 and 2

CHNUM=CHRVAL(X) ! CHNUM = character value of X
UPPER=UPCASE(LABEL) ! UPPER = uppercase character value of parameter LABEL

3.10. Saving, Resuming, and Writing Parameters

If you must use currently defined parameters in another ANSYS session, you can write them to a file and then
read (resume) that file. When you read the file, you can either completely replace currently defined parameters
or add to them (replacing those that already exist).

To write parameters to a file, use the PARSAV command (Utility Menu> Parameters> Save Parameters).

The parameters file is an ASCII file consisting largely of APDL *SET commands used to define the various para-
meters. The following example shows the format of this file.

Section 3.10: Saving, Resuming, and Writing Parameters

3–13APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

/NOPR
*SET,A , 10.00000000000
*SET,B , 254.3948750000
*SET,C ,'string '
*SET,_RETURN , 0.0000000000000E+00
*SET,_STATUS , 1.000000000000
*SET,_ZX ,' '
/GO

To read parameters from a file use the PARRES command (Utility Menu> Parameters> Restore Parameters)

If you wish, you can write up to ten parameters or array parameters using FORTRAN real formats to a file. You
can use this feature to write your own output file for use in other programs, reports, etc. To do this, use the
*VWRITE command (Utility Menu> Parameters> Array Parameters> Write to File). The *VWRITE command
is discussed in Section 3.11.7: Operations Among Array Parameters.

3.11. Array Parameters

In addition to scalar (single valued) parameters, you can define array (multiple valued) parameters. ANSYS arrays
can be

• 1-D (a single column)

• 2-D (rows and columns)

• 3-D (rows, columns, and planes)

• 4-D (rows, columns, planes, and books)

• 5-D (rows, columns, planes, books, and shelves)

ANSYS provides three types of arrays:

ARRAY
This type is similar to FORTRAN 77 arrays and is the default array type when dimensioning arrays. As with
FORTRAN arrays, the indices for rows, columns, and planes are sequential integer numbers beginning with
one. Array elements can be either integers or real numbers.

CHAR
This is a character array, with each element consisting of an alphanumeric value not exceeding eight characters.
The indices for rows, columns, and planes are sequential integer numbers beginning with one.

TABLE
This is a special type of numeric array which allows ANSYS to calculate (through linear interpolation) values
between these array elements explicitly defined in the array. Moreover, you can define the array indices for
each row, column, and plane and these indices are real (not integer) numbers. Array elements can be either
integers or real numbers. As we'll see in the later discussion on TABLE arrays, this capability provides a
powerful method for describing mathematical functions.

STRING
You can use the *DIM, STRING capability to enter character strings into your arrays. Index numbers for
columns and planes are sequential values beginning with 1. Row indices are determined by the character
position in the string. See the *DIM command for more information.

All three types of arrays cannot exceed 2*31-1 bytes. For a double precision array, each data item is 8 bytes, so
the limit on number of entries is (2**31-1)/8.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–14

Chapter 3: Using Parameters

3.11.1. Array Parameter Basics

Consider a 2-D array (either ARRAY or CHAR) as shown below. It is m rows long and n columns wide; that is, its
dimensions are m times n. Each row is identified by a row index number i, which varies from 1 to m, and each
column is identified by a column index number j, which varies from 1 to n. The quantities that make up the array
are array elements. Each array element is identified as (i,j), where i is its row index number and j is its column
index number.

Figure 3.1 A Graphical Representation of a 2-D Array

We can extend these definitions to a 3-D array parameter, which may be m rows long, n columns wide, and p
planes deep. The plane index number is k, which varies from 1 to p. Each array element is identified as (i,j,k,).
The following figure shows a 3-D array.

Figure 3.2 A Graphical Representation of a 3-D Array

Section 3.11: Array Parameters

3–15APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Figure 3.3 A Graphical Representation of a 5-D Array

Row
Column

Plane 1
Plane 2

Plane 3

Row
Column

Plane 1
Plane 2

Plane 3Book 1
4-D

Row
Column

Plane 1
Plane 2

Plane 3

Row
Column

Plane 1
Plane 2

Plane 3Book 2
4-D

5-D Shelf 1

3.11.2. Array Parameter Examples

Type ARRAY parameters consist of discrete numbers that are simply arranged in a tabular fashion for convenience.
Consider the following examples.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–16

Chapter 3: Using Parameters

The parameter NTEMP could be an array of temperatures at selected nodes; NTEMP(1) = -47.6 could be the
temperature at node 27, NTEMP(2) = -5.2 could be the temperature at node 43, and so on. Similarly, EVOLUM
could be an array of element volumes, and COMPSTRS could be an array of nodal component stresses, with each
column representing a particular direction (X, Y, Z, XY, YZ, XZ, for example).

A type CHAR array parameter is structured similarly to an ARRAY parameter, with the tabular values being alpha-
numeric character strings (up to eight characters). Two examples of character array parameters are:

3.11.3. TABLE Type Array Parameters

A type TABLE array parameter consists of numbers (alphanumeric values are not valid) arranged in a tabular
fashion, much like the ARRAY type. However, there are three important differences

• ANSYS can calculate (through linear interpolation) any values that fall between the explicitly declared
array element values.

• A table array contains a 0 row and 0 column used for data-access index values, and unlike standard arrays,
these index values can be real numbers. The only restriction is that the index values must be numerically

Section 3.11: Array Parameters

3–17APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

increasing (never decreasing) numbers. You must explicitly declare a data access index value for each row
and column; otherwise the default value assigned is the "tiny number" (7.888609052E-31).

You can more conveniently define the index starting point and index values via the *TAXIS command.

• A plane index value resides in the 0,0 location for each plane.

The following figure shows a TABLE array with data-access index values. Note that the indexes are specified as
the "0" row and column values.

Figure 3.4 A Graphical Representation of a Table Array

As shown in the above example, when configuring a table array you must set

• The plane index value as the 0,0 element value for each plane.

• The data-access column index values in the elements in the 0 row in plane 1. These values are used only
when accessing data from the array. When setting the array element values, you use the traditional row
and column index numbers.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–18

Chapter 3: Using Parameters

• The data-access row index values in the elements in the 0 column in plane 1. Again, these values are used
only when accessing data from the array. When setting the array element values, you use the traditional
row and column index numbers.

3.11.4. Defining and Listing Array Parameters

To define an array parameter, you must first declare its type and dimensions using the *DIM command (Utility
Menu> Parameters> Array Parameters> Define/Edit).

This following examples illustrate the *DIM command used to dimension various types of arrays:

*DIM,AA,,4 ! Type ARRAY is default, dimension 4[x1x1]
*DIM,XYZ,ARRAY,12 ! Type ARRAY array, dimension 12[x1x1]
*DIM,FORCE,TABLE,5 ! Type TABLE array, dimension 5[x1x1]
*DIM,T2,,4,3 ! Dimensions are 4x3[x1]
*DIM,CPARR1,CHAR,5 ! Type CHAR array, dimension 5[x1x1]

Note — Array elements for ARRAY and TABLE are initialized to 0 (except for the 0 row and column for
TABLE, which is initialized to the tiny value). Array elements for CHAR are initialized to a blank value.

The next example shows how to fill a 5-D array with data. Use 1-D tables to load a 5-D table. Use the *TAXIS to
define the table index values. See the full example at Section 2.6.14.6: Example Analysis Using 5-D Table Array.

*dim,xval,array,X1
*dim,yval,array,Y1
yval(1)=0,20
*dim,zval,array,10
zval(1)=10,20,30,40,50,60,70,80,90,100
*dim,tval,array,5
tval(1)=1,.90,.80,.70,.60
*dim,tevl,array,5
tevl(1)=1,1.20,1.30,1.60,1.80

*dim,ccc,tab5,X1,Y1,Z1,D4,D5,X,Y,Z,TIME,TEMP
*taxis,ccc(1,1,1,1,1),1,0,wid !!! X-Dim
*taxis,ccc(1,1,1,1,1),2,0,hth !!! Y-Dim
*taxis,ccc(1,1,1,1,1),3,1,2,3,4,5,6,7,8,9,10 !!! Z-Dim
*taxis,ccc(1,1,1,1,1),4,0,10,20,30,40 !!! Time
*taxis,ccc(1,1,1,1,1),5,0,50,100,150,200 !!! Temp
*do,ii,1,2
 *do,jj,1,2
 *do,kk,1,10
 *do,ll,1,5
 *do,mm,1,5
 ccc(ii,jj,kk,ll,mm)=(xval(ii)+yval(jj)+zval(kk))*tval(ll)*tevl(mm)
 *enddo
 *enddo
 *enddo
 *enddo
*enddo

3.11.5. Specifying Array Element Values

You can specify array element values by

• Setting individual array element values through the *SET command or "=" shortcut.

• Filling individual vectors (columns) in the array with either specified or calculated values (the *VFILL
command, for example).

• Interactively specifying values for the elements through the *VEDIT dialog box.

• Reading the values from an ASCII file (*VREAD or *TREAD commands).

Section 3.11: Array Parameters

3–19APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Note — You cannot create or edit 4- or 5-D arrays interactively. *VEDIT, *VREAD, and *TREAD are not
applicable to 4- or 5-D arrays.

3.11.5.1. Specifying Individual Array Values

You can use either the *SET command or the "=" shortcut. Usage is the same as for scalar parameters, except
that you now define a column of data (up to ten array element values per "=" command). For example, to define
the parameter XYZ dimensioned above as a 12x1 array you will need two "=" commands. In the following example
the first command defines the first eight array elements and the second command defines the next four array
elements:

XYZ(1)=59.5,42.494,-9.01,-8.98,-8.98,9.01,-30.6,51
XYZ(9)=-51.9,14.88,10.8,-10.8

Notice that the starting location of the array element is indicated by the row index number of the parameter (1
in the first command, 9 in the second command).

The following example shows how to define the element values for the 4x3 array parameter T2, dimensioned
earlier in the *DIM examples:

T2(1,1)=.6,2,-1.8,4 ! defines (1,1),(2,1),(3,1),(4,1)
T2(1,2)=7,5,9.1,62.5 ! defines (1,2),(2,2),(3,2),(4,2)
T2(1,3)=2E-4,-3.5,22,.01 ! defines (1,3),(2,3),(3,3),(4,3)

The following example defines element values for the TABLE array parameter FORCE discussed earlier.

FORCE(1)=0,560,560,238.5,0
FORCE(1,0)=1E-6,.8,7.2,8.5,9.3

The first “=” command defines the five array elements of the TABLE array FORCE. The second and third “=”
commands redefine the index numbers in the j=0 and i=0 row.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–20

Chapter 3: Using Parameters

Character array parameters can also be defined using the "=" command. Assigned values can be up to eight
characters each and must be enclosed in single quotes. For example:

*DIM,RESULT,CHAR,3 !Character array parameter with dimensions (3,1,1)
RESULT(1)='SX','SY','SZ' !Assigns values to parameter RESULT

Notice that, as when defining a numerical array parameter, the starting location of the array element must be
specified (in this case, the row index number 1 is indicated).

Note — CHAR cannot be used as a character parameter name because it will create a conflict with the
CHAR label on the *DIM command. ANSYS will substitute the character string value assigned to parameter
CHAR when CHAR is input on the third field of the *DIM command (Type field).

3.11.5.2. Filling Array Vectors

You can use the *VFILL command (Utility Menu> Parameters> Array Parameters> Fill) to "fill" an ARRAY or
TABLE vector (column).

See the *VFILL command reference information in the ANSYS Commands Reference for more detail about the
command syntax. The following example illustrates the capabilities of the *VFILL command.

*DIM,DTAB,ARRAY,4,3 ! dimension 4 x 3 numeric array
*VFILL,DTAB(1,1),DATA,-3,8,-12,57 ! four data values loaded into vector 1
*VFILL,DTAB(1,2),RAMP,2.54,2.54 ! fill vector 2 with values starting at
 ! 2.54 and incrementing by 2.54
*VFILL,DTAB(1,3),RAND,1.5,10 ! fill vector 3 with random numbers between
 ! 1.5 and 10. Results will vary due to
 ! random number generation.

3.11.5.3. Interactively Editing Arrays

The *VEDIT command (Utility Menu> Parameters> Array Parameters> Define/Edit), which is available only
in interactive mode, launches a data entry dialog box you can use to edit an ARRAY or TABLE (not CHAR) array.
The dialog box provides a number of convenient features:

• A spreadsheet-style editor for array element values.

• Navigational controls for scrolling through large arrays.

• An initialize function to set any row or column to a specified value (ARRAY type only).

Section 3.11: Array Parameters

3–21APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• Delete, copy, and insert functions for moving rows or columns of data (ARRAY type only).

Complete instructions for using the dialog box are available from the box's Help button.

Note — You cannot edit a 4- or 5-D ARRAY or TABLE interactively.

Figure 3.5 An Example *VEDIT Dialog Box for an ARRAY

Figure 3.6 An Example *VEDIT Dialog Box for a TABLE

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–22

Chapter 3: Using Parameters

3.11.5.4. Filling an Array From a Data File Using *VREAD

You can fill an array from a data file using the *VREAD command (Utility Menu> Parameters> Array Parameters>
Read from File). The command reads information from an ASCII data file and begins writing it into the array,
starting with the index location that you specify. You can control the format of the information read from the
file through data descriptors. The data descriptors must be enclosed in parenthesis and placed on the line fol-
lowing the *VREAD command. See Section 3.11.7.1: Vector Operations for more information about data
descriptors. The data descriptors control the number of fields to be read from each record, the width of the data
fields, and the position of the decimal point in the field.

For example, given the following data file named dataval:

1.5 7.8 12.3
15.6 -45.6 42.5

and an array called EXAMPLE that has been dimensioned as 2 x 3, the following commands (provided as either
a part or a macro or input listing)

*DIM,EXAMPLE,,2,3
*VREAD,EXAMPLE(1,1),dataval,,,JIK,3,2
(3F6.1)

result in

1.5 7.8 12.3
15.6 -45.6 42.5EXAMPLE =

The *VREAD command cannot be issued directly from the command input window. However, the Utility Menu>
Parameters> Array Parameters> Read from File dialog box offers a way to specify the data descriptors and
issue the command in interactive mode.

Note — You cannot fill a 4- or 5-D array using *VREAD.

3.11.5.5. Filling a TABLE Array From a Data File Using *TREAD

Once configured, you have two options for specifying values for the TABLE array elements: you can add values
as you would for any other type of array, or you can read in a table of data from an external file.

To read in a table of data from an external file, you still define the TABLE array first, specifying the number of
rows, columns, and planes, and the labels for each. You can then read an ASCII file containing the table of data
using the *TREAD command (Utility Menu> Parameters> Array Parameters> Read from File). At this time,
you also specify the number of lines to skip (NSKIP) between the top of the file and the first line of the table.

When reading data from an external file, remember:

• The file containing the table of data can be created in a text editor or an external application (such as
Microsoft Excel), but it must be in ASCII form, tab-delimited, to be read into ANSYS.

• You must first define the array in ANSYS, remembering to allow for the index values (0,0).

• The values are read straight across the rows until all columns on each row of the array are filled; ANSYS
then wraps from one row to the next and begins to fill those columns, and so on. Be sure that the dimen-
sions of the array you defined are correct. If you mistakenly define fewer columns in the ANSYS array than
required, ANSYS will start filling in the next row of the array using the values remaining in the first row of
the data table being read. Similarly, if you define more columns in the ANSYS array than required, ANSYS
will fill all columns of the array using values from the next row of the data table being read, and only then
wrap and begin filling the next row.

Section 3.11: Array Parameters

3–23APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

You can create 1-D, 2-D, and 3-D tables by reading data from an external file. Examples of how you create each
of these follows.

Note — You cannot fill a 4- or 5-D TABLE using *TREAD.

Example 1: 1-D Table

First, create the 1-D table using the application of your choice (such as a spreadsheet application, a text editor,
etc.) and then save the file as a text file in tab-delimited format. In this example, the table is named "Tdata" and
contains data for time vs. temperature. In its ASCII form, the table would look like this:

Time Temperature Table

TempTime

200

301

702

754

In ANSYS, you define a TABLE parameter "Tt" using the *DIM command (Utility Menu> Parameters> Array
Parameters> Define/Edit). Specify 4 rows and 1 column, row label of Time, and column label of Temp. Note
that the data table you created has four rows and one column of data, plus the row and column index values
(the first column - TIME - is the row index values) Then read in the file as described earlier, specifying 2 skipped
lines. The TABLE array in ANSYS would look like this:

Figure 3.7 A Sample 1-D TABLE Array Dialog Box

This same example, done via command input, would look like the following:

*DIM,Tt,table,4,1,1,TIME,TEMP
*TREAD,Tt,tdata,txt,,2

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–24

Chapter 3: Using Parameters

Example 2: 2-D Table

For this example, create (in a spreadsheet application, a text editor, etc.) a 2-D table named "T2data" containing
temperature data as a function of time and x-coordinate and read it into a TABLE array parameter called "Ttx."
The table, in its ASCII form, would look like this:

Temp (time-X-coord) Table

X-CoordinateTime

.9.7.5.300

30252015100

40352520151

60553525202

100907040304

In ANSYS, you define a TABLE parameter "Ttx" using the *DIM command (Utility Menu> Parameters> Array
Parameters> Define/Edit). Specify 4 rows, 5 columns, 1 plane, row label of TIME, and column label of X-COORD.
Note that the data table you created has four rows and five columns of data, plus the row and column index
values. Then read in the file as described earlier, specifying 2 skipped lines. The TABLE array in ANSYS would look
like this:

Figure 3.8 A Sample 2-D TABLE Array Dialog Box

This same example, done via command input, would look like the following:

*DIM,Ttx,table,4,5,,time,X-COORD
*TREAD,Ttx,t2data,txt,,2

Section 3.11: Array Parameters

3–25APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Example 3: 3-D Table

For this example, create a 3-D table named "T3data" containing temperature data as a function of time, x-coordin-
ate, and y-coordinate and read it into a TABLE array parameter called "Ttxy." The table, in its ASCII form, would
look like this:

Temp (time-X-coord) Table

X-CoordinateTime

.9.7.5.300

30252015100

40352520151

60553525202

100907040304

.9.7.5.301.5

40353025200

50453530251

70654535302

1201008050404

In the example above, the bold values (in the (0,0,Z) positions) indicate the separate planes. Each plane of data,
along with the row and column index values, is repeated for the separate planes. Only the plane index value and
the actual data values are different. The shaded area above shows the values that change from plane to plane.

In ANSYS, you define a TABLE parameter "Ttxy" using the *DIM command (Utility Menu> Parameters> Array
Parameters> Define/Edit). In the case of a 3-D table, the table is dimensioned according to the number of rows,
columns, and planes of data. The first column (TIME) is the row index values and the first row is the column index
values. Specify 4 rows, 5 columns, 2 planes, row label of TIME, column label of X-COORD, and plane label of Y-
COORD. Note that the data table you created has four rows and five columns of data in two planes, plus the row
and column index values. Then read in the file as described earlier, specifying 2 skipped lines. The TABLE array
in ANSYS would look like this for the second plane of data (Y=1.5):

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–26

Chapter 3: Using Parameters

Figure 3.9 A Sample 3-D TABLE Array Dialog Box

This same example, done via command input, would look like the following:

*DIM,Ttxy,table,4,5,2,TIME,X-COORD,Y-COORD
*TREAD,Ttxy,t3data,txt,,2

3.11.5.6. Interpolating Values

When accessing information from the array, ANSYS will interpolate values between those explicitly set.

As examples of how ANSYS interpolates values in TABLE arrays, consider the following:

Given that A is a TABLE array parameter, the ANSYS program can calculate any value between A(1) and A(2), for
example

• A(1.5) evaluates to 20.0 (halfway between 12.0 and 28.0)

• A(1.75) evaluates to 24.0

• A(1.9) evaluates to 26.4

Similarly, if PQ is a TABLE array parameter

• PQ(1.5,1) evaluates to -3.4 (halfway between 2.8 and -9.6)

• PQ(1,1.5) evaluates to 3.5 (halfway between 2.8 and 4.2)

Section 3.11: Array Parameters

3–27APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• PQ(3.5,1.3) evaluates to 14.88

This feature allows you to describe a function, such as y=f(x), using a TABLE array parameter. You would use the
j=0 column for values of the independent variable x and the "regular" j=1 column for values of y. Consider, for
example, a time-history forcing function described by five points as shown below.

Figure 3.10 Time-History Forcing Function

You can specify this function as a TABLE array parameter whose array elements are the force values, and whose
row index numbers 1 through 5 are time values 0.0 through 9.3. Schematically, the parameter will then look like
this:

ANSYS can calculate (through linear interpolation) force values at times not specified in the FORCE parameter.
For the above example, ANSYS will calculate a value of 89.4375 for FORCE(9). If a parameter location beyond the
dimensions of the array is used, no extrapolation is done and the end value is used. For example, ANSYS will
provide a value of 560.0 for FORCE(5,2) or 0.0 for FORCE(12)

You can see from these examples that TABLE array parameters can be very powerful tools in your analysis. Typ-
ical applications are time-history loading functions, response spectrum curves, stress-strain curves, material-
versus- temperature curves, B-H curves for magnetic materials, and so forth. Be aware that TABLE array parameters
require more computer time to process than the ARRAY type.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–28

Chapter 3: Using Parameters

3.11.5.7. Retrieving Values into or Restoring Array Parameter Values

You can use the *VGET command (Utility Menu> Parameters> Get Array Data), which is similar to *GET, to
retrieve ANSYS supplied values and store them in an array.

You must define a starting array location number for the array parameter the *VGET command creates. Looping
continues over successive entity numbers for the KLOOP default. For example, *VGET,A(1),ELEM,5,CENT,X returns
the centroid x-location of element 5 and stores the result in the first location of A. Retrieving continues with
elements 6, 7, and so on until successive array locations are filled. In this example, if KLOOP is 4, then the centroid
of x, y, and z are returned.

To restore array parameter values, use the *VPUT command (Utility Menu> Parameters> Array Operations>
Put Array Data).

The *VPUT command uses the same arguments as the *VGET command (described above), but does the opposite
of the *VGET operation. For a list of valid labels for *VPUT items, see the command's description in the ANSYS
Commands Reference.

The ANSYS program "puts" vector items directly, without any coordinate system transformation. *VPUT can replace
existing array items, but can't create new items. Degree of freedom results that are changed in the database are
available for all subsequent operations. Other results change temporarily, and are available mainly for immediately
following print and display operations.

Note — Use this command with extreme caution, as it can alter entire sections of the database. The
*VPUT command doesn't support all items on the *VGET item list because putting values into some
locations could make the ANSYS database inconsistent.

3.11.5.8. Listing Array Parameters

As with scalar parameters, you can use the *STATUS command to list array parameters. The following examples
illustrate the *STATUS command in use:

*STATUS
 ABBREVIATION STATUS-

 ABBREV STRING
 SAVE_DB SAVE
 RESUM_DB RESUME
 QUIT Fnc_/EXIT
 POWRGRPH Fnc_/GRAPHICS
 ANSYSWEB Fnc_HomePage

 PARAMETER STATUS- (5 PARAMETERS DEFINED)
 (INCLUDING 2 INTERNAL PARAMETERS)

 NAME VALUE TYPE DIMENSIONS
 MYCHAR hi CHARACTER
 MYPAR ARRAY 4 6 1
 MYPAR1 .987350000 SCALAR

*STATUS,XYZ(1),5,9 ! Lists rows 5 through 9 of XYZ
 PARAMETER STATUS- XYZ (4 PARAMETERS DEFINED)

 LOCATION VALUE
 5 1 1 -8.98000000
 6 1 1 9.01000000
 7 1 1 -30.6000000
 8 1 1 51.0000000
 9 1 1 -51.9000000

*STATUS,FORCE(1),,,0 ! Lists parameter FORCE, includes j=0 column

Section 3.11: Array Parameters

3–29APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

PARAMETER STATUS- FORCE (4 PARAMETERS DEFINED)

 LOCATION VALUE
 1 0 1 0.000000000E+00
 2 0 1 0.800000000
 3 0 1 7.20000000
 4 0 1 8.50000000
 5 0 1 9.30000000
 1 1 1 0.000000000E+00
 2 1 1 560.000000
 3 1 1 560.000000
 4 1 1 238.500000
 5 1 1 0.000000000E+00

*STATUS,T2(1,1) ! Lists parameter T2

PARAMETER STATUS- T2 (4 PARAMETERS DEFINED)

 LOCATION VALUE
 1 1 1 0.600000000
 2 1 1 2.00000000
 3 1 1 -1.80000000
 4 1 1 4.00000000
 1 2 1 7.00000000
 2 2 1 5.00000000
 3 2 1 9.10000000
 4 2 1 62.5000000
 1 3 1 2.000000000E-04
 2 3 1 -3.50000000
 3 3 1 22.0000000
 4 3 1 1.000000000E-02

*STATUS,RESULT(1)!Lists parameter RESULT

PARAMETER STATUS- RESULT (4 PARAMETERS DEFINED)

LOCATION VALUE
1 1 1 SX(CHAR)
2 1 1 SY(CHAR)
3 1 1 SZ(CHAR)

3.11.6. Writing Data Files

You can write formatted data files (tabular formatting) from data held in arrays through the *VWRITE command.
The command takes up to 10 array vectors as arguments and writes the data contained in those vectors to the
currently open file (*CFOPEN command). The format for each vector is specified with FORTRAN 77 data descriptors
on the line following the *VWRITE command (therefore you can't issue the *VWRITE command from the ANSYS
input window.)

An array vector, specified with a starting element location (such as MYARRAY(1,2,1)). You can also use an expres-
sion, which is evaluated as a constant value for that field in each row of the data file. The keyword SEQU evaluates
to a sequential column of integers, starting from one.

The format of each row in the data file is determined by the data descriptor line. You must include one descriptor
for each argument to the command. Do not include the word FORMAT in the descriptor line. You can use any
real format or character format descriptor; however, you may not use either integer or list directed descriptors.

3.11.6.1. Format Data Descriptors

If you aren't familiar with FORTRAN data descriptors, this section will get you started with formatting your data
file. For more information, consult the documentation for the FORTRAN 77 compiler for your particular platform.

You must provide a data descriptor for each data item you specify as an argument to the *VWRITE command.
In general, you can use the F descriptor (floating point) for any numeric values. The F descriptor takes the syntax

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–30

Chapter 3: Using Parameters

Fw.d

where

w
Is the width of the data field in characters.

d
Is the number of digits to the right of the decimal point.

Thus, for a field that is 10 characters wide and has eight characters after the decimal point, you would use the
following data descriptor:

F10.8

For character fields, you can use the A descriptor. The A descriptor has the syntax

Aw

where

w
Is the width of the data field in characters.

Thus, for a character field that is eight characters wide, the descriptor is

A8

The following examples illustrate the *VWRITE command and data descriptors in use.

Given that the MYDATA array has been dimensioned and filled with the following values:

The following short macro first defines the scalar parameter X as having a value of 25 and then opens the file
vector (*CFOPEN command). The *VWRITE command then defines the data to be written to the file. In this case,
the first vector written uses the SEQU keyword to provide row numbers. Note that in some cases that constants,
scalar parameters, and operations that include array element values are written to the file. Note the data file
contents for these items.

x=25
*cfopen,vector
*vwrite,SEQU,mydata(1,1,1),mydata(1,2,1),mydata(1,3,1),10.2,x,mydata(1,1,1)+3
(F3.0,' ',F8.4,' ',F8.1,' 'F8.6,' ',F4.1,' 'F4.0,' 'F8.1)
*cfclos

The macro creates the following data file:

 1. 2.1522 3.9 5.286370 10.2 25. 5.2
 2. 2.3049 4.0 5.409196 10.2 25. 5.2
 3. 2.0105 3.4 5.936638 10.2 25. 5.2
 4. 2.3683 3.3 5.632203 10.2 25. 5.2

Section 3.11: Array Parameters

3–31APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

 5. 2.8491 4.8 5.978024 10.2 25. 5.2
 6. 2.2280 3.5 5.546851 10.2 25. 5.2

The second example uses the following previously dimensioned and filled array:

Note the use of descriptors in the following example *VWRITE command:

*vwrite,SEQU,mydata(1,1),mydata(1,2),(mydata1(1,1)+mydata1(1,2))
(' Row',F3.0,' contains ',2F7.3,'. Is their sum ',F7.3,' ?')

The resulting data file is

Row 1. contains 10.000 50.000. Is their sum 60.000 ?
Row 2. contains 20.000 60.000. Is their sum 60.000 ?
Row 3. contains 30.000 70.000. Is their sum 60.000 ?

3.11.7. Operations Among Array Parameters

Just as parametric expressions and functions allow operations among scalar parameters, a series of commands
is available to perform operations among array parameters. There are classes of operations: operations on columns
(vectors), known as vector operations and operations on entire matrices (arrays), known as matrix operations. All
operations are affected by a set of specification commands, which are discussed in Section 3.11.7.3: Specification
Commands for Vector and Matrix Operations.

3.11.7.1. Vector Operations

Vector operations are simply a set of operations - addition, subtraction, sine, cosine, dot product, cross product,
etc. - repeated over a sequence of array elements. Do-loops (discussed in Section 4.5.5: Looping: Do-Loops) can
be employed for this purpose, but a more convenient and much faster way is to use the vector operation com-
mands - *VOPER, *VFUN, *VSCFUN, *VITRP, *VFILL, *VREAD, and *VGET. Of these listed vector operation
commands, only *VREAD and *VWRITE are valid for character array parameters. Other vector operation commands
apply only to array parameters dimensioned (*DIM) as ARRAY type or TABLE type.

The *VFILL, *VREAD, *VGET, *VWRITE, and *DIM commands were introduced earlier in this chapter. Other
commands that are discussed in this section include

*VOPER or Utility Menu> Parameters> Array Operations> Vector Operations
Performs an operation on two input array vectors and produces a single output array vector.

*VFUN or Utility Menu> Parameters> Array Operations> Vector Functions
Performs a function on a single input array vector and produces a single output array vector.

*VSCFUN or Utility Menu> Parameters> Array Operations> Vector-Scalar Func
Determines the properties of a single input array vector and places the result in a specified scalar parameter.

*VITRP or Utility Menu> Parameters> Array Operations> VectorInterpolate
Forms an array parameter (type ARRAY) by interpolating an array parameter (type TABLE) at specified table
index locations.

The examples below illustrate the use of some of these commands. Refer to the ANSYS Commands Reference for
syntactical information about these commands. For all of the following examples, the array parameters (of type
ARRAY) X, Y, and THETA have been dimensioned and defined.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–32

Chapter 3: Using Parameters

In the following example, the result array is first dimensioned (Z1). The *VOPER command then adds column 2
of X to column 1 of Y, both starting at row 1, and then places the result into Z1. Notice that the starting location
(the row and column index numbers) must be specified for all array parameters. The operation then progresses
sequentially down the specified vector.

*DIM,Z1,ARRAY,4
*VOPER,Z1(1),X(1,2),ADD,Y(1,1)

In the following example, again the result array (Z2) is dimensioned first. The *VOPER command then multiplies
the first column of X (starting at row 2) with the fourth column of Y (starting at row 1) and writes the results to
Z2 (starting at row 1).

*DIM,Z2,ARRAY,3
*VOPER,Z2(1),X(2,1),MULT,Y(1,4)

In this example, again the results array (Z4) is dimensioned first. The *VOPER command then performs the cross
product of four pairs of vectors, one pair for each row of X and Y. The i, j, and k components of these vectors are
columns 1, 2, and 3 respectively of X and columns 2, 3, and 4 of Y. The results are written to Z4, whose i, j, and k
components are vectors 1, 2, and 3 respectively.

*DIM,Z4,ARRAY,4,3
*VOPER,Z4(1,1),X(1,1),CROSS,Y(1,2)

Section 3.11: Array Parameters

3–33APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

In the following example, the results array (A3) is dimensioned first. The *VFUN command then raises each element
in vector 2 of X to the power of 2 and writes the results to A3.

*DIM,A3,ARRAY,4
*VFUN,A3(1),PWR,X(1,2),2

In this example, the results array (A4) is dimensioned. The two *VFUN commands then calculate the cosine and
sine of array elements in THETA and place the results in the first and second columns, respectively, of A4. Notice
that A4 now represents a circular arc spanning 90°, described by seven points (whose x, y, and z global Cartesian
coordinates are the three vectors). The arc has a radius of 1.0 and lies parallel to the x-y plane at z = 2.0.

*DIM,A4,ARRAY,7,3
*AFUN,DEG
*VFUN,A4(1,1),COS,THETA(1)
*VFUN,A4(1,2),SIN,THETA(1)
A4(1,3)=2,2,2,2,2,2,2

In this example, the results array (A5) is first dimensioned. Then, the *VFUN command calculates the tangent
vector at each point on the curve represented by A4, normalizes it to 1.0, and places the results in A5.

*DIM,A5,ARRAY,7,3
*VFUN,A5(1,1),TANG,A4(1,1)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–34

Chapter 3: Using Parameters

Two additional *VOPER operations, gather (GATH) and scatter (SCAT), are used to copy values from one vector
to another based on numbers contained in a "position" vector. The following example demonstrates the gather
operation. Note that, as always, the results array must be dimensioned first. In the example, the gather operation
copies the value of B1 to B3 (using the index positions specified in B2). Note that the last element in B3 is 0 as
this is its initialized value.

*DIM,B1,,4
*DIM,B2,,3
*DIM,B3,,4
B1(1)=10,20,30,40
B2(1)=2,4,1
*VOPER,B3(1),B1(1),GATH,B2(1)

3.11.7.2. Matrix Operations

Matrix operations are mathematical operations between numerical array parameter matrices, such as matrix
multiplication, calculating the transpose, and solving simultaneous equations.

Commands discussed in this section include

*MOPER or Utility Menu> Parameters> Array Operations> Matrix Operations
Performs matrix operations on two input array parameter matrices and produces one output array parameter
matrix. Matrix operations include:

• Matrix multiplication

• Solution of simultaneous equations

• Sorting (in ascending order) on a specified vector in a matrix

• Covariance between two vectors

• Correlation between two vectors

*MFUN or Utility Menu> Parameters> Array Operations> Matrix Functions
Copies or transposes an array parameter matrix (accepts one input matrix and produces one output matrix).

*MFOURI or Utility Menu> Parameters> Array Operations> Matrix Fourier
Calculates the coefficients for or evaluates a Fourier series.

Section 3.11: Array Parameters

3–35APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

The examples below illustrate the use of some of these commands. Refer to the ANSYS Commands Reference for
syntactical information about these commands.

This example shows the sorting capabilities of the *MOPER command. For this example, assume that the array
(SORTDATA) has been dimensioned and its element values have been defined as follows:

First, the OLDORDER array is dimensioned. The *MOPER command will place the original order of the rows into
OLDORDER. The *MOPER command then sorts the rows in SORTDATA so that the 1,1 vector is now in ascending
order.

*dim,oldorder,,5
*moper,oldorder(1),sortdata(1,1),sort,sortdata(1,1)

The following array values result from the *MOPER command:

To put the SORTDATA array back into its original order, you could then issue the following command:

*moper,oldorder(1),sortdata(1,1),sort,oldorder(1,1)

In the following example, the *MOPER command solves a set of simultaneous equations. The following two arrays
have been dimensioned and their values assigned:

The *MOPER command can solve a set of simultaneous equations for a square matrix. The equations take the
form

an1X1 + an2X2 + , . . . , + annXn = bn

In the case of the above arrays, the *MOPER command will solve the following set of simultaneous equations:

2X1 + 4X2 + 3X3 +2X4 = 2

3X1 + 6X2 + 5X3 + 2X4 = 2

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–36

Chapter 3: Using Parameters

2X1 + 5X2 + 2X3 - 3X4 =3

4X1 + 5X2 +14X3 + 14X4 = 11

To solve the equations, first the results array (C) is dimensioned. Then the *MOPER command solves the equations,
using A as the matrix of a coefficients and B as a vector of b values.

*DIM,C,,4
*MOPER,C(1),A(1,1),SOLV,B(1)

The C array now contains the following solutions.

The following example shows the *MFUN command used to transpose data in an array. For this example, assume
that the array (DATA) was dimensioned and filled with the following values:

As always, the results array (DATATRAN) is dimensioned first, then the *MFUN command transposes the values
and writes them to DATATRAN.

*DIM,DATATRAN,,2,3
*MFUN,DATATRAN(1,1),TRAN,DATA(1,1)

The following shows the results in the DATATRAN array:

3.11.7.3. Specification Commands for Vector and Matrix Operations

All the vector and matrix operation commands are affected by the setting of the following specification commands:
*VCUM, *VABS, *VFACT, *VLEN, *VCOL, and*VMASK. (Of all specification commands, only *VLEN and *VMASK,
in conjunction with *VREAD or *VWRITE, are valid for character array parameters.) You can check the status of
these commands with the *VSTAT command. Most of these commands (and their corresponding GUI paths)
were introduced earlier in this chapter. The others are explained in the following.

With the exception of the *VSTAT command, which you cannot access directly in the GUI, all of the specification
commands described below are available via menu path Utility Menu> Parameters> Array Operations> Op-
eration Settings.

Important: All specification commands are reset to their default settings after each vector or matrix operation.

The following lists the available array specification commands:

Section 3.11: Array Parameters

3–37APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*VCUM
Specifies whether results will be cumulative or noncumulative (overwriting previous results). ParR, the result
of a vector operation, is either added to an existing parameter of the same name or overwritten. The default
is noncumulative results, that is, ParR overwrites an existing parameter of the same name.

*VABS
Applies an absolute value to any or all of the parameters involved in a vector operation. The default is to use
the real (algebraic) value.

*VFACT
Applies a scale factor to any or all of the parameters involved in a vector operation. The default scale factor
is 1.0 (full value).

*VCOL
Specifies the number of columns in matrix operations. The default is to fill all locations of the result array
from the specified starting location.

*VSTAT
Lists the current specifications for the array parameters.

*VLEN or Utility Menu> Parameters> Array Operations> Operation Settings
Specifies the number of rows to be used in array parameter operations.

*VMASK or Utility Menu> Parameters> Array Operations> Operation Settings
Specifies an array parameter as a masking vector.

The following table lists the various specification commands and the vector and matrix array commands that
they affect.

*VMASK*VLENNROW,NINC*VCOL*VCUM*VFACT*VABS

NoNoNoNoNoNoNo*MFOURI

YesNoYesNoYesYesYes*MFUN

YesNoYesNoYesYesYes*MOPER

YesYesYesN/AYesYesYes*VFILL

YesYesYesN/AYesYesYes*VFUN

YesYesYesN/AYesYesYes*VGET

YesYesYesN/AYesYesYes*VITRP

YesYesYesN/AYesYesYes*VOPER

YesYesYesN/AN/ANoNoVPLOT

YesYesYesN/ANoYesYes*VPUT

YesYesYesN/AYesYesYes*VREAD

YesYesYesN/AYesYesYes*VSCFUN

YesYesYesN/AN/ANoNo*VWRITE

The examples below illustrate the use of some of the specification commands. Refer to the ANSYS Commands
Reference for syntactical information about these commands.

In the following, the results array (CMPR) is dimensioned. The two *VFUN commands, in conjunction with the
preceding *VMASK and *VLEN commands, then compress selected data and write them to specified locations
in CMPR. The complement to the COMP operation is the EXPA operation on the *VFUN command.

*DIM,CMPR,ARRAY,4,4
*VLEN,4,2! Do next *V---- operation on four rows,
! skipping every second row

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–38

Chapter 3: Using Parameters

*VFUN,CMPR(1,2),COMP,Y(1,1)
*VMASK,X(1,3)!Use column 3 of X as a mask for next *V----
! operation
*VFUN,CMPR(1,3),COMP,Y(1,2)

This example uses the *VFACT command to round the values in an array vector to the number of decimal places
specified by the NUMDP scalar parameter (set to 2 in the example). The NUMDATA array has been dimensioned
and filled with the following values:

numdp=2
*vfact,10**numdp
*vfun,numdata(1),copy,numdata(1)
*vfun,numdata(1),nint,numdata(1)
*vfact,10**(-numdp)
*vfun,numdata(1),copy,numdata(1)

or, you can use a slightly shorter version

numdp=2
*vfact,10**numdp
*vfun,numdata(1),copy,numdata(1)
*vfact,10**(-numdp)
*vfun,numdata(1),nint,numdata(1)

The resultant NUMDATA array is then:

This example uses the *VLEN and *VMASK commands to find the set of prime numbers less than 100. An array,
MASKVECT, is created using 1.0 to indicate that the row value is a prime number and 0.0 to indicate that the
value isn't prime. The algorithm used to create the mask vector is to initialize all rows whose value is greater than
1 to 1.0 and then loop through the range of possible factors, eliminating all multiples of the factor. The *VLEN
command sets the row increment for performing operations to FACTOR. When the *VFILL command is processed,
the row number is incremented by this value. Because the starting row is FACTOR x 2, the rows are processed
by each loop in the following manner: FACTOR x 2, FACTOR x 3, FACTOR x 4, etc.

*dim,maskvect,,100
*vfill,maskvect(2),ramp,1
*do,factor,2,10,1
*vlen,,factor
*vfill,maskvect(factor*2),ramp,0

Section 3.11: Array Parameters

3–39APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*enddo
*vmask,maskvect(1)
*dim,numbers,,100
*vfill,numbers(1),ramp,1,1
*status,numbers(1),1,10

The resultant output from the *STATUS command, showing the first 10 elements in NUMBERS is:

PARAMETER STATUS- NUMBERS (5 PARAMETERS DEFINED)
 (INCLUDING 2 INTERNAL PARAMETERS)

 LOCATION VALUE
 1 1 1 0.000000000E+00
 2 1 1 2.00000000
 3 1 1 3.00000000
 4 1 1 0.000000000E+00
 5 1 1 5.00000000
 6 1 1 0.000000000E+00
 7 1 1 7.00000000
 8 1 1 0.000000000E+00
 9 1 1 0.000000000E+00
 10 1 1 0.000000000E+00

3.11.8. Plotting Array Parameter Vectors

You can graphically display array vector values using the *VPLOT command.

The following demonstrates some of the capabilities of the *VPLOT command. For this example, two TABLE arrays
(TABLEVAL and TABLE) and one numeric array have been dimensioned and filled with the following values:

The following are example *VPLOT commands and their resulting plots. Note that since ARRAY data is unordered
it is plotted as a histogram; TABLE data is ordered and is therefore plotted as a curve.

The plot (below) resulted from the following command.

*vplot,,arrayval(1,1),2

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–40

Chapter 3: Using Parameters

Figure 3.11 Sample Plot

The plot (below) resulted from the following command.

*vplot,,tableval(1,1),2

Section 3.11: Array Parameters

3–41APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Figure 3.12 Sample Plot

The plot (below) resulted from the following command.

*vplot,table2(1),tableval(1,1),2

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–42

Chapter 3: Using Parameters

Figure 3.13 Sample Plot

The plot (below) resulted from the following command.

*vplot,tableval(1,0),tableval(1,1),2

Section 3.11: Array Parameters

3–43APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Figure 3.14 Sample Plot

3.11.9. Modifying Curve Labels

When you use *VPLOT to create your curves, default labels are assigned. Normally, the label for curve 1 is “COL
1”, the label for curve 2 is “COL 2” and so on; the column number is the field containing the dependent variables
for that particular curve. You can use the /GCOLUMN command to apply your own labels to the curves (any
string of up to eight characters).

The example below uses the /GCOLUMN command at the beginning of the program input to apply the labels
“string01” and “string02” to the array curve.

/gcol,1,string01
/gcol,2,string02

*dim,xxx,array,10
*dim,yyy,array,10,2

xxx(1,1) =1e6
xxx(2,1) = 1e6 + 1e5
xxx(3,1) = 1e6 + 2e5
xxx(4,1) = 1e6 + 3e5
xxx(5,1) = 1e6 + 4e5
xxx(6,1) = 1e6 + 5e5
xxx(7,1) = 1e6 + 6e5
xxx(8,1) = 1e6 + 7e5
xxx(9,1) = 1e6 + 8e5
xxx(10,1) = 1e6 + 9e5

yyy(1,1) = 1
yyy(2,1) = 4
yyy(3,1) = 9
yyy(4,1) = 16
yyy(5,1) = 25

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.3–44

Chapter 3: Using Parameters

yyy(6,1) = 36
yyy(7,1) = 49
yyy(8,1) = 64
yyy(9,1) = 81
yyy(10,1) = 100

yyy(1,2) = 1
yyy(2,2) = 2
yyy(3,2) = 3
yyy(4,2) = 4
yyy(5,2) = 5
yyy(6,2) = 6
yyy(7,2) = 7
yyy(8,2) = 8
yyy(9,2) = 9
yyy(10,2) = 10

*vplo,xxx(1,1), yyy(1,1) ,2

Figure 3.15 Sample Plot With User-specified Labels

The labels can be returned to the default value (COL 1 and COL 2) by issuing the /GCOLUMN command with no
string specified.

/gcol,1
/gcol,2

Section 3.11: Array Parameters

3–45APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

3–46

Chapter 4: APDL as a Macro Language

4.1. What is an APDL Macro?

You can record a frequently used sequence of ANSYS commands in a macro file (these are sometimes called
command files). Creating a macro enables you to, in effect, create your own custom ANSYS command. For example,
calculating power loss due to eddy currents in a magnetic analysis would require a series of ANSYS commands
in the postprocessor. By recording this set of commands in a macro, you have a new, single command that executes
all of the commands required for that calculation. In addition to executing a series of ANSYS commands, a macro
can call GUI functions or pass values into arguments.

You can also nest macros. That is, one macro can call a second macro, the second macro can call a third macro,
and so on. You can use up to 20 nesting levels, including any file switches caused by the ANSYS /INPUT command.
After each nested macro executes, the ANSYS program returns control to the previous macro level.

The following is a very simple example macro file. In this example, the macro creates a block with dimensions 4,
3, and, 2 and a sphere with a radius of 1. It then subtracts the sphere from one corner of the block.

/prep7
/view,,-1,-2,-3
block,,4,,3,,2
sphere,1
vsbv,1,2
finish

If this macro were called mymacro.mac, you could execute this sequence of commands with the following single
ANSYS command

*use,mymacro

or (because the extension is .mac)

mymacro

Although this is not a realistic macro, it does illustrate the principle.

This chapter provides information on the various ways you can create, store, and execute macros. It also discusses
the basic information you need to use APDL as a scripting language in creating macros.

4.2. Creating a Macro

You can create macros either within ANSYS itself or using your text editor of choice (such as emacs, vi, or wordpad).
If your macro is fairly simple and short, creating it in ANSYS can be very convenient. If you are creating a longer,
more complex macro or editing an existing macro then you will need a text editor. Also, using a text editor allows
you to use a similar macro or ANSYS log file as the source for your macro.

For any long, complex macro you should always consider either using a similar macro as a starting point or running
the task interactively in ANSYS and using the resulting log file as the basis of your macro. Either method can
greatly reduce the time and effort required to create a suitable macro.

4.2.1. Macro File Naming Conventions

Macros are a sequence of ANSYS commands stored in a file. Macros should not have the same name as an existing
ANSYS command, or start with the first four characters of an ANSYS command, because ANSYS will execute the
internal command instead of the macro. The following naming restrictions apply to macro files:

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• The file name cannot exceed 32 characters.

• The file name cannot begin with a numeral.

• The file extension cannot contain more than eight characters (if you are executing the macro as if it were
an ANSYS command it should have the extension .mac.)

• The file name or extension cannot contain spaces.

• The file name or extension cannot contain any characters prohibited by your file system and for portability
should not contain any characters prohibited by either UNIX or Windows file systems.

To ensure that you are not using the name of an ANSYS command, before creating a macro try running the file
name that you wish to use as an ANSYS command. If ANSYS returns the message shown below, you will know
that the command is not used in the current processor. You should check the macro file name in each processor
in which you plan to use the macro. (You could also check if the macro file name matches any command listed
in the online documentation; however, this method cannot locate the names of undocumented commands.)

Figure 4.1 ANSYS Message Box for Unknown Command

Using the .mac extension allows ANSYS to execute the macro as it would any internal command. You should
avoid using the extension .MAC because it is used for ANSYS internal macros.

4.2.2. Macro Search Path

By default, ANSYS searches for a user macro file (.mac extension) in the following locations:

1. The /ansys_inc/v81/ansys/apdl directory.

2. The directory (or directories) designated by the ANSYS_MACROLIB environment variable (if defined)
or the login (home) directory. This environment variable is documented in The ANSYS Environment
chapter of the ANSYS Operations Guide.

3. The directory designated by the $HOME environment variable.

4. The working directory.

You can place macros for your personal use in your home directory. Macros that should be available across your
site should be placed in the /ansys_inc/v81/ansys/apdl directory or some commonly accessible directory that
everyone can reference through the ANSYS_MACROLIB environment variable.

For Windows users: The "current directory" is the default directory (usually a network resource) set by adminis-
trators and you should ask your network administrator for its location. You can use environment variables to
create a local "home directory." The local home directory is checked after the default directory designated in
your domain profile.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–2

Chapter 4: APDL as a Macro Language

4.2.3. Creating a Macro Within ANSYS

You can create a macro by four methods from within ANSYS:

• Issue the *CREATE command in the input window. Parameter values are not resolved and parameter
names are written to the file.

• Use the *CFOPEN, *CFWRITE, and *CFCLOS commands. Parameter names are resolved to their current
values and those values are written to the macro file.

• Issue the /TEE command in the input window. This command writes a list of commands to a file at the
same time that the commands are being executed. As the commands are executed in the current ANSYS
session, parameter names are resolved to their current values. However, in the file that is created, para-
meter values are not resolved and parameter names are written instead.

• Choose the Utility Menu> Macro> Create Macro menu item. This method opens a dialog box that can
be used as a simple, multiline editor for creating macros. Parameter values are not resolved and parameter
names are written to the file.

The following sections detail each of these methods.

4.2.3.1. Using *CREATE

Issuing *CREATE redirects ANSYS commands entered in the command input window to the file designated by
the command. All commands are redirected until you issue the *END command. If an existing file has the same
name as the macro file name you specify, the ANSYS program overwrites the existing file.

For example, suppose that you want to create a macro called matprop.mac, which automatically defines a set
of material properties. The set of commands entered into the input window for this macro might look like this:

*CREATE,matprop,mac,macros
MP,EX,1,2.07E11
MP,NUXY,1,.27
MP,DENS,1,7835
MP,KXX,1,42
*END

The *CREATE command takes arguments of the file name, the file extension, and the directory path (in this case,
the macros directory is specified).

When using *CREATE, all parameters used in commands are written to the file (the currently assigned values
for the parameter are not substituted).

You cannot use *CREATE within a DO loop.

4.2.3.2. Using *CFWRITE

If you wish to create a macro file in which current values are substituted for parameters you can use *CFWRITE.
Unlike *CREATE, the *CFWRITE command cannot specify a macro name; you must first specify the macro file
with the *CFOPEN command. Only those ANSYS commands that are explicitly prefaced with a *CFWRITE com-
mand are then written to the designated file; all other commands entered in the command input window are
executed. As with the *CREATE command, *CFOPEN can specify a file name, a file extension, and a path. The
following example writes a BLOCK command to the currently open macro file.

*cfwrite,block,,a,,b,,c

Section 4.2: Creating a Macro

4–3APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Note that parameters were used for arguments to the BLOCK command. The current value of those parameters
(and not the parameter names) are written to the file. So, for this example, the line written to the macro file might
be

*cfwrite,block,,4,,2.5,,2

To close the macro file, issue the *CFCLOS command.

Note — While it is possible to create a macro through this method, these commands are most useful as
a method for writing ANSYS commands to a file during macro execution.

4.2.3.3. Using /TEE

Issuing /TEE,NEW or /TEE,APPEND redirects ANSYS commands entered in the command input window to the
file designated by the command at the same time that the commands are being executed. All commands are executed
and redirected until you issue the /TEE,END command. If an existing file has the same name as the macro file
name you specify with /TEE,NEW, the ANSYS program overwrites the existing file. To avoid this, use /TEE,APPEND
instead.

In addition to the Label argument (which can have a value of NEW, APPEND, or END), the /TEE command takes
arguments of the file name, the file extension, and the directory path.

As the commands are executed in the current ANSYS session, all parameter names are resolved to their current
values. However, in the file that is created, parameter names are written (the currently assigned values for the
parameter are not substituted). If your current parameter values are important, you can save the parameters to
a file using the PARSAV command.

For an example, see the description of the /TEE command in the ANSYS Commands Reference.

4.2.3.4. Using Utility Menu> Macro> Create Macro

Choosing this menu item opens an ANSYS dialog box that you can use as a simple editor for creating macros.
You cannot open and edit an existing macro with this facility; if you use the name of an existing macro as the
arguments for the *CREATE field, the existing file will be overwritten.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–4

Chapter 4: APDL as a Macro Language

Figure 4.2 The Create Menu Dialog Box

As with the *CREATE command, parameters are not evaluated but are written verbatim into the macro file. Note
that you do not make the last line a *END command.

4.2.4. Creating Macros with a Text Editor

You can use your favorite text editor to create or edit macro files. Any ASCII editor will work. Moreover, ANSYS
macros can have their lines terminated by either UNIX or Windows line ending conventions (carriage-return,
line-feed pairs or simply line-feeds) so you can create a macro on one platform and use it on several platforms.

Section 4.2: Creating a Macro

4–5APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

If you use this method to create macros, do not include the *CREATE and *END commands.

Figure 4.3 A Macro Created in a Text Editor

4.2.5. Using Macro Library Files

As a convenience, ANSYS allows you to place a set of macros in a single file, called a macro library file. You can
create these either through the *CREATE command or through a text editor. Given that macro libraries tend to
be longer than single macros, using a text editor normally provides the best approach.

Macros libraries have no explicit file extension and follow the same file naming conventions as macro files. A
macro library file has the following structure:

MACRONAME1
.
.
.
/EOF
MACRONAME2
.
.
.
/EOF
MACRONAME3
.
.
.
./EOF

For example, the following macro file contains two simple macros:

mybloc
/prep7
/view,,-1,-2,-3
block,,4,,3,,2
finish

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–6

Chapter 4: APDL as a Macro Language

/EOF
mysphere
/prep7
/view,,-1,-2,-3
sphere,1
finish
/EOF

Note that each macro is prefaced with a macro name (sometimes referred to as a data block name) and ends
with a /EOF command.

A macro library file can reside anywhere on your system, although for convenience you should place it within
the macro search path. Unlike macro files, a macro library file can have any extension up to eight characters.

4.3. Executing Macros and Macro Libraries

You can execute any macro file by issuing the *USE command. For example, to execute the macro called
MYMACRO (no extension) residing somewhere in the macro search path, you would issue

*use,mymacro

In this case, the macro takes no arguments. If instead the macro was called MYMACRO.MACRO and resided in
/myaccount/macros, you could call it with

*use,/myaccount/macros/mymacro.macro

Note that the *USE command allows you to enter the path and extension along with the file name and that
these are not entered as separate arguments.

If a macro has a .mac file extension and resides in the search path, you can execute it as if it were an ANSYS
command by simply entering it in the command input window. For example, to call mymacro.mac you could
simply enter

mymacro

You can also execute macros with a .mac extension through the Utility Menu> Macro> Execute Macro menu
item.

If the same macro takes arguments (see Section 4.4.1: Passing Arguments to a Macro for more information about
passing arguments to macros), then these can be entered on the command line as follows

mymacro,4,3,2,1.5

or

*use,mymacro.mac,4,3,2,1.5

The Utility Menu> Macro> Execute Macro menu item dialog provides fields for arguments.

Executing macros contained in macro libraries is similar. You must first specify the library file using the *ULIB
command. For example, to specify that macros are in the mymacros.mlib file, which resides in the /myac-
count/macros directory, you would issue the following command:

*ulib,mymacros,mlib,/myaccount/macros/

After selecting a macro library, you can execute any macro contained in the library by specifying it through the
*USE command. As with macros contained in individual files, you can specify arguments as parameters in the
*USE command.

Section 4.3: Executing Macros and Macro Libraries

4–7APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Note — You cannot use the *USE command to access macros not contained in the specified macro library
file after issuing the *ULIB command.

4.4. Local Variables

APDL provides two sets of specially named scalar parameters which are available for use as local variables. These
consist of

• A set of scalar parameters that provide a way of passing command line arguments to the macro.

• A set of scalar parameters that can be used within the macro. These provide a set of local variables that
can be used to define values only within that macro.

The following sections discuss both of these variable types in detail.

4.4.1. Passing Arguments to a Macro

There are 19 scalar parameters that you can use to pass arguments from the macro execution command line to
the macro. These scalar parameters can be reused with multiple macros; that is, their values are local to each
macro. The parameters are named ARG1 through AR19 and they can be used for any of the following items:

• Numbers

• Alphanumeric character strings (up to eight characters enclosed in single quotes)

• Numeric or character parameters

• Parametric expressions

Note — You can pass only the values of parameters ARG1 through AR18 to a macro as arguments with
the *USE command. If you create a macro that can be used as an ANSYS command (the macro files has
a .mac extension), you can pass the values of parameters ARG1 through AR19 to the macro.

For example, the following simple macro requires four arguments, ARG1, ARG2, ARG3, and ARG4:

/prep7
/view,,-1,-2,-3
block,,arg1,,arg2,,arg3
sphere,arg4
vsbv,1,2
finish

To execute this macro, a user might enter

mymacro,4,3,2.2,1

4.4.2. Local Variables Within Macros

Each macro can have up to 79 scalar parameters used as local variables (AR20 through AR99). These parameters
are completely local to the macro, and multiple macros can each have their own unique values assigned to these
parameters. These parameters are not passed to macros called from macros (nested macros). They are passed
to any files processed through a /INPUT command or a "do loop" processed within the macro.

4.4.3. Local Variables Outside of Macros

ANSYS also has a similar set of ARG1 through AR99 scalar parameters that are local to an input file, and are not
passed to any macros called by that input file. Thus, once a macro finishes and execution returns to an input file,
the values of ARG1 through ARG99 revert to whatever values were defined within the input file.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–8

Chapter 4: APDL as a Macro Language

4.5. Controlling Program Flow in APDL

When executing an input file, ANSYS is normally restricted to linear program flow; that is, each statement is ex-
ecuted in the order that it is encountered in the listing. However, APDL provides a rich set of commands that
you can use to control program flow.

• Call subroutines (nested macros).

• Branch unconditionally to a specified location with a macro.

• Branch based upon a condition to a specified location within a macro.

• Repeat the execution of a single command, incrementing one or more command parameters.

• Loop through a section of a macro a specified number of times.

The following sections detail each of these program control capabilities. For the exact syntax of the commands,
refer to the ANSYS Commands Reference.

4.5.1. Nested Macros: Calling Subroutines Within a Macro

APDL allows you to nest macros up to 20 levels deep, providing functionally similar capability to a FORTRAN 77
CALL statement or to a function call. You can pass up to 19 arguments to the macro and, at the conclusion of
each nested macro, execution returns to the level that called the macro. For example, the following simply macro
library file shows the MYSTART macro, which calls the MYSPHERE macro to create the sphere.

mystart
/prep7
/view,,-1,-2,-3
mysphere,1.2
finish
/eof
mysphere
sphere,arg1
/eof

4.5.2. Unconditional Branching: Goto

The simplest branching command, *GO, instructs the program to go to a specified label without executing any
commands in between. Program flow continues from the specified label. For example

*GO,:BRANCH1
--- ! This block of commands is skipped (not executed)

:BRANCH1

The label specified by the *GO command must start with a colon (:) and must not contain more than eight
characters, including the colon. The label can reside anywhere within the same file.

Note — The use of *GO is now considered obsolete and is discouraged. See the other branching commands
for better methods of controlling program flow.

4.5.3. Conditional Branching: The *IF Command

APDL allows you to execute one of a set of alternative blocks based on the evaluation of a condition. The conditions
are evaluated by comparing two numerical values (or parameters that evaluate to numerical values).

The *IF command has the following syntax

Section 4.5: Controlling Program Flow in APDL

4–9APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*IF, VAL1, Oper, VAL2, Base

Where

• VAL1 is the first numerical value (or numerical parameter) in the comparison.

• Oper is the comparison operator.

• VAL2 is the second numerical value (or numerical parameter) in the comparison.

• Base is the action that occurs if the comparison evaluates as true.

APDL offers eight comparison operators, which are discussed in detail in the *IF command reference. Briefly
these are:

EQ
Equal (for VAL1 = VAL2).

NE
Not equal (for VAL1 ≠ VAL2).

LT
Less than (for VAL1 < VAL2).

GT
Greater than (for VAL1 > VAL2).

LE

Less than or equal (for VAL1 ≤ VAL2).

GE

Greater than or equal (for VAL1 ≥ VAL2).

ABLT
Absolute values of VAL1 and VAL2 before < operation.

ABGT
Absolute values of VAL1 and VAL2 before > operation.

By giving the Base argument a value of THEN, the *IF command becomes the beginning of an if-then-else con-
struct (similar to the FORTRAN equivalent). The construct consists of

• An *IF command, followed by

• One or more optional *ELSEIF commands

• An optional *ELSE command

• A required *ENDIF command, marking the end of the construct.

In its simplest form, the *IF command evaluates the comparison and, if true, branches to a label specified in the
Base argument. This is similar to the "computed goto" in FORTRAN 77. (In combination, a set of such *IF commands
could function similarly to the CASE statements in other programming languages.) Take care not to branch to a
label within an if-then-else construct or do-loop. If a batch input stream hits an end-of-file during a false *IF
condition, the ANSYS run will not terminate normally. You will need to terminate it externally (use either the
UNIX “kill” function or the Windows task manager).

By setting the Base argument to a value of STOP, you can exit from ANSYS based on a particular condition.

An if-then-else construct simply evaluates a condition and executes the following block or jumps to the next
statement following the *ENDIF command (shown with the "Continue" comment).

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–10

Chapter 4: APDL as a Macro Language

*IF,A,EQ,1,THEN
 ! Block1
 .
 .
*ENDIF
! Continue

The following example shows a more complex structure. Note that only one block can be executed. If no com-
parison evaluates to true, the block following the *ELSE command is executed.

Figure 4.4 A Sample If-Then-Else Construct

Note — You can issue a /CLEAR command within an if-then-else construct. The /CLEAR command does
not clear the *IF stack and the number of *IF levels is retained. An *ENDIF is necessary to close any
branching logic. Also, keep in mind that the /CLEAR command deletes all parameters, including any that
are used in your branching commands. You can avoid any problems that might arise from the deletion
of parameters by issuing a PARSAV command before the /CLEAR command, and then following the
/CLEAR command with a PARRES command.

4.5.4. Repeating a Command

The simplest looping capability, the *REPEAT command, allows you to execute the directly preceding command
a specified number of times, incrementing any field in that command by a constant value. In the example

E,1,2
*REPEAT,5,0,1

the E command generates one element between nodes 1 and 2 and the following *REPEAT command specifies
that E executes a total of five times (including the original E command), incrementing the second node number
by one for each additional execution. The result is five total elements with node connectivities 1-2, 1-3, 1-4, 1-5,
and 1-6.

Section 4.5: Controlling Program Flow in APDL

4–11APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Note — Most commands that begin with a slash (/) or an asterisk (*), as well as macros executed as "un-
known commands," cannot be repeated. However, graphics commands that begin with a slash can be
repeated. Also, avoid using the *REPEAT command with interactive commands, such as those that require
picking or those that require a user response.

4.5.5. Looping: Do-Loops

A do-loop allows you to loop through a series of commands a specified number of times. The *DO and *ENDDO
commands mark the beginning and ending points for the loop. *DO command has the following syntax:

The following example do-loop edits five load step files (numbered 1 through 5) and makes the same changes
in each file.

*DO,I,1,5 ! For I = 1 to 5:
LSREAD,I ! Read load step file I
OUTPR,ALL,NONE ! Change output controls
ERESX,NO
LSWRITE,I ! Rewrite load step file I
*ENDDO

You can add your own loop controls by using the *IF, *EXIT, or *CYCLE commands.

Keep the following guidelines in mind when constructing do-loops.

• Do not branch out of a do-loop with a :Label on the *IF or *GO commands.

• Avoid using a :Label to branch to a different line within a do-loop. Use if-then-else-endif instead.

• Output from commands within a do-loop is automatically suppressed after the first loop. Use /GOPR or
/GO (no response line) within the do-loop if you need to see output for all loops.

• Take care if you include a /CLEAR command within a do-loop. The /CLEAR command does not clear the
do-loop stack, but it does clear all parameters including the loop parameter in the *DO statement itself.
You can avoid the problem of having an undefined looping value by issuing a PARSAV command before
the /CLEAR command, and then following the /CLEAR command with a PARRES command.

4.5.6. Implied (colon) Do Loops

You can also use the implied (colon) convention for do loops. Using this convention is typically faster because
the looping is done in memory. The correct syntax is:

(x:y:z)

with z defaulting to 1 if not specified. For example:

n,(1:6),(2:12:2)

will perform the same steps as:

n,1,2
n,2,4
n,3,6
.
.
.
n,6,12

When using the implied (colon) do loops, be aware that the shortest expression controls execution. For example,

n,(1:7),(2:12:2)

would behave identically to the example above.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–12

Chapter 4: APDL as a Macro Language

Additional numeric fields that do not have the colon (:) will be taken as a constant value.

Also, non-integer numbers will function normally. However, if non-integer numbers are applied to a command
that requires integers, then the non-integer will be rounded off following normal mathematical conventions.

This looping convention can be used only for fields requiring a numeric entry. A text entry field will process (x:y:z)
as a literal value.

4.5.7. Additional Looping: Do-While

You can also perform looping functions that will repeat indefinitely until an external parameter changes. The
*DOWHILE command has the following syntax:

*DOWHILE,Parm

The loop repeats as long as the parameter Parm is TRUE. If Parm becomes false (less than or equal to 0.0), the
loop terminates. The *CYCLE and *EXIT commands can be used within a *DOWHILE loop.

4.6. Control Functions Quick Reference

The table below describes APDL commands that perform control functions within macros.

Most of the important information about these commands appears here, but you may want to look at the complete
command descriptions in the ANSYS Commands Reference.

Usage TipsAction It TakesAPDL Com-
mand

• You also can control looping via the *IF command.

• ANSYS allows up to 20 levels of nested “do” loops, although
“do” loops that include /INPUT, *USE, or an “unknown”
command macro support fewer nesting levels because they
do internal file switching.

• *DO, *ENDDO, *CYCLE, and *EXIT commands in a “do” loop
must all read from the same file or the keyboard.

• Do not include picking operations in a “do” loop.

• Be careful if you include a /CLEAR command within a do-
loop. The /CLEAR command does not clear the do-loop stack,
but it does clear all parameters including the loop parameter
in the *DO statement itself. You can avoid the problem of
having an undefined looping value by issuing a PARSAV
command before the /CLEAR command, and then following
the /CLEAR command with a PARRES command.

Defines the start of a
"do" loop. The com-
mands following the
*DO command execute
(up to the *ENDDO
command) repeatedly
until some loop control
is satisfied.

*DO

You must use one *ENDDO command for each nested "do" loop.
The *ENDDO and *DO commands for a loop must be on the same
file.

Ends a "do" loop and
starts the looping ac-
tion.

*ENDDO

You can use the cycle option conditionally (via the *IF command).
The *CYCLE command must appear on the same file as the *DO
command and must appear before the *ENDDO command.

When executing a "do"
loop, ANSYS bypasses
all commands between
the *CYCLE and *EN-
DDO commands, then
(if applicable) initiates
the next loop.

*CYCLE

Section 4.6: Control Functions Quick Reference

4–13APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Usage TipsAction It TakesAPDL Com-
mand

The command following the *ENDDO command executes next. The
*EXIT and *DO commands for a loop must be on the same file. You
can use the exit option conditionally (via the *IF command).

Exits from a "do" loop.*EXIT

• You can have up to 10 nested levels of *IF blocks.

• You cannot jump into, out of, or within a "do" loop or an if-
then-else construct to a :label line, and jumping to a :label
line is not allowed with keyboard entry.

• You can issue a /CLEAR command within an if-then-else
construct. The /CLEAR command does not clear the *IF stack
and the number of *IF levels is retained. An *ENDIF is neces-
sary to close any branching logic.

• The /CLEAR command deletes all parameters, including any
that are used in your branching commands. You can avoid
any problems that might arise from the deletion of paramet-
ers by issuing a PARSAV command before the /CLEAR com-
mand, and then following the /CLEAR command with a
PARRES command.

Causes commands to
be read conditionally.

*IF

The *IF and *ENDIF commands must appear in the same file.Terminates an if-then-
else construct. (See the
*IF discussion for de-
tails.)

*ENDIF

The *ELSE and *IF commands must appear in the same file.Creates a final, optional
block separator within
an if-then-else con-
struct. (See the *IF dis-
cussion for details.)

*ELSE

If Oper = EQ or NE, VAL1 and VAL2 can also be character strings
(enclosed in quotes) or parameters. The *IF and *ELSEIF commands
must be on the same file.

Creates an optional, in-
termediate block separ-
ator within an if-then-
else construct.

*ELSEIF

4.7. Using the _STATUS and _RETURN Parameters in Macros

The ANSYS program generates two parameters, _STATUS and _RETURN, that you can also use in your macros.
For example, you might use the _STATUS or _RETURN value in an "if-then-else" construct to have the macro take
some action based on the outcome of executing an ANSYS command or function.

Solid modeling functions generate the _RETURN parameter, which contains the result of executing the function.
The following table defines the _RETURN values for the various solid modeling functions:

Table 4.1 _RETURN Values

_RETURN ValueFunctionCommand

Keypoints

keypoint numberDefines a keypointK

Keypoint numberKeypoint on a lineKL

Keypoint numberKeypoint at nodeKNODE

KP numberKeypoint between two keypointsKBETW

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–14

Chapter 4: APDL as a Macro Language

_RETURN ValueFunctionCommand

KP numberKeypoint at centerKCENTER

Lines

Line numberGenerate splineBSPLIN

First line numberGenerate circular arc linesCIRCLE

Line numberLine between two keypointsL

Line numberLine at angle with two linesL2ANG

Line numberLine tangent to two linesLANG

Line numberDefines a circular arcLARC

Line numberLine between two keypointsLAREA

Line numberCombine two lines into oneLCOMB

First keypoint numberDivide line into two or more linesLDIV

First line numberLine by keypoint sweepLDRAG

Fillet line numberFillet line between two liensLFILLT

First line numberArc by keypoint rotationLROTAT

Line numberStraight lineLSTR

Line numberLine at end and tangentLTAN

First line numberSegmented splineSPLINE

Areas

Area numberArea connecting keypointsA

Area numberConcatenate two or more areasACCAT

First area numberDrag lines along pathADRAG

Fillet area numberFillet at intersection of two areasAFILLT

Area numberArea bounded by linesAL

Area numberAll loopsALPFILL

Area numberArea offset from given areaAOFFST

First area numberRotate lines around axisAROTAT

First area numberSkin surface through guiding linesASKIN

Area numberArea using shape of existing areaASUB

Volumes

Volume numberVolume through keypointsV

Volume numberVolume bounded through areasVA

First volume numberDrag area pattern to create volumeVDRAG

First volume numberVolume by extruding areasVEXT

Volume numberVolume offset from given areaVOFFST

First volume numberVolume by rotating areasVROTAT

Executing an ANSYS command, whether in a macro or elsewhere, generates the parameter _STATUS. This para-
meter reflects the error status of that command:

• 0 for no error

• 1 for a note

Section 4.7: Using the _STATUS and _RETURN Parameters in Macros

4–15APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• 2 for a warning

• 3 for an error

4.8. Using Macros with Components and Assemblies

To make large models easier to manage, you may want to divide a model into discrete components based on
different types of entities: nodes, elements, keypoints, lines, areas, or volumes. Each component can contain
only one type of entity. Doing this enables you to perform tasks such as applying loads or producing graphics
displays conveniently and separately on different portions of the model.

You can also create assemblies, which are groups that combine two or more components or even multiple as-
semblies. You can nest assemblies up to five levels deep. For example, you could build an assembly named motor
from components called STATOR, PERMMAG, ROTOR, and WINDINGS.

The table below describes some of the commands you can issue to build components and assemblies. For more
detailed discussions of these commands, see the ANSYS Commands Reference. For further information on com-
ponents and assemblies, see Selecting and Components in the ANSYS Basic Analysis Guide.

Groups geometry items into a componentCM

Deletes a component or assembly.CMDELE

Edits an existing component or assembly. ANSYS updates assemblies automatically to
reflect deletions of lower-level or assemblies.

CMEDIT

Groups components and assemblies into one assembly. Once defined, an assembly can
be listed, deleted, selected, or unselected using the same commands as for components.

CMGRP

Lists the entities contained in a component or assembly.CMLIST

Selects a subset of components and assemblies.CMSEL

4.9. Reviewing Example Macros

Following are two example macros. The example macro below, called offset.mac, offsets selected nodes in the
PREP7 preprocessor. This macro is for demonstration purposes only because the NGEN command provides a
more convenient method.

! Macro to offset selected nodes in PREP7
! The below file is saved as: offset.mac (must be lowercase)
! Usage: offset,dx,dy,dz

/nop ! suppress printout for this macro

*get,nnode,node,,num,max ! get number of nodes

*dim,x,,nnode ! set up arrays for node locations
*dim,y,,nnode
*dim,z,,nnode

*dim,sel,,nnode ! set up array for select vector

*vget,x(1),node,1,loc,x ! get coordinates
*vget,y(1),node,1,loc,y
*vget,z(1),node,1,loc,z

*vget,sel(1),node,1,nsel ! get selected set

*voper,x(1),x(1),add,arg1 ! offset locations
*voper,y(1),y(1),add,arg2
*voper,z(1),z(1),add,arg3

! *do,i,1,nnode ! store new positions
! *if,sel(i),gt,0,then ! this form takes 98 sec for 100,000 nodes

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.4–16

Chapter 4: APDL as a Macro Language

! n,i,x(i),y(i),z(i)
! *endif
! *enddo

*vmask,sel(1) ! takes 3 seconds for 100,000 nodes
n,(1:NNODE),x(1:NNODE),y(1:NNODE),z(1:NNODE)

x(1) = ! delete parameters (cleanup)
y(1) =
z(1) =
sel(1) =
i=
nnode=

/go ! resume printout

The following example macro, called bilinear.mac, evaluates two bilinear materials. This is a useful macro that
can be run after solving a static analysis. Material 1 is the tension properties, and Material 2 is the compression
properties. ARG1 is the number of iterations (default is 2).

/nop
_niter = arg1 ! set number of iterations
*if,_niter,lt,2,then
 _Niter = 2
*endif
*do,iter,1,_niter ! loop on number of iterations
/post1
set,1,1
ar11,=elmiqr(0,14) ! call elmiqr function to get no. of elements
*dim,_s1,,ar11 ! array for element s1
*dim,_s3,,ar11 ! array for element s3
etable,sigmax,s,1 ! s1 is in element table sigmax
etable,sigmin,s,3 ! s3 is in element table sigmin
*vget,_s1(1),elem,1,etab,sigmax ! get element maximum stress in s1
*vget,_s3(1),elem,1,etab,sigmin ! get element minimum stress in s3
*dim,_mask,,ar11 ! array for mask vector
*voper,_mask(1),_s1(1),lt,0 ! true if max. stress < 0
*vcum,1 ! accumulate compression elements
*vabs,0,1 ! absolute value of s3
*voper,_mask(1),_s3(1),gt,_s1(1) ! true if abs(minstr) > maxstr
finish

/prep7 ! go to prep7 for element material mods
mat,1 ! set all materials to tension properties
emod,all

*vput,_mask(1),elem,1,esel ! select compression elements
mat,2 ! change selected elements to compression
emod,all

call ! select all elements
finish

_s1(1)= ! clean up all vectors (set to zero)
_s3(1)=
_mask(1)=

/solve ! rerun the analysis
solve
finish

*enddo ! end of iterations

_niter= ! clean up iteration counters
_iter=
/gop

Section 4.9: Reviewing Example Macros

4–17APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

4–18

Chapter 5: Interfacing with the GUI
Within an ANSYS macro, you have several ways to access components of the ANSYS graphical user interface
(GUI):

• You can modify and update the ANSYS toolbar (this is discussed in detail in Section 2.1: Adding Commands
to the Toolbar).

• You can issue the *ASK command to prompt a user to enter a single parameter value.

• You can create a dialog box to prompt a user to enter multiple parameter values.

• You can issue the *MSG command to have the macro write an output message.

• You can have the macro update or remove a status bar.

• You can allow the user to select entities through graphical picking from within a macro.

• You can call any dialog box.

5.1. Prompting Users for a Single Parameter Value

By including the *ASK command within a macro, you can have the macro prompt a user to type in a parameter
value.

The format for the *ASK command is

*ASK,Par,Query,DVAL

Where

• Par is an alphanumeric name that identifies the scalar parameter used to store the user input.

• Query is the text string that ANSYS displays to prompt the user. This string can contain up to 54 characters.
Don't use characters that have special meanings, such as "$" or "!".

• DVAL is the default value given the parameter if a user issues a blank response. This value can be either a
one-to-eight character string (enclosed in single quotes) or a number. If you assign no default, a blank
user response deletes the parameter.

The *ASK command prints the Query text on the screen and waits for a response. It reads the response from the
keyboard except when ANSYS runs in batch mode. (In that case, the response or responses must be the next-
read input line or lines.) The response can be a number, a one-to-eight character string enclosed in single quotes,
a numeric or character parameter, or an expression that evaluates to a number. ANSYS then sets the value of
Par to the read-in response. The following example displays the dialog box shown below, then sets the parameter
PARM1 to the value the user enters.

*ask,parm1,'username (enclose the username in single quotes)'

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Figure 5.1 An Example *ASK Dialog Box

When you issue *ASK within a macro, ANSYS writes the user's response to File.LOG on the line following the
macro name.

5.2. Prompting Users With a Dialog Box

The MULTIPRO command constructs a simple, multiple-prompt dialog box that can contain up to 10 parameter
prompts. The command allows you to use a set of UIDL *CSET commands to create the prompts as well as specify
a default value for each prompt. Be aware that macros using MULTIPRO cannot be called from UIDL. You cannot
use MULTIPRO within a DO loop.

The MULTIPRO command must be used in conjunction with:

• Between one and ten *CSET command prompts

• Up to two special *CSET commands that provide a two line area for user instructions.

The command has the following syntax:

MULTIPRO,'start',Prompt_Num
*CSET,Strt_Loc,End_Loc,Param_Name,'Prompt_String',Def_Value
MULTIPRO,'end'

Where

'start'
A literal string that, when encountered as the first argument, marks the beginning of the MULTIPRO construct.
The literal must be enclosed in single quotes.

Prompt_Num

Required only if Def_Value is omitted from at least one *CSET command or if Def_Value is set to 0. The
Prompt_Num value is an integer equal to the number of following *CSET prompts.

Strt_Loc,End_Loc
The initial value for Strt_Loc for the first *CSET command is 1, and the value for End_Loc is Strt_Loc+2
(3 for the first *CSET command). The value of each subsequent Strt_Loc is the previous End_Loc+1.

Param_Name

The name of the parameter that will hold either the value specified by the user or, if the user supplies no
value, the value of Def_Value .

''Prompt_String''
A string, which can contain up to 32 characters, which can be used to describe the parameter. This string
must be enclosed in single quotes.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.5–2

Chapter 5: Interfacing with the GUI

Def_Value

Default value used if no value specified by user. Default value can be a numeric expression including APDL
numeric parameters. Character expressions are not allowed.

'end'
A literal string, used as the first argument for the closing MULTIPRO command.

The following is a typical example of the MULTIPRO command.

multipro,'start',3
 *cset,1,3,beamW,'Enter the overall beam width',12.5
 *cset,4,6,beamH,'Enter the beam height',23.345
 *cset,7,9,beamL,'Enter the beam length',50.0
multipro,'end'

Up to two optional *CSET commands can be added to the construct that can provide two 64 character strings.
You can use these to provide instructions to the user. The syntax for these specialized *CSET commands is

*CSET,61,62,'Help_String','Help_String'*CSET,63,64,'Help_String','Help_String'

Where

'Help_String'

A string which can contain up to 32 characters. If you need more than 32 characters, you can use a second
Help_String argument.

The following is an example of a MULTIPRO construct using the optional help lines. Note that two Help_String
arguments are used to overcome the 32 character limit.

multipro,'start',3
 *cset,1,3,dx,'Enter DX Value',0.0
 *cset,4,6,dy,'Enter DY Value',0.0
 *cset,7,9,dz,'Enter DZ Value',0.0
 *cset,61,62,'The MYOFSET macro offsets the',' selected nodes along each'
 *cset,63,64,'of the three axes. Fill in the ',' fields accordingly.'
multipro,'end'

The above construct creates the following multiple-prompt dialog box.

Section 5.2: Prompting Users With a Dialog Box

5–3APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Figure 5.2 A Typical Multiple-Prompt Dialog Box

You can check the status of the buttons by testing the value of the _BUTTON parameter. The following lists the
button status values:

• _BUTTON = 0 indicates that the OK button was pressed.

• _BUTTON = 1 indicates that the Cancel button was pressed.

At present, the Help button is not functional.

5.3. Using Macros to Display Your Own Messages

By issuing the *MSG command within a macro, you can display custom output messages via the ANSYS message
subroutine. The command has the following format:

*MSG,Lab,VAL1,VAL2,VAL3,VAL4,VAL5,VAL6,VAL7,VAL8

Where Lab is one of the following labels for output and termination control:

Writes the message with no heading (default).INFO

Writes the message with a "NOTE" heading.NOTE

Writes the message with a "WARNING" heading, and also writes it to the errors file, Jobname.ERR.WARN

Writes the message with an "ERROR" heading and also writes it to the errors file, Jobname.ERR.
If this is an ANSYS batch run, this label also terminates the run at the earliest "clean exit" point.

ERROR

Writes the message with a "FATAL ERROR" heading and also writes it to the errors file, Jobname.ERR.
This label also terminates the ANSYS run immediately.

FATAL

Writes the message with a "NOTE" heading and displays it in the message dialog box.UI

VAL1 through VAL8 are numeric or alphanumeric character values to be included in the message. Values can be
the results of evaluating parameters. All numeric values are assumed to be double precision.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.5–4

Chapter 5: Interfacing with the GUI

You must specify the message format immediately after the *MSG command. The message format can contain
up to 80 characters, consisting of text strings and predefined "data descriptors" between the strings where nu-
meric or alphanumeric character data are to be inserted. These data descriptors are:

• %i, for integer data. The FORTRAN nearest integer (NINT) function is used to form integers for the %I
specifier.`

• %g, for double precision data

• %c, for alphanumeric character data

• %/, for a line break

The corresponding FORTRAN data descriptors for the first three descriptors are I9, 1PG16.9, and A8 respectively.
A blank must precede each descriptor. You also must supply one data descriptor for each specified value (eight
maximum), in the order of the specified values.

Don't begin *MSG format lines with *IF, *ENDIF, *ELSE, or *ELSEIF. If the last non-blank character of the message
format is an ampersand (&), the ANSYS program reads a second line as a continuation of the format. You can use
up to 10 lines (including the first) to specify the format information.

Consecutive blanks are condensed into one blank upon output, and a period is appended. The output produced
can be up to 10 lines of 72 characters each (using the $/ descriptor).

The example below shows you an example of using *MSG that prints a message with two integer values and
one real value:

*MSG, INFO, 4Inner4 ,25,1.2,148
Radius (%C) = %I, Thick = %G, Length = %I

The resulting output message is as follows:

Radius (Inner) = 25, Thick = 1.2, Length = 148

Here is an example illustrating multiline displays in GUI message windows:

*MSG,UI,Vcoilrms,THTAv,Icoilrms,THTAi,Papprnt,Pelec,PF,indctnc
Coil RMS voltage, RMS current, apparent pwr, actual pwr, pwr factor: %/&
Vcoil = %G V (electrical angle = %G DEG) %/&
Icoil = %G A (electrical angle = %G DEG) %/&
APPARENT POWER = %G W %/&
ACTUAL POWER = %G W %/&
Power factor: %G %/&
Inductance = %G %/&
VALUES ARE FOR ENTIRE COIL (NOT JUST THE MODELED SECTOR)

Note — The command /UIS,MSGPOP controls which messages a message dialog box displays when the
GUI is active. See the ANSYS Commands Reference for more information about this command.

5.4. Creating and Maintaining a Status Bar from a Macro

Within macros, you can insert commands to define an ANSYS dialog box containing a status bar displaying the
progress of an operation, a STOP button you can click on to stop the operation, or both.

To define a status dialog box, issue the following command:

*ABSET,Title40,Item

• Title40 is the text string that appears in the dialog box with the status bar. The string can contain a max-
imum of 40 characters.

Section 5.4: Creating and Maintaining a Status Bar from a Macro

5–5APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• Item is one of the following values:

Displays the status bar with no STOP buttonBAR

Displays a STOP button with no status barKILL

Displays both the status bar and STOP buttonBOTH

To update the status bar, issue the command *ABCHECK,Percent,NewTitle.

• Percent is an integer between 0 and 100. It gives the position of the status bar.

• NewTitle is a 40-character string that contains progress information. If you specify a string for NewTitle,
it replaces the string supplied in Title40.

If you specify KILL or BOTH, your macro should check the _RETURN parameter after each execution of *ABCHECK
to see if the user has pressed the STOP button, then take the appropriate action.

To remove the status bar from the ANSYS GUI, issue the *ABFINI command.

The following example macro illustrates the status bar (complete with bar and STOP button) in use. The status
dialog box that is produced is shown in the following figure. Note that the macro checks the status of the _RETURN
parameter and, if the STOP button is pressed, posts the "We are stopped......" message.

fini
/clear,nost
/prep7
n,1,1
n,1000,1000
fill
*abset,'This is a Status Bar',BOTH
myparam = 0
*do,i,1,20
 j = 5*i
 *abcheck,j
 *if,_return,gt,0,then
 myparam = 1
 *endif
 *if,myparam,gt,0,exit
 /ang,,j
 nplot,1
 *if,_return,gt,0,then
 myparam = 1
 *endif
 *if,myparam,gt,0,exit
 nlist,all
 *if,_return,gt,0,then
 myparam = 1
 *endif
 *if,myparam,gt,0,exit
*enddo
*if,myparam,gt,0,then
*msg,ui
We are stopped.........
*endif
*abfinish
fini

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.5–6

Chapter 5: Interfacing with the GUI

Note — Do not call *ABCHECK more than about 20 times in a loop.

Figure 5.3 A Typical Status Dialog Box

5.5. Picking within Macros

If you're running the ANSYS program interactively, you can call a GUI picking menu from within a macro. To do
so, simply include a picking command in the macro. Many ANSYS commands (such as K,,P) accept the input "P"
to enable graphical picking. When ANSYS encounters such a command, it displays the appropriate picking dialog
and then continues macro execution when the user clicks OK or Cancel.

Keep in mind that picking commands are not available in all ANSYS processors, and that you must first switch
to an appropriate processor before calling the command.

Note — If a macro includes GUI functions, the /PMACRO command should be the first command in that
macro. This command causes the macro contents to be written to the session log file. This is important,
because if you omit the /PMACRO command, ANSYS can't read the session log file to reproduce the
ANSYS session.

5.6. Calling Dialog Boxes From a Macro

When the ANSYS program encounters a dialog box UIDL function name (such as Fnc_UIMP_Iso), it displays the
appropriate dialog box. Thus, you can launch any ANSYS dialog box by making its function name a separate line
in the macro file. When you dismiss that dialog box, the program continues processing the macro starting with
the next line after the function call.

Keep in mind that many dialog boxes have a number of dependencies, including that the appropriate ANSYS
processor is active and that certain required preexisting conditions are met. For example, launching a dialog box
to select nodes first supposes that nodes exist, if no nodes exist the macro will fail when the user clicks OK or
Apply.

Note — If a macro includes GUI functions, the /PMACRO command should be the first command in that
macro. This command causes the macro contents to be written to the session log file. This is important,
because if you omit the /PMACRO command, ANSYS can't read the session log file to reproduce the
ANSYS session.

Section 5.6: Calling Dialog Boxes From a Macro

5–7APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

5–8

Chapter 6: Encrypting Macros
ANSYS provides the ability to encrypt macro files so that the source is not "human-readable." Encrypted macros
require an encryption key to run. You can either place the encryption key explicitly (in readable ASCII) in the
macro or you can set it in ANSYS as a global encryption key.

6.1. Preparing a Macro for Encryption

Before encrypting a macro, you first create and debug the macro as usual. When you create an encrypted macro,
you are responsible for keeping the original source file. You cannot recreate the source file from an encrypted macro.
You then add an /ENCRYPT command as the first line and last of the macro. The /ENCRYPT command for the
first line of the macro has the following syntax:

/ENCRYPT,Encryption_key,File_name,File_ext,Directory_Path/

Where

• Encryption_key is an eight-character password.

• File_name is the name of the encrypted macro filename.

• File_ext is an optional file extension for the encrypted macro file. If you want users to execute the macro
as an "unknown" command, you should use the .mac extension.

• Directory_Path/ is the optional directory path that can contain up to 60 characters; you only need this
argument if you do not want to write the encrypted macro file to your "home" directory.

Note the placement of the /ENCRYPT commands at the top and bottom of the listing in the following example:

/encrypt,mypasswd,myenfile,mac,macros/
/nopr
/prep7
/view,,-1,-2,-3
block,,arg1,,arg2,,arg3
sphere,arg4
vsbv,1,2
/gopr
finish
/encrypt

The /ENCRYPT command at the top of the macro instructs ANSYS to encrypt the file and use the string "mypasswd"
as the encryption key. It will create an encrypted macro file called myenfile.mac and place it in the /macros
subdirectory of the home directory. The /ENCRYPT command at the bottom instructs ANSYS to stop the encryption
process and write the encrypted macro to the specified file.

Note — The encrypted macro uses a /NOPR command as its second line to turn off echoing of ANSYS
commands to the session log file. This is important if you wish to prevent users from reading the contents
of the macro from the session log. It's a good practice to reactivate the session log by issuing the /GOPR
command as the last command in the macro before the ending /ENCRYPT command.

6.2. Creating an Encrypted Macro

After putting the /ENCRYPT commands at the top and bottom of the macro, you can proceed to create the en-
crypted version of the macro. To do this, simply execute the macro through ANSYS. ANSYS will create the encrypted
version with the name and location you specified through the /ENCRYPT command at the top of the macro.
The result should look something like this

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

/DECRYPT,mypasswd
013^Z,^%
02x^0Se|Lv(yT.6>?
03J3]Q_LuXd3-6=m+*f$k]?eB
04:^VY7S#S>c>
05daV;u(yY
06T]3WjZ
/DECRYPT

Note that the individual commands within the macro are now encrypted, and that the encrypted material is
enclosed by /DECRYPT commands. The encryption key is the argument to the first /DECRYPT command.

6.3. Running an Encrypted Macro

You can run an encrypted macro just as you would any other macro; place the encrypted macro within the macro
search path. If you would prefer to run the encrypted macro without having the encryption key resident in the
macro file, you can define the key as a "global encryption key" within ANSYS. To do this you must first replace
the encryption key argument in the /DECRYPT command with the parameter PASSWORD. Thus, the first line of
the encrypted macro becomes:

/DECRYPT,PASSWORD

Before executing the macro within ANSYS, issue the following command through the ANSYS Input command
line:

/DECRYPT,PASSWORD,Encryption_Key

Where Encryption_Key is the encryption key used to encrypt the file. You can now execute the encrypted
password. To delete the current global encryption key, issue the following ANSYS command:

/DECRYPT,PASSWORD,OFF

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–2

Chapter 6: Encrypting Macros

APDL Commands Reference

*ABBR, Abbr, String
Defines an abbreviation.

APDL: Abbreviations

MP ME ST DY <> PR EM <> FL PP ED

Abbr

The abbreviation (up to 8 alphanumeric characters) used to represent the string String. If Abbr is the same
as an existing ANSYS command, the abbreviation overrides. Avoid using an Abbr which is the same as an
ANSYS command.

String

String of characters (60 maximum) represented by Abbr. Cannot include a $ or any of the commands C***,
/COM, /GOPR, /NOPR, /QUIT, /UI, or *END. Parameter names and commands of the *DO and Use the *IF
groups may not be abbreviated. If String is blank, the abbreviation is deleted. To abbreviate multiple
commands, create an "unknown command" macro or define String to execute a macro file [*USE] containing
the desired commands.

Notes

Once the abbreviation Abbr is defined, you can issue it at the beginning of a command line and follow it with a
blank (or with a comma and appended data), and the program will substitute the string String for Abbr as the
line is executed. Up to 100 abbreviations may exist at any time and are available throughout the program. Ab-
breviations may be redefined or deleted at any time.

Use *STATUS to display the current list of abbreviations. For abbreviations repeated with *REPEAT, substitution
occurs before the repeat increments are applied. There are a number of abbreviations that are predefined by
the program (these can be deleted by using the blank String option described above). Note that String will
be written to the File.LOG.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Edit Abbreviations
Utility Menu>MenuCtrls>Edit Toolbar

ABBRES, Lab, Fname, Ext, --
Reads abbreviations from a coded file.

APDL: Abbreviations

MP ME ST DY <> PR EM <> FL PP ED

Lab

Label that specifies the read operation:

NEW --
Replace current abbreviation set with these abbreviations (default).

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

CHANGE --
Extend current abbreviation set with these abbreviations, replacing any of the same name that already
exist.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).

The extension defaults to ABBR if Fname is blank.

--

Unused field

Notes

The abbreviation file may have been written with the ABBSAV command. Do not issue ABBRES,NEW while inside
an executing abbreviation. Doing so will cause all data for the executing abbreviation to be deleted.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Restore Abbr
Utility Menu>MenuCtrls>Restore Toolbar

ABBSAV, Lab, Fname, Ext, --
Writes the current abbreviation set to a coded file.

APDL: Abbreviations

MP ME ST DY <> PR EM <> FL PP ED

Lab

Label that specifies the write operation:

ALL --
Write all abbreviations (default).

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).

The extension defaults to ABBR if Fname is blank.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–4

ABBSAV

--

Unused field

Notes

Existing abbreviations on this file, if any, will be overwritten. The abbreviation file may be read with the ABBRES
command.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Save Abbr
Utility Menu>MenuCtrls>Save Toolbar

*AFUN, Lab
Specifies units for angular functions in parameter expressions.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Lab

Specifies the units to be used:

RAD --
Use radians for input and output of parameter angular functions (default).

DEG --
Use degrees for input and output of parameter angular functions.

STAT --
Show current setting (DEG or RAD) for this command.

Command Default

Use radians for input or output of parameter angular functions.

Notes

Only the SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, ANGLEK, and ANGLEN functions [*SET,*VFUN] are affected
by this command.

Menu Paths

Utility Menu>Parameters>Angular Units

*AFUN

6–5APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*ASK, Par, Query, DVAL
Prompts the user to input a parameter value.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par

An alphanumeric name used to identify the scalar parameter. See *SET for name restrictions.

Query

Text string to be displayed on the next line as the query (32 characters maximum). Characters having special
meaning (such as $! ,) should not be included.

DVAL

Default value assigned to the parameter if the user issues a blank response. May be a number or character
string (up to 8 characters enclosed in single quotes). If a default is not assigned, a blank response will delete
the parameter.

Notes

Intended primarily for use in macros, the command prints the query (after the word ENTER) on the next line and
waits for a response. The response is read from the keyboard, except in batch mode [/BATCH], when the re-
sponse(s) must be the next-read input line(s). The response may be a number, a character string (up to 8 characters
enclosed in single quotes), a parameter (numeric or character) or an expression that evaluates to a number. The
scalar parameter is then set to the response value. For example, *ASK,NN,PARAMETER NN will set NN to the value
entered on the next line (after the prompt ENTER PARAMETER NN).

The *ASK command is not written to File.LOG, but the responses are written there as follows: If *ASK is contained
in a macro, the response(s) (only) is written to File.LOG on the line(s) following the macro name. If not contained
in a macro, the response is written to File.LOG as a parameter assignment (i.e., Par = "user-response").

If used within a do-loop that is executed interactively, *ASK should be contained in a macro. If not contained in
a macro, *ASK will still query the user as intended, but the resulting log file will not reproduce the effects of the
original run.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*CFCLOS
Closes the "command" file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Notes

This command is valid in any processor.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–6

*ASK

Menu Paths

This command cannot be accessed from a menu.

*CFOPEN, Fname, Ext, --, Loc
Opens a "command" file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).

The extension defaults to CMD if Fname is blank.

--

Unused field

Loc

Determines whether existing file will be overwritten or appended:

(blank) --
The existing file will be overwritten.

APPEND --
The file will be appended to the existing file.

Notes

Data processed with the *VWRITE command will also be written to this file if the file is open when the *VWRITE
command is issued.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*CFOPEN

6–7APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*CFWRITE, Command
Writes an ANSYS command (or similar string) to a "command" file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Command

Command or string to be written. The standard command form of a label followed by arguments separated
by commas is assumed. Command may be a parameter assignment (e.g., *CFWRITE, A = 5).

Notes

Writes an ANSYS command (or similar string) to the file opened with *CFOPEN. The Command string is not executed
(except that numeric and character parameter substitution and operations (with imbedded *, /, >, etc. characters)
are performed before writing). When used with *GET results and parameter substitution, an ANSYS command
can be created from results and then read back into the ANSYS program (or used elsewhere). For example, if the
command *CFWRITE,BF,NNUM,TEMP,TVAL is used in a do-loop, where TVAL is a parameter value returned from
the *GET operation and NNUM is a specified or returned parameter value, a series of BF commands, with numer-
ical values substituted for the two parameters, will be written. To create a file without parameter substitution,
use *CREATE.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*CREATE, Fname, Ext, --
Opens (creates) a macro file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Do not use a directory path if file is to be read with the macro Name option of the *USE command.

Ext

Filename extension (8 character maximum).

Ext should not be used if file is to be read with the macro Name option of the *USE command.

--

Unused field

Notes

See the *USE command for a discussion of macros. All commands following the *CREATE command, up to the
*END command, are written to the specified file without being executed. An existing file of the same name, if
any, will be overwritten. Parameter values are not substituted for parameter names in the commands when the

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–8

*CFWRITE

commands are written to the file. Use *CFWRITE to create a file if this is desired. The resulting macro may be
executed with a *USE command (which also allows parameters to be passed into the macro) or a /INPUT command
(which does not allow parameters to be passed in). Several macros may be stacked into a library file [*ULIB]. You
cannot use *CREATE within a DO loop.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Create Macro

*CYCLE
Bypasses commands within a do-loop.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Notes

Bypasses all commands between this command and the *ENDDO command within a do-loop. The next loop (if
applicable) is initiated. The cycle option may also be conditionally executed [Use the *IF]. The *CYCLE command
must appear on the same file as the *DO command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*DEL, Val1, Val2
Deletes a parameter or parameters (GUI).

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Val1

Val1 can be:

ALL --
Indicates that you want to delete all user-defined parameters, or both all user-defined and all system
parameters, as indicated by the Val2 argument.

(blank) --
Indicates that you want to delete the parameter(s) indicated by Val2.

Val2

Val2 can be:

*DEL

6–9APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

LOC --
When Val1 is (blank), use Val2 to specify the location of the parameter within the Array Parameters
dialog box. The location number is based on an alphabetically ordered list of all parameters in the database.
Not valid when Val1 is ALL.

_PRM --
When Val1 is ALL, specifying _PRM for Val2 deletes all parameters, including those named with an initial
underbar (_) (except _STATUS and _RETURN). When Val1 is (blank), specifying _PRM for Val2 deletes
only those parameters named with an initial underbar (_) (except _STATUS and _RETURN).

PRM_ --
When Val1 is (blank), specifying PRM_ for Val2 deletes only those parameters named with a trailing
underbar (_). Not valid when Val1 is ALL.

(blank) --
When Val1 is ALL, specifying (blank) for Val2 causes all user-defined parameters to be deleted.

Notes

This is a command generally created by the Graphical User Interface (GUI). It will appear in the log file (Job-
name.LOG) if an array parameter is deleted from within the Array Parameters dialog box.

To delete all user-defined parameters, issue the command *DEL,ALL. To delete only those user-defined parameters
named with a trailing underbar, issue the command *DEL,,PRM_. To delete all user-defined and all system
parameters (except for _STATUS and _RETURN), issue the command *DEL,ALL,_PRM. To delete a parameter by
specifying its location within the Array Parameters dialog box, issue the command *DEL,,LOC.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Define Inertia
Main Menu>Solution>Define Loads>Delete>Structural>Section

/DFLAB, DOF, DispLab, ForceLab
Changes DOF labels for user custom elements.

APDL: Macro Files

MP ME ST DY <> PR EM EH FL PP ED

DOF

Number indicating which DOF is to have its labels changed. For example:

1 = UX,FX
2 = UY,FY
3 = UX,FZ
4 = ROTX,MX
etc.

DispLab

New label (4 character maximum) for the displacement label. The old label is no longer valid.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–10

/DFLAB

ForceLab

New label (4 character maximum) for the force label for this degree-of-freedom. The old label is no longer
valid.

Notes

The /DFLAB command is rarely used. It is designed for users who are writing custom elements for ANSYS and
want to use degrees-of-freedom that are not part of the standard ANSYS set.

Menu Paths

This command cannot be accessed from a menu.

*DIM, Par, Type, IMAX, JMAX, KMAX, Var1, Var2, Var3, CSYSID
Defines an array parameter and its dimensions.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par

Name of parameter to be dimensioned. See *SET for name restrictions.

Type

Array type:

ARRAY --
Arrays are similar to standard FORTRAN arrays (indices are integers) (default). Index numbers for the
rows, columns, and planes are sequential values beginning with one. Used for 1-, 2-, or 3-D arrays.

ARR4 --
Same as ARRAY, but used to specify 4-D arrays.

ARR5 --
Same as ARRAY, but used to specify 5-D arrays.

CHAR --
Array entries are character strings (up to 8 characters each). Index numbers for rows, columns, and planes
are sequential values beginning with one.

TABLE --
Array indices are real (non-integer) numbers which must be defined when filling the table. Index numbers
for the rows and columns are stored in the zero column and row "array elements" and are initially assigned
a near-zero value. Index numbers must be in ascending order and are used only for retrieving an array
element. When retrieving an array element with a real index that does not match a specified index, linear
interpolation is done among the nearest indices and the corresponding array element values [*SET].
Used for 1-, 2-, or 3-D tables.

TAB4 --
Same as TABLE, but used to specify 4-D tables.

TAB5 --
Same as TABLE, but used to specify 5-D tables.

*DIM

6–11APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

STRING --
Array entries are character strings (up to IMAX each). Index numbers for columns and planes are sequential
values beginning with 1. Row index is character position in string.

IMAX

Extent of first dimension (row) (Limit 128 for strings). Defaults to 1.

JMAX

Extent of second dimension (column). Defaults to 1.

KMAX

Extent of third dimension (plane). Defaults to 1.

Var1

Variable name corresponding to the first dimension (row) for Type = TABLE. Defaults to Row.

Var2

Variable name corresponding to the second dimension (column) for Type = TABLE. Defaults to Column.

Var3

Variable name corresponding to the third dimension (plane) for Type = TABLE. Defaults to Plane.

CSYSID

An integer corresponding to the coordinate system ID Number.

Notes

Up to three dimensions (row, column, and plane) may be defined using ARRAY and TABLE. Use ARR4, ARR5,
TAB4, and TAB5 to define up to five dimensions (row, column, plane, book, and shelf). An index number is asso-
ciated with each row, column, and plane. For array and table type parameters, element values are initialized to
zero. For character and string parameters, element values are initialized to (blank). A defined parameter must
be deleted [*SET] before its dimensions can be changed. Scalar (single valued) parameters should not be dimen-
sioned. *DIM,A,,3 defines a vector array with elements A(1), A(2), and A(3). *DIM,B,,2,3 defines a 2x3 array with
elements B(1,1), B(2,1), B(1,2), B(2,2), B(1,3), and B(2,3). Use *STATUS,Par to display elements of array Par. You
can write formatted data files (tabular formatting) from data held in arrays through the *VWRITE command.

If you use table parameters to define boundary conditions, then Var1, Var2, and/or Var3 can either specify a
primary variable (listed in *DIM - Primary Variables) or can be an independent parameter. If specifying an inde-
pendent parameter, then you must define an additional table for the independent parameter. The additional
table must have the same name as the independent parameter and may be a function of one or more primary
variables or another independent parameter. All independent parameters must relate to a primary variable.

Tabular load arrays can be defined in both global Cartesian (defalut) or local (see below) coordinate systems by
specifying CSYSID, as defined in LOCAL. For batch operations, you must specify your coordinate system first.

The following constraints apply when you specify a local coordinate system for your tabular loads:

Only Cartesian, cylindrical and spherical coordinate systems are supported
Angle values for THETA in cylindrical coordinate system must be input in degrees and must be positive values

between 0 and 360 degrees (0 ≤ Θ = 360)
Angle values for THETA in spherical coordinate system must be input in degrees and must be positive values

between 0 and 360 degrees (0 ≤ Θ = 360)
Angle values for Φ in spherical coordinate system must be input in degrees and must be positive values

between -90 and +90 (-90 ≤ Φ ≤ 90)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–12

*DIM

If you are specifying a 4- or 5-D array or table, four additional fields (LMAX, MMAX, Var4, and Var5) are available.
Thus, for a 4-D table, the command syntax would be:

*DIM,Par,Type,IMAX,JMAX,KMAX,LMAX,Var1,Var2,Var3,Var4,CSYSID

For a 5-D table, the command syntax would be:

*DIM,Par,Type,IMAX,JMAX,KMAX,LMAX,MMAX,Var1,Var2,Var3,Var4,Var5,CSYSID

You cannot create or edit 4- or 5-D arrays or tables using the GUI.

See Section 3.11: Array Parameters for a detailed discussion on and examples for using array parameters.

*DIM - Primary Variables

Label for Var1, Var2, Var3Primary Variable

TIMETime

XX-coordinate location

YY-coordinate location

ZZ-coordinate location

TEMPTemperature

VELOCITYVelocity

PRESSUREPressure

SECTORCyclic sector number

Note — The X, Y, and Z coordinate locations listed above are valid in gobal Cartesian, or local (Cartesian,
cylindrical and spherical) coordinate systems. The VELOCITY label is applicable only to the calculated
fluid velocity in element FLUID116.

If you use table parameters to define boundary conditions, the table names (Par) must not exceed 32
characters.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Smooth Data
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time - Time Step
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time and Substps
Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Define Inertia
Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Smooth Data
Main Menu>Solution>Define Loads>Settings>Replace vs Add>Smooth Data
Main Menu>Solution>Load Step Opts>Time/Frequenc>Time - Time Step
Main Menu>Solution>Load Step Opts>Time/Frequenc>Time and Substps
Main Menu>Solution>Loading Options>Smooth Data
Main Menu>TimeHist Postpro>Smooth Data
Utility Menu>Parameters>Array Parameters>Define/Edit

*DIM

6–13APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

/DIRECTORY, StrArray, FileName, Ext, Dir
Put the file names in the current directory into a string parameter array.

APDL: Array Parameters

MP ME ST DY <> PR EM EH FL PP ED

StrArray

Name of the “string array” parameter which will hold the returned values. String array parameters are similar
to character arrays, but each array element can be as long as 128 characters. If the string parameter does not
exist, it will be created. The array will be created as: *DIM,StrArray,STRING,64,2,numFileName

FileName

File name (64 characters maximum). Only files matching this name will be returned. The FileName ALL may
match any file name.

Ext

File name extension (8 characters maximum). Only files with an extension matching this name will be returned.
A blank or ALL will match any extension.

Directory
The directory in which the files reside. The default is the current working directory.

Notes

The /DIRECTORY command gets the file names in the current directory and puts them into a string parameter
array. Each file will be included in the array as a name-extension pair.

Menu Paths

This command cannot be accessed from a menu.

*DO, Par, IVAL, FVAL, INC
Defines the beginning of a do-loop.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Par

The name of the scalar parameter to be used as the loop index. See *SET for name restrictions. Any existing
parameter of the same name will be redefined. There is no character parameter substitution for the Par field.

IVAL, FVAL, INC
Initially assign IVAL to Par. Increment IVAL by INC for each successive loop. If IVAL exceeds FVAL and INC
is positive, the loop is not executed. INC defaults to 1. Negative increments and non-integer numbers are
allowed.

Notes

The block of commands following the *DO command (up to the *ENDDO command) is executed repeatedly
until some loop control is satisfied. Printout is automatically suppressed on all loops after the first (include a
/GOPR command to restore the printout). The command line loop control (Par,IVAL,FVAL,INC) must be input;

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–14

/DIRECTORY

however, a Use the *IF within the block can also be used to control looping [*EXIT , *CYCLE]. One level of internal
file switching is used for each nested *DO. Twenty levels of nested do-loops are allowed.

Note — Do-loops that include /INPUT, *USE, or an "Unknown Command" macro, have less nesting
available because each of these operations also uses a level of file switching. The *DO, *ENDDO, and
any *CYCLE and *EXIT commands for a do-loop must all be read from the same file (or keyboard). You
cannot use the MULTIPRO or *CREATE commands within a *DO-loop. Picking operations should also
not be used within a *DO-loop.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Prob Design>Prob Method>Response Surface
Main Menu>Solution>Define Loads>Delete>Structural>Section

*DOWHILE, Par
Loops repeatedly through the next *ENDDO command.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Par

The name of the scalar parameter to be used as the loop index. There is no character parameter substitution
for the Par field.

Notes

*DOWHILE loops repeatedly through the next *ENDDO command as long as Par is greater than zero. The block
of commands following the *DOWHILE command (up to the *ENDDO command) is executed repeatedly until
some loop control is satisfied. Printout is automatically suppressed on all loops after the first (include a /GOPR
command to restore the printout). The command line loop control (Par) must be input; however, *IF within the
block can also be used to control looping [*EXIT, *CYCLE]. One level of internal file switching is used for each
nested *DOWHILE. Twenty levels of nested do-loops are allowed.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*DOWHILE

6–15APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*ELSE
Separates the final if-then-else block.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Notes

Optional final block separator within an if-then-else construct. See the *IF for details. If a batch input stream hits
an end-of-file during a false *IF condition, the ANSYS run will not terminate normally. You will need to terminate
it externally (use either the UNIX “kill” function or the Windows task manager). The *ELSE command must appear
on the same file as the *IF command, and all five characters must be input.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*ELSEIF, VAL1, Oper, VAL2
Separates an intermediate if-then-else block.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

VAL1

First numerical value (or parameter which evaluates to numerical value) in the conditional comparison oper-
ation.

Oper1

Operation label. A tolerance of 1.0E-10 is used for comparisons between real numbers:

EQ --
Equal (for VAL1 = VAL2).

NE --
Not equal (for VAL1 ≠VAL2).

LT --
Less than (for VAL1<VAL2).

GT --
Greater than (for VAL1>VAL2).

LE --

Less than or equal (for VAL1 ≤ VAL2).

GE --

Greater than or equal (for VAL1 ≥ VAL2).

ABLT --
Absolute values of VAL1 and VAL2 before < operation.

ABGT --
Absolute values of VAL1 and VAL2 before > operation.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–16

*ELSE

VAL2

Second numerical value (or parameter which evaluates to numerical value) in the conditional comparison
operation.

Conj

(Optional) Connection between two logical clauses.

AND -
True if both clauses are true.

OR -
True if either clause is true.

XOR -
True if either (but not both) clause is true.

VAL3
(Optional) Third numerical value (or parameter which evaluates to numerical value).

Oper2
(Optional) Operation label. A tolerance of 1.0E-10 is used for comparisons between real numbers.

VAL4
(Optional) Fourth Numerical value (or parameter value which evaluates to a numerical value).

Notes

Optional intermediate block separator within an if-then-else construct. VAL1 and VAL2 can also be character
strings (enclosed in quotes) or parameters for Oper = EQ and NE only. All seven characters must be input. Similar
to Use the *IF except that the Base field is not used. The *ELSEIF command must appear on the same file as the
Use the *IF command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*END
Closes a macro file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Notes

Closes a file opened with *CREATE. The *END command is an 8-character command (to differentiate it from
*ENDIF). If you add commented text on that same line but do not allow enough spaces between *END and the
"!" that indicates the comment text, the *END will attempt to interpret the "!" as the 8th character and will fail.

This command is valid in any processor.

*END

6–17APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Menu Paths

This command cannot be accessed from a menu.

*ENDDO
Ends a do-loop and starts the looping action.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Notes

One *ENDDO is required for each nested do-loop. The *ENDDO command must appear on the same file as the
*DO command, and all six characters must be input.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Prob Design>Prob Method>Response Surface
Main Menu>Solution>Define Loads>Delete>Structural>Section

*ENDIF
Ends an if-then-else.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Notes

Required terminator for the if-then-else construct. See the *IF for details. If a batch input stream hits an end-of-
file during a false *IF condition, the ANSYS run will not terminate normally. You will need to terminate it externally
(use either the UNIX “kill” function or the Windows task manager). The *ENDIF command must appear on the
same file as the *IF command, and all six characters must be input.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Solution>Define Loads>Delete>Structural>Section

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–18

*ENDDO

*EXIT
Exits a do-loop.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Notes

The command following the *ENDDO is executed next. The exit option may also be conditional [Use the *IF].
The *EXIT command must appear on the same file as the *DO command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM
Retrieves a value and stores it as a scalar parameter or part of an array parameter.

APDL: Parameters

MP ME ST DY <> <> EM <> FL PP ED

Par

The name of the resulting parameter. See *SET for name restrictions.

Entity

Entity keyword. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, PDS, etc., as shown for Entity = in
the tables below.

ENTNUM

The number or label for the entity (as shown for ENTNUM = in the tables below). In some cases, a zero (or
blank) ENTNUM represents all entities of the set.

Item1

The name of a particular item for the given entity. Valid items are as shown in the Item1 columns of the
tables below.

IT1NUM

The number (or label) for the specified Item1 (if any). Valid IT1NUM values are as shown in the IT1NUM
columns of the tables below. Some Item1 labels do not require an IT1NUM value.

Item2, IT2NUM
A second set of item labels and numbers to further qualify the item for which data are to be retrieved. Most
items do not require this level of information.

Notes

*GET retrieves a value for a specified item and stores the value as a scalar parameter, or as a value in a user-
named array parameter. An item is identified by various keyword, label, and number combinations. Usage is
similar to the *SET command except that the parameter values are retrieved from previously input or calculated
results. For example, , A, ELEM, 5, CENT, X returns the centroid x-location of element 5 and stores the result as

*GET

6–19APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

parameter A. *GET command operations, along with the associated Get functions return values in the active
coordinate system unless stated otherwise.

Both *GET and *VGET retrieve information from the active data stored in memory. The database is often the
source, and sometimes the information is retrieved from common memory blocks that ANSYS uses to manipulate
information. Although POST1 and POST26 operations use a *.rst file, *GET data is accessed from the database
or from the common blocks. Get operations do not access the *.rst file directly. For repeated gets of sequential
items, such as from a series of elements, see the *VGET command.

Most items are stored in the database after they are calculated and are available anytime thereafter. Items are
grouped according to where they are usually first defined or calculated. Most of the GENERAL items listed below
are available from all modules. Each of the sections for accessing *GET parameters are shown in the following
order:

• *GET General Entity Items

• *GET Preprocessing Entity Items

• *GET Solution Entity Items

• *GET Postprocessing Entity Items

• *GET Optimization and Probabilistic Design Entity Items

The *GET command is valid in any processor.

General Items

*GET General Entity Items

• *GET General Items, Entity = ACTIVE

• *GET General Items, Entity = CMD

• *GET General Items, Entity = COMP

• *GET General Items, Entity = GRAPH

• *GET General Items, Entity = PARM

*GET General Items, Entity = ACTIVE

Entity = ACTIVE, ENTNUM = 0 (or blank)

*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Current interactive key: 0=off, 2=on.INT

Current immediate key: 0=off, 1=on.IMME

Current menu key: 0=off, 1=on.MENU

Printout suppression status: 0=/NOPR, 1=/GOPR or /GOPRKEY

Units specified by /UNITS command: 0 = USER, 1 = SI, 2 = CGS, 3 = BFT, 4 = BIN,
6 = MPA.

UNITS

Current routine: 0 = Begin level, 17 = PREP7, 21 = SOLUTION, 31 = POST1, 36
= POST26, 41 = OPT, 52 = AUX2, 62 = AUX12, 65 = AUX15, 71 = RUNSTAT.

ROUT

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–20

*GET

Entity = ACTIVE, ENTNUM = 0 (or blank)

*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Current wall clock or CPU time. Current wall clock will continue to accumulate
during an ANSYS run and is NOT reset to zero at midnight.

WALL,CPUTIME

Date of first modification of any database quantity required for POST1 operation.
The parameter returned is Par = YEAR*10000 + MONTH*100 + DAY.

LDATEDBASE

Time of last modification of any database quantity required for POST1 operation.
The parameter returned is Par = HOURS*10000 + MINUTES*100 + SECONDS.

LTIMEDBASE

ANSYS minor revision number (5.6, 5.7, 6.0 etc.). Letter notation (e.g., 5.0A) is
not included.

REV

Item2: START IT2NUM:N Current title string of the main title (IT1NUM=0 or
blank) or subtitle 1, 2, 3, or 4 (IT1NUM=1,2,3, or 4). A character parameter of up
to 8 characters, starting at position N, is returned.

0,1,2,3,4TITLE

Item2: START IT2NUM:N Current Jobname. A character parameter of up to 8
characters, starting at position N, is returned. Use *DIM and *DO to get all 32
characters.

JOBNAM

The current platform.PLATFORM

The maximum number of processors available.NPROC

*GET General Items, Entity = CMD

Entity = CMD, ENTNUM = 0 (or blank)

The following items are valid for all commands except star (*) commands and non-graphics slash (/) com-
mands.

*GET, Par, CMD, 0, Item1, IT1NUM, Item2, IT2NUM.

DescriptionIT1NUMItem1

Status of previous command: 0=found, 1=not found (unknown).STAT

Field number of last nonblank field on the previous command.NARGS

Numerical value of the Nth field on the previous command. Field 1 is the com-
mand name (not available)

2,3...NFIELD

*GET General Items, Entity = COMP

Entity = COMP, ENTNUM = 0 (or blank)

*GET, Par, COMP, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Total number of components and assemblies currently defined.NCOMP

Entity = COMP, ENTNUM = n (nth component)

*GET, Par, COMP, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Name of the Nth item (component or assembly) in the list of components and
assemblies. A character parameter is returned.

NAME

*GET

6–21APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = COMP, ENTNUM = Cname (component or assembly name)

*GET, Par, COMP, Cname, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Type of component Cname: 1=Nodes, 2=Elements, 6=Keypoints, 7=Lines,
8=Areas, 9=Volumes, 11-15=Subcomponents (11=subcomponent at level 1,
12=subcomponent at level 2, etc.).

TYPE

Number of subcomponents (for assemblies).NSCOMP

Name of Nth subcomponent of assembly Cname. A character parameter is re-
turned.

NSNAME

*GET General Items, Entity = GRAPH

Entity =GRAPH, ENTNUM = N (window number)

*GET, Par, GRAPH, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

/WINDOW status: 0=off, 1=on.ACTIVE

/ANGLETHETA angle.ANGLE

/CONTOUR value for Name, where Name = VMIN, VINC, or NCONT.NameCONTOUR

/DISTDVAL value.DIST

/DSCALE DMULT value.DMULTDSCALE

/EDGEKEY value.EDGE

/FOCUSXF, YF, or ZF value.X, Y, ZFOCUS

/GLINESTYLE value.GLINE

/USER or /AUTO setting: 0=user, 1=auto.MODE

/NORMALKEY value.NORMAL

/WINDOWXMIN, XMAX, YMIN , or YMAX screen coordinates.XMIN, XMAX,
YMIN, YMAX

RANGE

/RATIORATOX or RATOYvalue.X, YRATIO

/SSCALESMULT value.SMULTSSCALE

/TYPEType value.TYPE

/VCONEPHI angle.ANGLEVCONE

/VIEWXV, YV, or ZV value.X, Y, ZVIEW

/VSCALEVRATIO value.VRATIOVSCALE

Entity =GRAPH, ENTNUM = 0 (or blank)

*GET, Par, GRAPH, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

/SHOWVECT setting: 0=raster, 1=vector.DISPLAY

/ERASE or /NOERASE setting: 0=no erase, 1=erase.ERASE

Largest nodal range for current model (DX, DY, or DZ of the model).NDIST

/NUMBERNKEY value.NUMBER

/PLOPTS setting of Name, where Name=LEG1, LEG2, LEG3, INFO, FRAM, TITL,
MINM, or VERS.

NamePLOPTS

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–22

*GET

Entity =GRAPH, ENTNUM = 0 (or blank)

*GET, Par, GRAPH, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Segment capability of graphics driver: 0=no segments available, 1=erasable
segments available, 2=non-erasable segments available.

SEG

/SHRINKRATIO value.SHRINK

*GET General Items, Entity = PARM

Entity, = PARMENTNUM = 0 (or blank)

*GET, Par, PARM, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Total number of parameters currently defined.MAX

Number of scalar parameters (excluding parameters beginning with an under-
score _, array parameters, and character parameters).

BASIC

Name of the parameter at the Num location in the parameter table. A character
parameter is returned.

NumLOC

Entity = PARM, ENTNUM = Name (parameter name)

*GET, Par, PARM, Name, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Parameter type: 0=scalar, 1=array, 2=table, 3=character scalar, 4=character
array, -1=undefined

TYPE

Row (X), Column (Y), or Plane (Z) dimension of array parameter.X,Y,ZDIM

Preprocessing Items

*GET Preprocessing Entity Items

• *GET Preprocessing Items, Entity = ACTIVE

• *GET Preprocessing items, Entity = AREA

• *GET Preprocessing Items, Entity = CDSY

• *GET Preprocessing Items, Entity = CE

• *GET Preprocessing Items, Entity = CP

• *GET Preprocessing Items, Entity = EDCC

• *GET Preprocessing Items, Entity = ELEM

• *GET Preprocessing Items, Entity = ETYP

• *GET Preprocessing Items, Entity = FLDATA

• *GET Preprocessing Items, Entity = KP

• *GET Preprocessing Items, Entity = LINE

• *GET Preprocessing Items, Entity = MPLAB

• *GET Preprocessing Items, Entity = MSCAP

• *GET Preprocessing Items, Entity = MSDATA

*GET

6–23APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• *GET Preprocessing Items, Entity = MSMETH

• *GET Preprocessing Items, Entity = MSNOMF

• *GET Preprocessing Items, Entity = MSPROP

• *GET Preprocessing Items, Entity = MSRELAX

• *GET Preprocessing Items, Entity = MSSOLU

• *GET Preprocessing Items, Entity = MSSPEC

• *GET Preprocessing Items, Entity = MSVARY

• *GET Preprocessing Items, Entity = NODE

• *GET Preprocessing Items, Entity = PART

• *GET Preprocessing Items, Entity = RCON

• *GET Preprocessing Items, Entity = SCTN

• *GET Preprocessing Items, Entity = SECP

• *GET Preprocessing Items, Entity = SHEL

• *GET Preprocessing Items, Entity = TBFT

• *GET Preprocessing Items, Entity = TBLAB

• *GET Preprocessing Items, Entity = VOLU

• *GET Preprocessing Items, Entity = WELD

*GET Preprocessing Items, Entity = ACTIVE

Entity = ACTIVE, ENTNUM = 0 (or blank)

*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Segment capability of graphics driver: 0=no segments available, 1=erasable
segments available, 2=non-erasable segments available.

SEG

Active coordinate system.CSYS

Active display coordinate system.DSYS

Active material.MAT

Active element type.TYPE

Active real constant set.REAL

Active element coordinate system.ESYS

Active section.SECT

Maximum coupled node set number in the model (includes merged and deleted
sets until compressed out).

CP

Maximum constraint equation set number in the model (includes merged and
deleted sets until compressed out).

CE

Current maximum or RMS wavefront. Zero if no reordering done.MAX, RMSWFRONT

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–24

*GET

*GET Preprocessing items, Entity = AREA

Entity = AREA, ENTNUM = N (area number)

*GET, Par, AREA, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number assigned to the attribute, Name, where Name=MAT, TYPE, REAL, ESYS,
SECN, NNOD, NELM, or ESIZ. (NNOD=number of nodes, NELM=number of ele-
ments, ESIZ=element size.)

NameATTR

Select status of area N: -1=unselected, 0=undefined, 1=selected. Alternative
get function: ASEL(N).

ASEL

Next higher area number above N in selected set (or zero if none found).NXTH

Next lower area number below N in selected set (or zero if none found).NXTL

Area of area N. (ASUM or GSUM must have been performed sometime previ-
ously with at least this area N selected).

AREA

Item2: LINE, IT2NUM: 1,2,...,p Line number of position p of loop I1,2,...,ILOOP

Entity = AREA, ENTNUM = 0 (or blank)

*GET, Par, AREA, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Highest or lowest area number in the selected set.MAX, MINNUM

Highest or lowest area number defined.MAXD, MINDNUM

Number of areas in the selected set.COUNT

Combined areas (from last ASUM or GSUM).AREA

Combined volume of areas (from last ASUM or GSUM. For 3-D area elements,
thickness is determined from area attributes [AATT]. For 2-D elements, area
attributes are ignored and unit thickness is assumed.

VOLU

Centroid X, Y, or Z location of areas (from last ASUM or GSUM).X, Y, ZCENT

Moments of inertia about origin (from last ASUM or GSUM).X, Y, Z, XY, YZ,
ZX

IOR

Moments of inertia about mass centroid (from last ASUM or GSUM).X, Y, Z, XY, YZ,
ZX

IMC

Principal moments of inertia (from last ASUM or GSUM).X, Y, ZIPR

Principal orientation X vector components (from last ASUM or GSUM).X, Y, ZIXV

Principal orientation Y vector components (from last ASUM or GSUM).X, Y, ZIYV

Principal orientation Z vector components (from last ASUM or GSUM).X, Y, ZIZV

*GET Preprocessing Items, Entity = CDSY

Entity = CDSY, ENTNUM = N (coordinate system number)

*GET, Par, CDSY, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

X, Y, or Z origin location in global Cartesian system.X, Y, ZLOC

THXY, THYZ, or THZX rotation angle (in degrees) relative to the global Cartesian
coordinate system.

XY, YZ, ZXANG

Number assigned to Name, where Name=KCS, KTHET, KPHI, PAR1, or PAR2. The
value -1.0 is returned for KCS if the coordinate system is undefined.

NameATTR

*GET

6–25APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = CDSY, ENTNUM = N (coordinate system number)

*GET, Par, CDSY, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

The maximum coordinate system numberMAXNUM

*GET Preprocessing Items, Entity = CE

Entity = CE, ENTNUM = N (constraint equation set)

*GET, Par, CE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

If N = 0, then

Maximum constraint equation numberMAX

Number of constraint equationsNUM

If N > 0, then

Number of terms in this constraint equationNTERM

Constant term for this constraint equationCONST

Item2 = NODE: Gives the node for this position in the constraint equation.

Item2 = DOF: Gives the DOF number for this position in the constraint equation.
(1–UX, 2–UY, 3–UZ, 4–ROTX, etc.)

Item2 = COEF: Gives the coefficient for this position in the constraint equation.

numberTERM

*GET Preprocessing Items, Entity = CP

Entity = CP, ENTNUM = N (coupled node set)

*GET, Par, CP, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

If N = 0, then

Maximum coupled set numberMAX

Number of coupled setsNUM

If N > 0, then

The degree of freedom for this set (1–UX, 2–UY, 3–UZ, 4–ROTX, etc.)DOF

Number of nodes in this set.NTERM

Item2 = NODE: Gives the node for this position number in the coupled set.numberTERM

*GET Preprocessing Items, Entity = EDCC

Entity = EDCC, ENTNUM = N (contact entity number, obtained by issuing the EDCLIST command)

*GET, Par, EDCC, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Component name for the contact (1) or target (2) surface of contact entity N.
A character parameter is returned.

1, 2COMP

PART number for contact (1) or target (2) surface of contact entity N.1, 2PART

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–26

*GET

Entity = EDCC, ENTNUM = 0 (or blank)

*GET, Par, EDCC, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Total number of contact definitions.COUNT

*GET Preprocessing Items, Entity = ELEM

Entity = ELEM, ENTNUM = N (element number)

*GET, Par, ELEM, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Node number at position 1,2,... or 20 of elementN. Alternative get function:
NELEM(n,npos), where npos is 1,2,...20.

1, 2, ... 20NODE

Centroid X, Y, or Z location (based on shape function) in the active coordinate
system. The original locations is used even if large deflections are active. Altern-
ative get functions: CENTRX(N), CENTRY(N), and CENTRZ(N) always retrieve the
element centroid in global Cartesian coordinates, and are determined from
the selected nodes on the elements.

X, Y, ZCENT

Element number adjacent to face 1,2,...6. Alternative get function:
ELADJ(N,face). Only elements (of the same dimensionality) adjacent to lateral
faces are considered.

1, 2, ... 6ADJ

Number assigned to the attribute Name, where Name = MAT, TYPE, REAL, ESYS,
PSTAT, LIVE, or SECN. Returns a zero if the element is unselected. If Name =
PSTAT (valid for p-elements only), returns a 1 if the element is selected and in-
cluded [PINCLUDE], and a -1 if the element is selected and excluded [PEX-
CLUDE]. If Name = LIVE, returns a 1 if the element is selected and active, and a
-1 if it is selected and inactive. Name = SECN returns the section number of the
selected beam element.

NameATTR

Length of line element (straight line between ends).LENG

Projected line element length (in the active coordinate system). X is x-projection
onto y-z plane, Y is y projection onto z-x plane, and Z is z-projection onto x-y
plane.

X, Y, ZLPROJ

Area of area element.AREA

Projected area of area element area (in the active coordinate system). X is x-
projection onto y-z plane, Y is y projection onto z-x plane, and Z is z-projection
onto x-y plane.

X, Y, ZAPROJ

Element volume. Based on unit thickness for 2-D plane elements (unless the
thickness option is used) and on the full 360 degrees for 2-D axisymmetric
elements.

Note — If results data are in the database, the volume returned is the
volume calculated during solution.

VOLU

Select status of element N: -1 = unselected, 0 = undefined, 1 = selected. Altern-
ative get function: ESEL(N).

ESEL

Next higher element number above N in selected set (or zero if none found).
Alternative get function: ELNEXT(N)

NXTH

Next lower element number below N in selected set (or zero if none found).NXTL

Heat generation on selected element N.HGEN

*GET

6–27APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = ELEM, ENTNUM = N (element number)

*GET, Par, ELEM, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Heat coefficient for selected element N on specified face. Returns the value at
the first node that forms the face.

faceHCOE

Bulk temperature for selected element N on specified face. Returns the value
at the first node that forms the face.

faceTBULK

Pressure on selected element, N on specified face. Returns the value at the first
node that forms the face.

facePRES

Element shape test result for selected element N, where Test = ANGD (SHELL28
corner angle deviation), ASPE (aspect ratio), JACR (Jacobian ratio), MAXA
(maximum corner angle), PARA (deviation from parallelism of opposite edges),
or WARP (warping factor).

TestSHPAR

Entity = ELEM, ENTNUM = 0 (or blank)

*GET, Par, ELEM, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Highest or lowest element number in the selected set.MAX,MINNUM

Highest or lowest element number defined.MAXD, MINDNUM

Number of elements in the selected set.COUNT

*GET Preprocessing Items, Entity = ETYP

Entity = ETYP, ENTNUM = N (element type number)

*GET, Par, ETYP, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number assigned to the attribute Name, where Name=ENAM, KOP1, KOP2, ...,
KOP9, KO10, KO11, etc.

NameATTR

Entity = ETYP, ENTNUM = 0 (or blank)

*GET,Par,ETYP,0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Maximum element type.MAXNUM

*GET Preprocessing Items, Entity = FLDATA

Entity = FLDATA, ENTNUM = Name (Name is a valid label on the Name field of the FLDATA command.)

The value returned is the numerical value for numeric items, 0 or 1 for logical items (off/on or false/true),
and a character parameter for items that require a character string. For example, *GET,X,FLDATA,TERM,PRES
returns X=convergence monitor value for pressure [FLDATA3], *GET,X,FLDATA,SOLU,TURB returns X=1 if
the turbulence model is ON [FLDATA1], and *GET,X,FLDATA,PROT,DENS returns X='CONSTANT' if density
is specified as a constant property type [FLDATA7].

*GET, Par, FLDATA, Name, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Value of Lab, where Lab is a valid label from the Label field of the FLDATA
command.

Lab

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–28

*GET

*GET Preprocessing Items, Entity = KP

Entity = KP, ENTNUM = N (keypoint number)

*GET, Par, KP, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

X, Y, or Z location in the active coordinate system. Alternative get functions:
KX(N), KY(N), KZ(N). Inverse get function: KP(x,y,z) returns the number of the
selected keypoint nearest the x,y,z location (in the active coordinate system,
lowest number for coincident keypoints).

X, Y, ZLOC

Number assigned to the attribute Name, where Name = MAT, TYPE, REAL, ESYS,
NODE, or ELEM.

NameATTR

Select status of keypoint N: -1 = unselected, 0 = undefined, 1 = selected. Altern-
ative get function: KSEL(N).

KSEL

Next higher keypoint number above N in selected set (or zero if none found).
Alternative get function: KPNEXT(N).

NXTH

Next lower keypoint number below N in selected set (or zero if none found).NXTL

Divisions (element size setting) from KESIZE command.DIV

Entity = KP, ENTNUM = 0 (or blank)

*GET, Par, KP, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Highest or lowest keypoint number in the selected set.MAX, MINNUM

Highest or lowest keypoint number definedMAXD, MINDNUM

Number of keypoints in the selected set.COUNT

Centroid X, Y, or Z location of keypoints (from last KSUM or GSUM).X, Y, ZCENT

Moments of inertia about origin (from last KSUM or GSUM).X, Y, Z, XY, YZ,
ZX

IOR

Moments of inertia about mass centroid (from last KSUM or GSUM).X, Y, Z, XY, YZ,
ZX

IMC

Principal moments of inertia (from last KSUM or GSUM).X, Y, ZIPR

Principal orientation X vector components (from last KSUM or GSUM).X, Y, ZIXV

Principal orientation Y vector components (from last KSUM or GSUM).X, Y, ZIYV

Principal orientation Z vector components (from last KSUM or GSUM).X, Y, ZIZV

Maximum X, Y, or Z keypoint coordinate in the selected set (in the active co-
ordinate system).

X, Y, ZMXLOC

Minimum X, Y, or Z keypoint coordinate in the selected set (in the active co-
ordinate system).

X, Y, ZMNLOC

Keypoint number of meshed region nearest centroid of element m.mNRELM

*GET Preprocessing Items, Entity = LINE

Entity = LINE, ENTNUM = N (line number)

*GET, Par, LINE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Keypoint number at position 1 or 2.1,2KP

*GET

6–29APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = LINE, ENTNUM = N (line number)

*GET, Par, LINE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number assigned to the attribute, Name, where Name=MAT, TYPE, REAL, ESYS,
NNOD, NELM, NDIV, NDNX, SPAC, SPNX, KYND, KYSP, LAY1, or LAY2.
(NNOD=number of nodes, returns --1 for meshed line with no internal nodes,
NELM=number of elements, NDIV=number of divisions in an existing mesh,
NDNX=number of divisions assigned for next mesh, SPAC=spacing ratio in an
existing mesh, SPNX=spacing ratio for next mesh, KYND=soft key for NDNX,
KYSP=soft key for SPNX, LAY1=LAYER1 setting, LAY2=LAYER2 setting.)

NameATTR

Select status of line N: -1=unselected, 0=undefined, 1=selected. Alternative get
function: LSEL(N).

LSEL

Next higher line number above N in the selected set (or zero if none found).
Alternative get function: LSNEXT(N)

NXTH

Next lower line number below N in selected set (or zero if none found).NXTL

Length. A get function LX(n,lfrac) also exists to return the X coordinate loc-
ation of line N at the length fraction lfrac (0.0 to 1.0). Similar LY and LZ func-
tions exist.

LENG

Entity = LINE, ENTNUM = 0 (or blank)

*GET, Par, LINE, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Highest or lowest line number in the selected set.MAX, MINNUM

Highest or lowest line number defined.MIND, MAXDNUM

Number of lines in the selected set.COUNT

Combined length of lines (from last LSUM or GSUM).LENG

Centroid X, Y, or Z location of lines (from last LSUM or GSUM).X, Y, ZCENT

Moments of inertia about origin (from last LSUM or GSUM).X, Y, Z, XY, YZ,
ZX

IOR

Moments of inertia about mass centroid (from last LSUM or GSUM).X, Y, Z, XY, YZ,
ZX

IMC

Principal moments of inertia (from last LSUM or GSUM).X, Y, ZIPR

Principal orientation X vector components (from last LSUM or GSUM).X, Y, ZIXV

Principal orientation Y vector components (from last LSUM or GSUM).X, Y, ZIYV

Principal orientation Z vector components (from last LSUM or GSUM).X, Y, ZIZV

*GET Preprocessing Items, Entity = MPLAB

Entity = MPlab, ENTNUM =N (MPlab = material property label from MP command; N = material number.)

*GET, Par, MPlab, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Material property value at temperature of val. For temperature dependant
materials, the program interpolates the property at temperature input for val.

valTEMP

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–30

*GET

*GET Preprocessing Items, Entity = MSCAP

Entity = MSCAP, ENTNUM = n (species number)

*GET, Par, MSCAP, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Status of mass fraction capping for species n: 0=off, 1=on.KEY

Upper bound of mass fraction.UPP

Lower bound of mass fraction.LOW

*GET Preprocessing Items, Entity = MSDATA

Entity = MSDATA, ENTNUM = 0

*GET, Par, MSDATA, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

The algebraic species number.SPEC

Value of the universal gas constant.UGAS

*GET Preprocessing Items, Entity = MSMETH

Entity = MSMETH, ENTNUM = n (species number)

*GET, Par, MSMETH, n, Item1, IT1NUM, Item2, IT2NUM

Solution method for species n: 0=no solution, 1=TDMA method, 2=conjugate
residual method, 3=preconditioned conjugate residual method.

(Blank)(Blank)

*GET Preprocessing Items, Entity = MSNOMF

Entity = MSNOMF, ENTNUM = n (species number)

*GET, Par, MSNOMF, n, Item1, IT1NUM, Item2, IT2NUM

Initial mass fraction of species N.(Blank)(Blank)

*GET Preprocessing Items, Entity = MSPROP

Entity = MSPROP, ENTNUM = n (species number)

*GET, Par, MSPROP, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

The type of fluid property variation being used for Lab, where Lab is a valid
property label as described on the MSPROP command (DENS, VISC, COND,
etc.). A character parameter is returned: CONSTANT, GAS, LIQUID, or a property
name from the floprp.ans file.

TYPELab

Value of property Lab: nominal value for a CONSTANT fluid property, value at
temperature given by COF1 for other property types.

NOMI"

Coefficients in the equation of state for property Lab.COF1, COF2,
COF3

"

*GET

6–31APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*GET Preprocessing Items, Entity = MSRELAX

Entity = MSRELAX, ENTNUM = n (species number)

*GET, Par, MSRELAX, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Mass fraction concentration relaxation factor.CONC

Mass diffusion coefficient relaxation factor.MDIF

Effective mass diffusion coefficient relaxation factor.EMDI

Transport equation inertial relaxation factor.STAB

*GET Preprocessing Items, Entity = MSSOLU

Entity = MSSOLU, ENTNUM = n (species number)

*GET, Par, MSSOLU,n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number of TDMA sweeps.NSWE

Maximum number of iterations allowed for semi-direct methods.MAXI

Number of search vectors used for semi-direct methods.NSRC

Convergence criterion for semi-direct methods.CONV

Maximum normalized rate of change which will permit the semi-direct solution
to continue.

DELT

*GET Preprocessing Items, Entity = MSSPEC

Entity = MSSPEC, ENTNUM = n (species number)

*GET, Par, MSSPEC, n, Item1, IT1NUM, Item2, IT2NUM

Name of species n. A character parameter is returned.NAME

Molecular weight of species n.MOLW

Turbulent Schmidt number of species n.SCHM

*GET Preprocessing Items, Entity = MSVARY

Entity = MSVARY, ENTNUM = n (species number)

*GET, Par, MSVARY, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Variability status of property Lab (where Lab =DENS, VISC, COND, or MDIF):
0=off, 1=on.

Lab

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–32

*GET

*GET Preprocessing Items, Entity = NODE

Entity = NODE, ENTNUM = N (node number)

*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

X, Y, Z location in the active coordinate system. Alternative get functions: NX(N),
NY(N), NZ(N). Inverse get function. NODE(x,y,z) returns the number of the
selected node nearest the x,y,z location (in the active coordinate system,
lowest number for coincident nodes).

X, Y, ZLOC

THXY, THYZ, THZX rotation angle.XY, YZ, ZXANG

Select status of node N: -1=unselected, 0=undefined, 1=selected. Alternative
get function: NSEL(N).

NSEL

Next higher node number above N in selected set (or zero if none found). Al-
ternative get function: NDNEXT(N).

NXTH

Next lower node number below N in selected set (or zero if none found).NXTL

Applied force at selected node N in direction IT1NUM (returns 0.0 if no force is
defined, if node is unselected, or if the DOF is inactive). If ITEM2 is IMAG, return
the imaginary part.

FX, MX, ...F

Applied constraint force at selected node N in direction IT1NUM (returns a large
number, such as 2e100, if no constraint is specified, if the node is unselected,
or if the DOF is inactive). If ITEM2 is IMAG, return the imaginary part.

UX, ROTX, ...D

Heat generation on selected node N (returns 0.0 if node is unselected, or if the
DOF is inactive).

HGEN

Temperature on selected node N (returns 0.0 if node is unselected)NTEMP

Couple set number with direction Lab = any active DOF, which contains the
node N.

LabCPS

Entity = NODE, ENTNUM = 0 (or blank)

*GET, Par, NODE, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Highest or lowest node number in the selected set.MAX, MINNUM

Highest or lowest node number defined.MAXD, MINDNUM

Number of nodes in the selected set.COUNT

Maximum X, Y, or Z node coordinate in the selected set (in the active coordinate
system).

X, Y, ZMXLOC

Minimum X, Y, or Z node coordinate in the selected set (in the active coordinate
system).

X, Y, ZMNLOC

Note: If internal nodes are created during solution by ANSYS, the internal nodes may also be included by the
command. You can select/unselect them by node numbers, but they can not be listed or plotted.

*GET Preprocessing Items, Entity = PART

Entity = PART, ENTNUM = N (PART number)

*GET, Par, PART, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Element type number assigned to PART N.TYPE

Material number assigned to PART N.MAT

*GET

6–33APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = PART, ENTNUM = N (PART number)

*GET, Par, PART, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Real constant number assigned to PART N.REAL

Entity = PART, ENTNUM = 0 (or blank)

*GET, Par, PART, 0, Item1, IT1NUM, Item2, IT2NUM

Total number of parts in the model.NUMP

*GET Preprocessing Items, Entity = RCON

Entity = RCON, ENTNUM = N (real constant set number)

*GET, Par, RCON, N, Item1, IT1NUM, Item2, IT2NUM

Value of real constant number m in set N.1, 2, ..., mCONST

The maximum real constant numberMAXNUM

*GET Preprocessing Items, Entity = SCTN

Entity = SCTN, ENTNUM = N (pretension section ID number)

*GET, Par, SCTN, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Section ID number.1

Section type (always 5 for pretension section).2

Pretension node number.3

Section normal NX.Coordinate sys-
tem number.

4

Section normal NY.Coordinate sys-
tem number.

5

Section normal NZ.Coordinate sys-
tem number.

6

Eight character section name.7 or 8

Initial action key. Returns 0 or 1 for lock, 2 for "free-to-slide," or 3 for tiny.9

Force displacement key. Returns 0 or 1 for force, or 2 for displacement.10

First preload value.11

Load step in which first preload value is to be applied.12

Load step in which first preload value is to be locked.13

14 through 17 is a repeat of 10 through 13, but for the second preload value;
18 through 21 is for the third preload value; and so forth.

14...

*GET Preprocessing Items, Entity = SECP

Entity = SECP, ENTNUM = NUM

*GET, Par, SECP, NUM, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number of defined sectionsCOUNT

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–34

*GET

Entity = SECP, ENTNUM = NUM

*GET, Par, SECP, NUM, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Largest section number definedMAX

Entity = SECP, ENTNUM = id (beam section identification number)

*GET, Par, SECP, id, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Section type, for id - SECTYPE command. (always BEAM for beam sections)TYPE

Section type for id - SECTYPE commandSUBTYPE

Name defined for the given section id numberNAME

Where "nnn" is the location in the SECDATA command for the given section
id number

nnnDATA

Area valueAREAPROP

Moments of inertiaIYY, IYZ, IZZ"

Warping constantWARP"

Torsion constantTORS"

Y or Z coordinate center of gravityCGY, CGZ"

Y or Z coordinate shear centerSHCY, SHCZ"

Shear correction factorsSCYY, SCYZ,
SCZZ

"

Offset location:

1 = Centroid
2 = Shear Center
3 = Origin
0 = User Defined

OFFSET"

*GET Preprocessing Items, Entity = SHEL

Entity = SHEL, ENTNUM = N (shell section identification number)

*GET, Par, SHEL, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Section type, for id — SECTYPE command. (always SHEL for shell
sections)

TYPE

Name defined for a given id number.NAME

Total thickness.TTHKPROP

Number of layers.NLAY"

Number of section integration points.NSP"

Node position (as defined by SECOFFSET).POS"

0 = User Defined.""

1 = Middle.""

2 = Top.""

3 = Bottom.""

User-defined section offset (POS = 0).OFFZ"

*GET

6–35APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = SHEL, ENTNUM = N (shell section identification number)

*GET, Par, SHEL, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Transverse shear stiffness factors.TS11"

Transverse shear stiffness factors.TS22"

Transverse shear stiffness factors.TS12"

Homogeneous or complete section flag.HORC"

0 = Homogeneous.""

1 = Composite.""

Tabular function name for total thickness.FUNC"

User transverse shear stiffness 11.UT11"

User transverse shear stiffness 22.UT22"

User transverse shear stiffness 12.UT12"

Added mass.AMAS"

Hourglass control membrane scale factor.MSCF"

Hourglass control bending scale factor.BSCF"

Drill stiffness scale factor.DSTF"

Laminate density.LDEN"

Layer thickness.LayerNumber,THICLAYD

Layer material.LayerNumber,MAT"

Layer orientation angle.LayerNumber,ANGL"

Number of layer integration points.LayerNumber,NINT"

*GET Preprocessing Items, Entity = TBFT

Entity = TBFT, ENTNUM = BLANK

*GET, Par, TBFT, , Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number of defined material models.nmat

Material number in array (index varies for 1 to num materials).indexmatnum

Entity = TBFT, ENTNUM = matid (For getting names of constitutive function, matid = the material ID number)

*GET, Par, TBFT, matid, nfun, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number of constitutive functions for this material.nfun

Entity = TBFT, ENTNUM = matid (To query constitutive function data, matid = the material ID number)

*GET, Par, TBFT, matid, func, fname, Item2, IT2NUM

DescriptionIT1NUMItem1

if Item2 = fname, the name of the constitutive function is returned.indexfunc

If Item2 = ncon, the number of constants is returned for the function specified
in IT1NUM by the constitutive function name.

function namefunc

If Item2 = cons, set Item2num to index to return the value of the constant.“”

If Item2 = fixe, set Item2num to index to return the fix flag status.““

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–36

*GET

Entity = TBFT, ENTNUM = BLANK

*GET, Par, TBFT, , Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

If Item2 = type, returns the category of the constitutive model (moon, poly,
etc.)

““

If Item2 = sord, returns the shear order of the prony visco model.““

If Item2 = bord, returns the bulk order of the prony visco model.““

If Item2 = shif, returns the shift function name of the prony visco model.”“

Entity = TBFT, ENTNUM = matid (To query experimental data, matid = the material ID number))

*GET, Par, TBFT, matid, func, fname, Item2, IT2NUM

DescriptionIT1NUMItem1

If Item2 = nexp, returns number of experiments in a material model.(blank)expe

If Item2 = type, returns index of experiment.expindex“

If Item2 = numrow, returns number of rows in the data.““

If Item2 = numcol, returns the number of cols in a row (set Intem2num = Row
index)

““

If Item2 = data, returns the value of the data in row, col of exp expindex (set
item2Num = row index and item3 = column index. All indices vary from 1 to
the maximum value.

““

If Item2 = natt, returns the number of attributes.““

If Item2 = attname, returns the attribute name (set Item2Num = Attr index).““

If Item2 = attvald, returns double value of attribute (set Item2Num = Attr index).““

If Item2 = attvali, returns integer valud of attribute (set Item2Num = Attr index).““

If Item2 = attvals, returns the string value of the attribute (set Item2Num = Attr
index).

““

*GET Preprocessing Items, Entity = TBLAB

Entity = TBlab, ENTNUM = N..(TBlab = data table label from the TB command; N = material number.)

*GET, Par, TBlab, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Item2: CONST IT2NUM: Num Value of constant number Num in the datatable
at temperature T (see Data Tables - Implicit Analysis in the ANSYS Elements
Reference). For constants input a X,Y point, the constant numbers are consec-
utive with the X constants being the odd numbers, beginning with one.

TTEMP

*GET Preprocessing Items, Entity = VOLU

Entity = VOLU, ENTNUM = N (volume number)

*GET, Par, VOLU, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number assigned to the attribute Name, where Name=MAT, TYPE, REAL, ESYS,
NNOD, or NELM. (NNOD=number of nodes, NELM=number of elements.)

NameATTR

Select status of volume N: -1=unselected, 0=undefined, 1=selected. Alternative
get function: VSEL(N).

VSEL

*GET

6–37APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = VOLU, ENTNUM = N (volume number)

*GET, Par, VOLU, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Next higher volume number above N in selected set (or zero if none found).
Alternative get function: VLNEXT(N).

NXTH

Next lower volume number below N in selected set (or zero if none found).NXTL

Volume of volume N. (VSUM or GSUM must have been performed sometime
previously with at least this volume N selected).

VOLU

Item2: AREA IT2NUM: 1,2,...,p Line number of position p of shell m1, 2, ..., mSHELL

Entity = VOLU, ENTNUM = 0 (or blank)

*GET, Par, VOLU, 0, Item1, IT1NUM, Item2, IT2NUM

Highest or lowest volume number in the selected set.MAX, MINNUM

Highest or lowest volume number defined.MAXD, MINDNUM

Number of volumes in the selected set.COUNT

Combined volumes (from last VSUM or GSUM).VOLU

Centroid X, Y, or Z location of volumes (from last VSUM or GSUM).X, Y, ZCENT

Moments of inertia about origin (from last VSUM or GSUM).X, Y, Z, XY, YZ,
ZX

IOR

Moments of inertia about mass centroid (from last VSUM or GSUM).X, Y, Z, XY, YZ,
ZX

IMC

Principal moments of inertia (from last VSUM or GSUM).X, Y, ZIPR

Principal orientation X vector components (from last VSUM or GSUM).X, Y, ZIXV

Principal orientation Y vector components (from last VSUM or GSUM).X, Y, ZIYV

Principal orientation Z vector components (from last VSUM or GSUM).X, Y, ZIZV

*GET Preprocessing Items, Entity = WELD

Entity = WELD, ENTNUM = N (weld number)

*GET, Par, WELD, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

First or second node number for spot weld N.1, 2NODE

Next higher spotweld number above N (or 0 if none found).NXTH

Entity = WELD, ENTNUM = 0 (or blank)

*GET, Par, WELD, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Highest or lowest spotweld number.MAX, MINNUM

Total number of spotwelds in model.COUNT

Solution Items

*GET Solution Entity Items

• *GET Solution Items, Entity = ACTIVE

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–38

*GET

• *GET Solution Items, Entity = ELEM

• *GET Solution Items, Entity = MODE

• *GET Solution Items, Entity = RUNST

*GET Solution Items, Entity = ACTIVE

Entity = ACTIVE, ENTNUM = 0 (or blank)

*GET, Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Current analysis type.ANTY

Time step size.DTIMESOLU

Cumulative number of load steps.NCMLS"

Cumulative number of substeps. NOTE: Used only for static and transient ana-
lyses.

NCMSS"

Number of equilibrium iterations.EQIT"

Cumulative number of iterations.NCMIT"

Convergence indicator: 0=not converged, 1=converged.CNVG"

Maximum degree of freedom value.MXDVL"

Response frequency for 2nd order systems.RESFRQ"

Response eigenvalue for 1st order systems.RESEIG"

Descent parameter.DSPRM"

Force convergence value.FOCV"

Moment convergence value.MOCV"

Heat flow convergence value.HFCV"

Magnetic flux convergence value.MFCV"

Current segment convergence value.CSCV"

Current convergence value.CUCV"

Fluid flow convergence value.FFCV"

Displacement convergence value.DICV"

Rotation convergence value.ROCV"

Temperature convergence value.TECV"

Vector magnetic potential convergence value.VMCV"

Scalar magnetic potential convergence value.SMCV"

Voltage convergence value.VOCV"

Pressure convergence value.PRCV"

Velocity convergence value.VECV"

Maximum creep ratio.CRPRAT"

Maximum plastic strain increment.PSINC"

Number of iterations in the PCG and symmetric JCG (non-complex version)
solvers.

CGITER"

*GET

6–39APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*GET Solution Items, Entity = ELEM

Entity = ELEM, ENTNUM = 0 (or blank) (Available only after inertia relief solution [IRLF,1] or pre-calculation
of masses [IRLF,-1])

*GET, Par, ELEM, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Total mass components.X, Y, ZMTOT

Mass centroid components.X, Y, ZMC

Moment of inertia about origin.X, Y, Z, XY, YZ,
ZX

IOR

Moment of inertia about mass centroid.X, Y, Z, XY, YZ,
ZX

IMC

Force components at mass centroid.X, Y, ZFMC

Moment components at origin.X, Y, ZMMOR

Moment components at mass centroid.X, Y, ZMMMC

*GET Solution Items, Entity = MODE

Entity = MODE, ENTNUM = N (mode number)

*GET, Par, MODE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Frequency of mode N. This item returns only the first 600 frequency values. For
modal solutions that create complex frequencies (DAMP and QRDAMP), the
real part of the frequencies is returned unless IT1NUM = IMAG.

(IMAG)FREQ

Participation factor of mode N. If retrieved after a modal analysis, this value re-
flects the participation factor for rotation about the global Z axis. If retrieved
after a spectrum analysis, this value represents the participation factor for the
last SED direction vector.

PFACT

Mode coefficient of mode N. Values are retrievable with this command following
a spectrum analysis.

Note — Note--Values for the MCOEF parameter are only valid after a
spectrum analysis has been solved.

MCOEF

Effective damping ratio of mode N. Not a function of direction. Also retrievable
following a Harmonic Response Analysis or Transient Analysis with mode su-
perposition.

DAMP

*GET Solution Items, Entity = RUNST

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RSPEED command before retrieving the
following items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

MIPS rating of computer.MIPSRSPEED

Scalar MFLOPS rating of computer.SMFLOP"

Vector MFLOPS rating of computer.VMFLOP"

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–40

*GET

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RFILSZ command before retrieving these
items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Estimated total size of all files listed in the RFILSZ command description. All
file sizes are in megabytes.

TOTALRFILSZ

Estimated size of element matrices file (.EMAT).EMAT"

Rotated element matrices file (.EROT).EROT"

Element saved data file (.ESAV).ESAV"

Assembled global stiffness and mass matrices file (.FULL).FULL"

Modal matrices file (.MODE).MODE"

Reduced displacements file (.RDSP).RDSP"

Reduced structure matrix file (.REDM).REDM"

Reduced complex displacements file (.RFRQ).RFRQ"

Geometry data in results file (.RST, .RTH, or .RMG).RGEOM"

Load data in results file (.RST, .RTH, or .RMG).RST"

Triangularized stiffness matrix file (.TRI).TRI"

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RTIMST command before retrieving the following
items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Estimated run time (seconds) for total solution.TOTALRTIMST

Estimated run time (seconds) for first iteration.TFIRST"

Estimated run time (seconds) for subsequent iteration.TITER"

Estimated run time (seconds) for element preparation.EQPREP"

Estimated run time (seconds) for wavefront solution.SOLVE"

Estimated run time (seconds) for back substitution.BSUB"

Estimated run time (seconds) for eigenvalue calculation.EIGEN"

n Estimated run time (seconds) for element formulation of element type
number n.

ELFORM"

n Estimated run time (seconds) for computation of element results for element
type number n.

ELSTRS"

n Number of elements defined for element type n.NELM"

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RMEMRY command before retrieving the following
items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Requested work space (Mb)WSREQRMEMRY

Work space obtained (Mb).WSAVAIL"

ANSYS database page size (Kb).DBPSIZE"

Database pages on disk.DBPDISK"

ANSYS database space size (Mb).DBSIZE"

Database pages in memory.DBPMEM"

*GET

6–41APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RFILSZ command before retrieving these
items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Memory for database pages (Mb).DBMEM"

ANSYS scratch memory size (Mb).SCRSIZE"

Available scratch memory (Mb).SCRAVAIL"

Buffer scratch memory (Mb).IOMEM"

Binary I/O page size (Kb).IOPSIZ"

Buffers per solution file.IOBUF"

Maximum Solution Memory SpaceSOLMEMORY"

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RWFRNT command before retrieving these
items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Estimated maximum wavefront.MAXRWFRNT

Estimated R.M.S. wavefront.RMS"

Estimated mean wavefront.MEAN"

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RTIMST command before retrieving the
following items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Estimated run time (seconds) for total solution.TOTALRTIMST

Estimated run time (seconds) for first iteration.TFIRST"

Estimated run time (seconds) for subsequent iteration.TITER"

Estimated run time (seconds) for element preparation.EQPREP"

Estimated run time (seconds) for wavefront solution.SOLVE"

Estimated run time (seconds) for back substitution.BSUB"

Estimated run time (seconds) for eigenvalue calculation.EIGEN"

n Estimated run time (seconds) for element formulation of element type
number n.

ELFORM"

n Estimated run time (seconds) for computation of element results for element
type number n.

ELSTRS"

n Number of elements defined for element type n.NELM"

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RMEMRY command before retrieving the
following items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Requested work space (Mb)WSREQRMEMRY

Work space obtained (Mb).WSAVAIL"

ANSYS database page size (Kb).DBPSIZE"

Database pages on disk.DBPDISK"

ANSYS database space size (Mb).DBSIZE"

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–42

*GET

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RMEMRY command before retrieving the
following items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Database pages in memory.DBPMEM"

Memory for database pages (Mb).DBMEM"

ANSYS scratch memory size (Mb).SCRSIZE"

Available scratch memory (Mb).SCRAVAIL"

Buffer scratch memory (Mb).IOMEM"

Binary I/O page size (Kb).IOPSIZ"

Buffers per solution file.IOBUF"

Maximum Solution Memory SpaceSOLMEMORY"

Entity = RUNST, ENTNUM = 0 (or blank) Generate data using the RWFRNT command before retrieving these
items:

*GET, Par, RUNST, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Estimated maximum wavefront.MAXRWFRNT

Estimated R.M.S. wavefront.RMS"

Estimated mean wavefront.MEAN"

Postprocessing Items

*GET Postprocessing Entity Items

• *GET Postprocessing Items, Entity = ACTIVE

• *GET Postprocessing Items, Entity = ELEM

• *GET Postprocessing Items, Entity = ETAB

• *GET Postprocessing Items, Entity = FSUM

• *GET Postprocessing Items, Entity = INTSRF

• *GET Postprocessing Items, Entity = KCALC

• *GET Postprocessing Items, Entity = NODE

• *GET Postprocessing Items, Entity = PATH

• *GET Postprocessing Items, Entity = PLNSOL

• *GET Postprocessing Items, Entity = PRERR

• *GET Postprocessing Items, Entity = RAD

• *GET Postprocessing Items, Entity = SECR

• *GET Postprocessing Items, Entity = SECTION

• *GET Postprocessing Items, Entity = SORT

• *GET Postprocessing Items, Entity = SSUM

• *GET Postprocessing Items, Entity = TREF

*GET

6–43APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• *GET Postprocessing Items, Entity = VARI

*GET Postprocessing Items, Entity = ACTIVE

Entity = ACTIVE, ENTNUM = 0 (or blank)

*GET,Par, ACTIVE, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Current load step number.LSTPSET

Current substep number.SBST"

Time associated with current results in the database.TIME"

Frequency (for ANTYPE=MODAL, HARMIC, SPECTR; load factor for AN-
TYPE=BUCKLE).

FREQ"

If Item2 is blank, number of data sets on result file.

If Item2 = FIRST, IT2NUM = Loadstep, get set number of first iteration of Load-
step
If Item2 = LAST, IT2NUM = Loadstep, get set number of last iteration of Loadstep

NSET"

Active results coordinate system.RSYS

*GET Postprocessing Items, Entity = ELEM

Entity = ELEM, ENTNUM = N (element number)

*GET,Par, ELEM, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Structural error energy.SERR

Absolute value of the maximum variation of any nodal stress component.SDSG

Thermal error energy.TERR

Absolute value of the maximum variation of any nodal thermal gradient com-
ponent.

TDSG

"Stiffness" energy or thermal heat dissipation. Same as TENE.SENE

Thermal heat dissipation or "stiffness" energy. Same as SENE.TENE

Kinetic energy.KENE

Element Joule heat generation (coupled-field calculation).JHEAT

Source current density (coupled-field calculation) in the global Cartesian co-
ordinate system.

X, Y, ZJS

Average element magnetic field intensity from current sources.X, Y, ZHS

Element volume, as calculated during solution.VOLU

Value of element table item Lab for element N (see ETABLE command).LabETAB

Value of element summable miscellaneous data at sequence number Snum (as
used on ETABLE command).

SnumSMISC

Value of element non-summable miscellaneous data at sequence number Snum
(as used on ETABLE command).

SnumNMISC

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–44

*GET

*GET Postprocessing Items, Entity = ETAB

Entity = ETAB, ENTNUM = N (column number)

*GET,Par, ETAB, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Label for column N of the element table [ETABLE]. Returns a character paramet-
er.

LAB

Value in ETABLE column N for element number E.EELEM

Entity = ETAB, ENTNUM = 0 (or blank)

*GET,Par,ETAB,0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Total number of ETABLE columns.MAXNCOL

Largest element number defined.MAXNLENG

*GET Postprocessing Items, Entity = FSUM

Entity = FSUM, ENTNUM = 0 (or blank)

*GET, Par, FSUM, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Value of item Lab from last FSUM command. Valid labels are FX, FY, FZ, MX,
MY, MZ, FLOW, HEAT, FLUX, etc.

LabITEM

*GET Postprocessing Items, Entity = INTSRF

Entity = INTSRF, ENTNUM = 0 (or blank)

*GET, Par, INTSRF, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Value of item Lab from last INTSRF,PRES command. Valid labels are FX, FY, FZ,
MX, MY, and MZ.

LabPRES

Value of item Lab from last INTSRF,TAUW command. Valid labels are FX, FY,
FZ, MX, MY, and MZ.

LabTAUW

*GET Postprocessing Items, Entity = KCALC

Entity = KCALC, ENTNUM = 0 (or blank)

*GET, Par, KCALC, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Value of KI, KII, or KIII stress intensity factor from last KCALC command.1, 2, 3K

*GET

6–45APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*GET Postprocessing Items, Entity = NODE

Entity = NODE, ENTNUM = N (node number) for nodal degree of freedom results:

*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

X, Y, or Z structural displacement or vector sum. Alternative get functions: UX(N),
UY(N), UZ(N).

X, Y, Z, SUMU

X, Y, or Z structural rotation or vector sum. Alternative get functions: ROTX(N),
ROTY(N), ROTZ(N).

X, Y, Z, SUMROT

Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3) = 0 or
1, use TBOT, TE2, TE3, . . ., TTOP instead of TEMP. Alternative get functions:
TEMP(N), TBOT(N), TE2(N), etc.

TEMP

Pressure. Alternative get function: PRES(N).PRES

Electric potential. Alternative get function: VOLT(N).VOLT

Magnetic scalar potential. Alternative get function: MAG(N).MAG

X, Y, or Z fluid velocity or vector sum in a fluid analysis. X, Y, or Z nodal velocity
or vector sum in a structural transient analysis (LS-DYNA analysis or ANSYS
analysis with ANTYPE,TRANS). Alternative get functions: VX(N), VY(N), VZ(N).

X, Y, Z, SUMV

X, Y, or Z magnetic vector potential or vector sum in an electromagnetic ana-
lysis. X, Y, or Z nodal acceleration or vector sum in a structural transient analysis
(LS-DYNA analysis or ANSYS analysis with ANTYPE,TRANS). Alternative get
functions: AX(N), AY(N), AZ(N).

X, Y, Z, SUMA

Current.CURR

Electromotive force drop.EMF

Turbulent kinetic energy (FLOTRAN). Alternative get function: ENKE(N).ENKE

Turbulent energy dissipation (FLOTRAN). Alternative get function: ENDS(N).ENDS

Nodal reaction forces in the nodal coordinate system.FX, FY, FZ, MX,
MY, MZ

RF

Note: This command should be used very carefully when N stands for an internal node, since the nodal degree
of freedoms may have different physical meanings.

Entity = NODE, ENTNUM = N (node number) for element nodal results:

*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Component stress.X, Y, Z, XY, YZ,
XZ

S

Principal stress.1, 2, 3"

Stress intensity or equivalent stress.INT, EQV"

Maximum stress failure criterion.MAXF"

Tsai-Wu strength failure criterion.TWSI"

Inverse of Tsai-Wu strength ratio index failure criterion.TWSR"

Component total strain (EPEL + EPPL + EPCR).X, Y, Z, XY, YZ,
XZ,

EPTO

Principal total strain.1, 2, 3"

Total strain intensity or total equivalent strain.INT, EQV"

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–46

*GET

Entity = NODE, ENTNUM = N (node number) for element nodal results:

*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Component elastic strain.X, Y, Z, XY, YZ,
XZ

EPEL

Principal elastic strain.1, 2, 3"

Elastic strain intensity or elastic equivalent strain.INT, EQV"

Maximum strain failure criterion.MAXF"

Component plastic strain.X, Y, Z, XY, YZ,
XZ

EPPL

Principal plastic strain.1, 2, 3"

Plastic strain intensity or plastic equivalent strain.INT, EQV"

Component creep strain.X, Y, Z, XY, YZ,
XZ

EPCR

Principal creep strain.1, 2, 3"

Creep strain intensity or creep equivalent strain.INT, EQV"

Gasket component stress.X, XY, XZGKS

Gasket component total closure.X, XY, XZGKD

Gasket component total inelastic closure.X, XY, XZGKDI

Gasket component thermal closure.X, XY, XZGKTH

Component thermal strain.X, Y, Z, XY, YZ,
XZ

EPTH

Principal thermal strain.1, 2, 3"

Thermal strain intensity or thermal equivalent strain.INT, EQV"

Swelling strain.EPSW

Equivalent stress (from stress-strain curve).SEPLNL

Stress state ratio.SRAT"

Hydrostatic pressure.HPRES"

Accumulated equivalent plastic strain.EPEQ"

Plastic state variable or plastic work/volume.PSV"

Plastic work/volume.PLWK"

Component thermal gradient and sum.X, Y, Z, SUMTG

Component thermal flux and sum.X, Y, Z, SUMTF

Component pressure gradient and sum.X, Y, Z, SUMPG

Component electric field and sum.X, Y, Z, SUMEF

Component electric flux density and sum.X, Y, Z, SUMD

Component magnetic field intensity and sum.X, Y, Z, SUMH

Component magnetic flux density and sum.X, Y, Z, SUMB

Component magnetic force and sum.X, Y, Z, SUMFMAG

Component magnetic field intensity from current sources (in the global
Cartesian coordinate system).

X, Y, ZHS

Body temperatures (calculated from applied temperatures) as used in solution.TEMPBFE

*GET

6–47APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = NODE, ENTNUM = N (node number) for FLOTRAN results:

*GET, Par, NODE, N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Total temperature.TTOT

Heat flux.HFLU

Heat transfer (film) coefficient.HFLM

Fluid laminar conductivity.COND

Pressure coefficient.PCOE

Total (stagnation) pressure.PTOT

Mach number.MACH

Stream function (2-D applications only).STRM

Fluid density.DENS

Fluid laminar viscosity.VISC

Fluid effective viscosity.EVIS

Turbulent viscosity coefficient.CMUV

Fluid effective conductivity.ECON

Y+, a turbulent law of the wall parameter.YPLU

Shear stress at the wall.TAUW

*GET Postprocessing Items, Entity = PATH

Entity = PATH, ENTNUM = 0 (or blank)

*GET, Par, PATH, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Maximum value of path item Lab from last path operation. Valid labels are the
user-defined labels on the PDEF or PCALC command.

LabMAX

Returns the maximum path number defined.MAXPATH

Minimum value of path item Lab from last path operation. Valid labels are the
user-defined labels on the PDEF or PCALC command.

LabMIN

Last value of path item Lab from last path operation. Valid labels are the user-
defined labels on the PDEF or PCALC command.

LabLAST

Value providing the number of nodes defining the path referenced in the last
path operation.

NODE

Item2 = PATHPT, IT2NUM = n The value of Lab at the nth data point from the
last path operation.

LabITEM

Item2 = X,Y,Z, or CSYS. Returns information about the nth point on the current
path.

nPOINT

The number of path data points (the length of the data table) from the last
path operation.

NVAL

Item2 = NAME. Returns the name of the nth data set on the current path.nSET

Returns the number of paths defined.NUMPATH

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–48

*GET

Entity = PATH, ENTNUM = n (path number)

DescriptionIT1NUMItem1

Returns the name of the nth path.NAME

Entity = PATH, ENTNUM = 0 (or blank)

*GET,Par,KCALC,0,...

Value of KI, KII, or KIII stress intensity factor from last KCALC command.1, 2, 3K

*GET Postprocessing Items, Entity = PLNSOL

Entity = PLNSOL, ENTNUM = 0 (or blank)

*GET, Par, PLNSOL, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Maximum value of item in last contour display [PLNSOL].MAX

Minimum value of item in last contour display [PLNSOL].MIN

Maximum bound value of item in last contour display [PLNSOL].BMAX

Minimum bound value of item in last contour display [PLNSOL].BMIN

*GET Postprocessing Items, Entity = PRERR

Entity = PRERR, ENTNUM = 0 (or blank)

*GET, Par, PRERR, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Structural percent error in energy norm [PRERR].SEPC

Thermal percent error in energy norm [PRERR].TEPC

Structural error energy summation [PRERR].SERSM

Thermal error energy summation [PRERR].TERSM

Structural energy summation [PRERR].SENSM

Thermal energy summation [PRERR].TENSM

*GET Postprocessing Items, Entity = RAD

Entity = RAD, ENTNUM = 0 (or blank)

*GET, Par, RAD, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Value of the average view factor computed from the previous VFQUERY com-
mand.

VFAVG

Entity = RAD, ENTNUM = n (enclosure number)

*GET, Par, RAD, n

DescriptionIT1NUMItem1

Value of the net heat rate lost by an enclosure.NETHF

*GET

6–49APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*GET Postprocessing Items, Entity = SECR

Entity = SECR, ENTNUM = n (element number) If the element number (n) is blank, or ALL, find the max or
min of all the elements.

*GET, Par, SECR, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Item 2 = MAX, or Item2 =MIN Return highest or lowest component total stress.X, XZ, XYS

Item 2 = MAX, or Item2 =MIN Return the highest or lowest component total
strain

X, XZ, XYEPTO

Item 2 = MAX, or Item2 =MIN Return the highest or lowest component thermal
strain

X, XZ, XYEPTH

Item 2 = MAX, or Item2 =MIN Return the highest or lowest component plastic
strain

X, XZ, XYEPPL

Item 2 = MAX, or Item2 =MIN Return the highest or lowest nonlinear item plastic
work

X, XZ, XYPLWK

Item 2 = MAX, or Item2 =MIN Return the highest or lowest component creep
strain

X, XZ, XYEPCR

*GET Postprocessing Items, Entity = SECTION

Entity = SECTION,ENTNUM = component (listed below).

Generate data for section stress results, using PRSECT or PLSECT, before retrieving these items. Valid labels
for ENTNUM are MEMBRANE, BENDING, SUM (Membrane+Bending) , PEAK, and TOTAL. (The following items
are not stored in the database and the values returned reflect the last quantities generated by PRSECT or
PLSECT.) Only MEMBRANE, BENDING, and SUM data are available after a PLSECT command.

*GET, Par, SECTION, component, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Stress component at beginning of path.SX, SY, SZ, SXY,
SYZ, SXZ

INSIDE

Stress component at midpoint of path.SX, SY, SZ, SXY,
SYZ, SXZ

CENTER

Stress component at end of path.SX, SY, SZ, SXY,
SYZ, SXZ

OUTSIDE

*GET Postprocessing Items, Entity = SORT

Entity = SORT, ENTNUM = 0 (or blank)

*GET, Par, SORT, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Maximum value of last sorted item (NSORT or ESORT command).MAX

Minimum value of last sorted item (NSORT or ESORT command).MIN

Node/Element number where maximum value occurs.IMAX

Node/Element number where minimum value occurs.IMIN

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–50

*GET

*GET Postprocessing Items, Entity = SSUM

Entity = SSUM, ENTNUM = 0 (or blank)

*GET, Par, SSUM, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Value of item Lab from last SSUM command. Valid labels are the user-defined
labels on the ETABLE command.

LabITEM

*GET Postprocessing Items, Entity = TREF

Entity = TREF, ENTNUM = 0 (or blank)

*GET, Par, TREF, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Stored energy.ENER

Trefftz element number.ENUM

First (or minimum) constraint equation number associated with the Trefftz
domain.

CEMIN

Last (or maximum) constraint equation number associated with the Trefftz
domain.

CEMAX

Number of Trefftz DOFs.NTZN

Number of nodes on exterior surface.NSFN

Number of faces on exterior element.NSFE

*GET Postprocessing Items, Entity = VARI

Entity = VARI, ENTNUM = N (variable number after POST26 data storage) (for complex values, only the real
portion is returned)

*GET,Par, VARI,N, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Maximum extreme valueVMAXEXTREM

Time corresponding to VMAX.TMAX"

Minimum extreme value (after POST26 data storage).VMIN"

Time corresponding to VMIN.TMIN"

Last value (after POST26 data storage).VLAST"

Time corresponding to VLAST.TLAST"

CovarianceCVAR"

Real value of variable N at time=t.tRTIME

Imaginary value of variable N at time=t.tITIME

Real value of variable N at location Snum.SnumRSET

Imaginary value of variable N at location Snum.SnumISET

Entity = VARI, ENTNUM = 0 (or blank) (after POST26 data storage)

*GET,Par,VARI,0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number of data sets stored (after POST26 data storage).NSETS

*GET

6–51APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Optimization and Probabilistic Design

*GET Optimization and Probabilistic Design Entity Items

• *GET Optimization and Probabilistic Design Items, Entity = OPT

• *GET Optimization and Probabilistic Design Items, Entity = TOPO

• *GET Optimization and Probabilistic Design Items, Entity = PDS (pre)

• *GET Optimization and Probabilistic Design Items, Entity = PDS (post)

*GET Optimization and Probabilistic Design Items, Entity = OPT

Entity = OPT, ENTNUM = 0 (or blank)

*GET, Par, OPT, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Total number of analysis loops that have been executed.TOTAL

Total number of iterations for the optimization method or tool (i.e., per OPEXE
command).

ITER

Feasibility of design set N: 0=infeasible, 1=feasible.NFEAS

Termination condition. For first order [OPTYPE,FIRST] or subproblem approx-
imation [OPTYPE,SUBP] optimization: -1=not converged or not finished (still
looping), 0=converged, 1=not converged due to too many sequential infeasible
designs; 2=not converged due to too many iterations. For all other optimization
methods: -1=not finished (still looping), 3=optimization complete.

TERM

Best design set. If design is feasible, best design is the one with the lowest value
of the objective function. If infeasible, the best design is the one that is closest
to being feasible.

BEST

*GET Optimization and Probabilistic Design Items, Entity = TOPO

Entity = TOPO, ENTNUM = 0 (or blank)

*GET, Par, TOPO, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Status of topological optimization: 0=off, 1=onACT

Total number of elements used for topological optimization.TOELEM

Number of load cases specified in the TOCOMP command.LOADS

Current number of iterations performed. The iteration counter retrieved is al-
ways one greater than the actual iterations performed because the densities
are also one iteration ahead (more current than those you are seeing).

ITER

Maximum number of topological optimization iterations allowed.MXIT

Termination/convergence indicator: 0=not converged, 1=converged.CONV

Dimensionality of the topological optimization problem: 0=2D, 1=3D, 2=Shell.DIM

Axisymmetric option within 2-D topological optimization: 0=off, 1=on.KAXI

Power of power law within axisymmetric option.POWP

Total number of eigenvalues considered in topological optimization.NEV

Termination/convergence accuracy.TOAC

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–52

*GET

Entity = TOPO, ENTNUM = 0 (or blank)

*GET, Par, TOPO, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Lower bound for element densities.LOWD

Total number of constraints defined for topological optimization problem.NTOC

Solution approach active: 0=OC, 1=SCP.SFLAG

Compliance value for current iteration.COMP

Porous volume value for current iteration.PORV

Entity = TOPO, ENTNUM = n

*GET, Par, TOPO, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Element density used for topological optimization: low value (near 0)=material
to be removed, high value (near 1)=material to keep.n = element number

DENS

Individual frequencies for current topological optimization iteration. n =fre-
quency ID

FRQI

Constraint bounds for topological optimization: FLAG=1 - Lower bound. FLAG=2
- Upper bound. n = constraint ID

FLAGTCBO

Indicate whether bound should be treated as percentage of initial design or
as an absolute value: 0=percentage, 1=absolute.n = constraint ID

TCBF

Value of topological objective for specified iteration.n = iteration counterTOHO

Value of topological constraint CID for specified iteration.n = iteration counterCIDTOHC

*GET Optimization and Probabilistic Design Items, Entity = PDS (pre)

Entity = PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, IT1NUM, Item2, IT2NUM.

DescriptionIT1NUMItem1

Item2 = START; IT2NUM = N; Name of the analysis file containing the determ-
inistic model. A character parameter of up to 8 characters, starting at position
N, is returned. Use *DIM and *DO to get all 32 characters.

ANLN

Extension of the analysis file containing the deterministic model. A character
parameter of up to 8 characters is returned.

ANLX

Item2 = START; IT2NUM = N; Name of the directory of the analysis file containing
the deterministic model. A character parameter of up to 8 characters, starting
at position N, is returned. Use *DIM and *DO to get all 64 characters.

ANLD

Current setting for Autostop option (0 = disabled, 1 = enabled).1ASTP

Current Autostop mean value accuracy.2“

Current Autostop standard deviation accuracy.3“

Current Autostop convergence checking frequency.4“

Item2 = 0 or blank; IT2NUM = j; Correlation coefficient specified by the user
between the i-th and the j-th random input variable. If no correlation has been
specified between these two random variables a value of 0.0 is returned.

iCORR

Name of the current analysis method as specified in the PDMETH command
(MCS or RSM). A character parameter of up to 8 characters is returned.

METH

*GET

6–53APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, IT1NUM, Item2, IT2NUM.

DescriptionIT1NUMItem1

Number of simulation loops requested, as specified in the PDMETH and
PDDMCS, PDLHS, PDDOEL, or PDUSER commands.

NSIM

Current total number of defined random output parameters.NTRP

Current total number of defined random input variablesNTRV

First distribution parameter of the i-th defined random input variable.iPAR1

Second distribution parameter of the i-th defined random input variable.iPAR2

Third distribution parameter of the i-th defined random input variable.iPAR3

Fourth distribution parameter of the i-th defined random input variable.iPAR4

Item2 = START; IT2NUM = N; Name of the i-th defined random output paramet-
er. A character parameter of up to 8 characters, starting at position N, is returned.
Use *DIM and *DO to get all characters.

iRNAM

Name of the current sampling technique as specified in the PDMETH command
(LHS, DIR, USER for MCS, or CCD, BBM, USER for RSM). A character parameter
of up to 8 characters is returned.

SAMP

Label of the distribution type of the i-th defined random input variable (BETA,
EXPO, ..., WEIB). A character parameter of up to 8 characters is returned.

iVDIS

Item2 = START; IT2NUM = N; Name of the i-th defined random input variable.
A character parameter of up to 8 characters, starting at position N, is returned.
Use *DIM and *DO to get all characters.

iVNAM

Item2 = DEFA; IT2NUM = j; Default value for the probabilities of the j-th design-
of-experiment level for a central composite design as used in the by the
PDDOELcommand.

CCDL

Item2 = VTYP; IT2NUM=0 (or blank); Type of the level values of the design-of-
experiment for a central composite design of the i-th defined random input
variable as specified by the PDDOELcommand (PROB, PHYS). A character
parameter of up to 8 characters is returned.

iCCDL

Item2 = LOPT; IT2NUM=0 (or blank); Type of the level definition of the design-
of-experiment for a central composite design of the i-th defined random input
variable as specified by the PDDOELcommand (BND, ALL). A character para-
meter of up to 8 characters is returned.

iCCDL

Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a central composite design of the i-th defined random input variable has
been defined with the PDDOELcommand. (0=NO, 1=YES).

iCCDL

Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for
a central composite design of the i-th defined random input variable as specified
by the PDDOELcommand. If the PDDOELcommand has not been used for the
i-th defined random input variable or if the user has not specified the j-th design-
of-experiment level, then the default probability level will be returned.

iCCDL

Item2 = DEFA; IT2NUM = j; Default value for the probabilities of the j-th design-
of-experiment level for a Box-Behnken Matrix design as used in the by the
PDDOELcommand.

BBML

Item2 = VTYP; IT2NUM=0 (or blank); Type of the level values of the design-of-
experiment level for a Box-Behnken Matrix design of the i-th defined random
input variable as specified by the PDDOELcommand. (PROB, PHYS). A character
parameter of up to 8 characters is returned.

iBBML

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–54

*GET

Entity = PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, IT1NUM, Item2, IT2NUM.

DescriptionIT1NUMItem1

Item2 = LOPT; IT2NUM=0 (or blank); Type of the level definition of the design-
of-experiment level for a Box-Behnken Matrix design of the i-th defined random
input variable as specified by the PDDOELcommand (BND, ALL). A character
parameter of up to 8 characters is returned.

iBBML

Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a Box-Behnken Matrix design of the i-th defined random input variable has
been defined with the PDDOELcommand. (0=NO, 1=YES).

iBBML

Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for
a Box-Behnken Matrix design of the i-th defined random input variable as
specified by the PDDOELcommand. If the PDDOELcommand has not been
used for the i-th defined random input variable or if the user has not specified
the j-th design-of-experiment level, then the default probability level will be
returned.

iBBML

*GET Optimization and Probabilistic Design Items, Entity = PDS (post)

Entity = PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Number of response surface sets that are currently available.NRSS

Number of probabilistic solution sets that are currently available. This coincides
with the number of probabilistic analyses that are currently done.

NSOL

Entity = PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 ≤ n ≤ NSOL) and some apply only to response surface sets (i.e., where NSOL+1
≤ n ≤ NSOL+NRSS).

*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Name of the analysis method used in the n-th solution set (MCS, RSM). A char-
acter parameter of up to 8 characters is returned. This applies only to solution
sets (i.e., "n" ranges from 1 to NSOL).

METH

Number of simulation samples that are available for postprocessing in the n-th

result set. If the n-th result set is a solution set (i.e., 1 ≤ n ≤ NSOL) then this is
equal to the number of successful (no error occurred) finite element analysis
loops regardless of the probabilistic method used for the solution set. If n points
to a response surface set, then this is equal to the number of simulation samples
that were performed on the response surfaces included in this response surface
set.

NSIM

Name of the sampling technique used in the n-th solution set (LHS, DIR, USER
for MCS or CCD, BBM, USER for RSM). A character parameter of up to 8 characters
is returned. This applies only to solution sets (i.e., n ranges from 1 to NSOL).

SAMP

*GET

6–55APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 ≤ n ≤ NSOL) and some apply only to response surface sets (i.e., where NSOL+1
≤ n ≤ NSOL+NRSS).

*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Item2 = START; IT2NUM = N; Name of the n-th defined result set. A character
parameter of up to 8 characters, starting at position N, is returned. Use *DIM
and *DO to get all characters.

RLAB

Item2 = RV; IT2NUM=j; The mean value of the j-th defined random input variable
in the n-th result set.

MEAN

Item2 = RP; IT2NUM=j; The mean value of the j-th defined random output
parameter in the n-th result set.

MEAN

Item2 = RV; IT2NUM=j; The standard deviation of the j-th defined random input
variable in the n-th result set.

STDV

Item2 = RP; IT2NUM=j; The standard deviation of the j-th defined random output
parameter in the n-th result set.

STDV

Item2 = RV; IT2NUM=j; The coefficient of kurtosis of the j-th defined random
input variable in the n-th result set.

KURT

Item2 = RP; IT2NUM=j; The coefficient of kurtosis of the j-th defined random
output parameter in the n-th result set.

KURT

Item2 = RV; IT2NUM=j; The coefficient of skewness of the j-th defined random
input variable in the n-th result set.

SKEW

Item2 = RP; IT2NUM=j; The coefficient of skewness of the j-th defined random
output parameter in the n-th result set.

SKEW

Item2 = RV; IT2NUM=j; The minimum sampled value of the j-th defined random
input variable in the n-th result set.

MIN

Item2 = RP; IT2NUM=j; The minimum sampled value of the j-th defined random
output parameter in the n-th result set.

MIN

Item2 = RV; IT2NUM=j; The minimum sampled value of the j-th defined random
input variable in the n-th result set.

MAX

Item2 = RP; IT2NUM=j; The minimum sampled value of the j-th defined random
output parameter in the n-th result set.

MAX

Item2 = VTYP; Type of the level values of the design-of-experiment for a central
composite design of the i-th defined random input variable that has been used
during the execution of the n-th solution set (PROB, PHYS). A character para-
meter of up to 8 characters is returned. This applies only to solution sets (i.e.,
n ranges from 1 to NSOL).

iCCDL

Item2 = LOPT; Type of the level definition of the design-of-experiment for a
central composite design of the i-th defined random input variable that has
been used during the execution of the n-th solution set (BND, ALL). A character
parameter of up to 8 characters is returned. This applies only to solution sets
(i.e., n ranges from 1 to NSOL).

iCCDL

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–56

*GET

Entity = PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 ≤ n ≤ NSOL) and some apply only to response surface sets (i.e., where NSOL+1
≤ n ≤ NSOL+NRSS).

*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a central composite design of the i-th defined random input variable has
been specified for the n-th solution set. (0=NO, 1=YES). This applies only to
solution sets (i.e., n ranges from 1 to NSOL).

iCCDL

Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for
a central composite design of the i-th defined random input variable that has
been used during the execution of the n-th solution set. This applies only to
solution sets (i.e., n ranges from 1 to NSOL).

iCCDL

Item2 = VTYP; Type of the level values of the design-of-experiment level for a
Box-Behnken Matrix design of the i-th defined random input variable that has
been used during the execution of the n-th solution set. (PROB, PHYS). A char-
acter parameter of up to 8 characters is returned. This applies only to solution
sets (i.e., n ranges from 1 to NSOL).

iBBML

Item2 = LOPT; Type of the level definition of the design-of-experiment level for
a Box-Behnken Matrix design of the i-th defined random input variable that
has been used during the execution of the n-th solution set (BND, ALL). A
character parameter of up to 8 characters is returned. This applies only to
solution sets (i.e., n ranges from 1 to NSOL).

iBBML

Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a Box-Behnken Matrix design of the i-th defined random input variable
specified for the n-th solution set. (0=NO, 1=YES).

iBBML

Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for
a Box-Behnken Matrix design of the i-th defined random input variable that
has been used during the execution of the n-th solution set. This applies only
to solution sets (i.e., n ranges from 1 to NSOL).

iBBML

Item2 = XSOL; Index of the solution set the response surface set identified by
the n-th result set is associated with. This applies only to response surface sets
(i.e., n ranges from NSOL+1 to NSOL+NRSS).

RSST

Item2 = NFRP; Number of fitted random output parameters in the response
surface set identified by the n-th result set is associated with. This applies only
to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

RSST

Item2 = XFRP; Index of the random output parameter that has been fitted with
the RSFITcommand to fit the i-th response surface in the response surface set
identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see
Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n
ranges from NSOL+1 to NSOL+NRSS).

iRSUR

Item2 = RMOD; Label for the response surface model that has been used in the
RSFITcommand to fit the i-th response surface in the response surface set
identified by the n-th result set. IT1NUM=i ranges from 1 to NFRP (see
Item1=RSST, Item2=NFRP). A character parameter of up to 8 characters is re-
turned. This applies only to response surface sets (i.e., n ranges from NSOL+1
to NSOL+NRSS).

iRSUR

*GET

6–57APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 ≤ n ≤ NSOL) and some apply only to response surface sets (i.e., where NSOL+1
≤ n ≤ NSOL+NRSS).

*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Item2 = YTRT; Label of the type of transformation that has been used in the
RSFITcommand to fit the random output parameter of i-th response surface
in the response surface set identified by the n-th result set. IT1NUM=i ranges
from 1 to NFRP (see Item1=RSST, Item2=NFRP). A character parameter of up
to 8 characters is returned. This applies only to response surface sets (i.e., n
ranges from NSOL+1 to NSOL+NRSS).

iRSUR

Item2 = YTRV; Transformation value of the transformation that has been used
in the RSFITcommand to fit the random output parameter of i-th response
surface in the response surface set identified by the n-th result set. IT1NUM=i
ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to re-
sponse surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

iRSUR

Item2 = FILT; Label of the filtering type of the regression terms that has been
used in the RSFITcommand to fit the random output parameter of i-th response
surface in the response surface set identified by the n-th result set. IT1NUM=i
ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). A character parameter
of up to 8 characters is returned. This applies only to response surface sets (i.e.,
n ranges from NSOL+1 to NSOL+NRSS).

iRSUR

Item2 = CONF; Confidence level value of the regression term filtering that has
been used in the RSFITcommand to fit the random output parameter of i-th
response surface in the response surface set identified by the n-th result set.
IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies
only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

iRSUR

Item2 = YBOX; Box-Cox transformation value “lambda” of the response surface
equation for the i-th fitted random output parameter in the n-th result set.
IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies
only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

iRSEQ

Item2 = NTRM; Number of regression terms of the response surface equation
for the i-th fitted random output parameter in the n-th result set. IT1NUM=i
ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to re-
sponse surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

iRSEQ

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–58

*GET

Entity = PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 ≤ n ≤ NSOL) and some apply only to response surface sets (i.e., where NSOL+1
≤ n ≤ NSOL+NRSS).

*GET,Par, PDS, n, Item1, IT1NUM, Item2, IT2NUM

DescriptionIT1NUMItem1

Item2 = TTYP; IT2NUM=j; Type of the j-th regression term of the response surface
equation for the i-th fitted random output parameter in the n-th result set.
IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). IT2NUM=j
ranges from 1 to NTRM (see Item1=RSEQ, Item2=NTRM). This applies only to
response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS). Possible return
values are:

1 = term is a constant (this term does not involve any random input variables)

2 = term is a linear term (this term involves only one random input variable)

3 = term is a purely quadratic term involving only one random input variable
(this term involves only one random input variable)

4 = term is a mixed quadratic term involving two random input variables (this
term involves two random input variables)

iRSEQ

Item2 = XRV1; IT2NUM=j; Index of the first random input variable involved in
the j-th regression term of the response surface equation for the i-th fitted
random output parameter in the n-th result set. IT1NUM=i ranges from 1 to
NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets
(i.e., n ranges from NSOL+1 to NSOL+NRSS). An error appears if the term does
not involve a random input variable, i.e. if the term is a constant.

iRSEQ

Item2 = XRV2; IT2NUM=j; Index of the second random input variable involved
in the j-th regression term of the response surface equation for the i-th fitted
random output parameter in the n-th result set. IT1NUM=i ranges from 1 to
NFRP (see Item1=RSST, Item2=NFRP). This applies only to response surface sets
(i.e., n ranges from NSOL+1 to NSOL+NRSS). An error appears if the term does
not involve a second random input variable, i.e. if the term is not a mixed
quadratic term.

iRSEQ

Item2 = COEF; IT2NUM=j; Regression coefficient of the j-th regression term of
the response surface equation for the i-th fitted random output parameter in
the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST,
Item2=NFRP). This applies only to response surface sets (i.e., n ranges from
NSOL+1 to NSOL+NRSS).

iRSEQ

Item2 = SLOP; IT2NUM=j; Scaling slope of the j-th random input variable of the
response surface equation for the i-th fitted random output parameter in the
n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP).
This applies only to response surface sets (i.e., n ranges from NSOL+1 to
NSOL+NRSS).

iRSEQ

Item2 = ICPT; IT2NUM=j; Scaling intercept of the j-th random input variable of
the response surface equation for the i-th fitted random output parameter in
the n-th result set. IT1NUM=i ranges from 1 to NFRP (see Item1=RSST,
Item2=NFRP). This applies only to response surface sets (i.e., n ranges from
NSOL+1 to NSOL+NRSS).

iRSEQ

*GET

6–59APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Prob Design>Prob Method>Response Surface
Main Menu>Solution>Define Loads>Delete>Structural>Section
Utility Menu>Parameters>Get Scalar Data

*GO, Base
Causes a specified line on the input file to be read next.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

Base

"Go to" action:

:label --
A user-defined label (beginning with a colon (:), 8 characters maximum). The command reader will skip
(and wrap to the beginning of the file, if necessary) to the first line that begins with the matching :label.

Caution: This label option may not be mixed with do-loop or if-then-else constructs.

STOP --
This action will cause an exit from the ANSYS program at this line.

Command Default

Read lines sequentially.

Notes

Causes the next read to be from a specified line on the input file. Lines may be skipped or reread. The *GO
command will not be executed unless it is part of a macro, user file (processed by *USE), an alternate input file
(processed by /INPUT), or unless it is used in a batch-mode input stream. Jumping into, out of, or within a do-
loop or an if-then-else construct to a :label line is not allowed.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–60

*GO

*IF, VAL1, Oper1, VAL2, Base1, VAL3, Oper2, VAL4, Base2
Conditionally causes commands to be read.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

VAL1

First numerical value (or parameter which evaluates to a numerical value) in the conditional comparison
operation. VAL1, VAL2, VAL3 and VAL4 can also be character strings (enclosed in quotes) or parameters for
Oper = EQ and NE only.

Oper1

Operation label. A tolerance of 1.0E-10 is used for comparisons between real numbers:

EQ --
Equal (for VAL1 = VAL2).

NE --
Not equal (for VAL1 ≠ VAL2).

LT --
Less than (for VAL1 < VAL2).

GT --
Greater than (for VAL1 > VAL2).

LE --

Less than or equal (for VAL1 ≤ VAL2).

GE --

Greater than or equal (for VAL1 ≥ VAL2).

ABLT --
Absolute values of VAL1 and VAL2 before < operation.

ABGT --
Absolute values of VAL1 and VAL2 before > operation.

VAL2

Second numerical value (or parameter which evaluates to a numerical value) in the conditional comparison
operation.

Base1

Action based on the logical expression (Oper1) being true. If false, continue reading at the next line. This is
conditional, excepting the IF-THEN-ELSE constructs described below; any of the following constructs (through
Base1 = THEN) cause all subsequent fields to be ignored:

:label --
A user-defined label (beginning with a colon (:), 8 characters maximum). The command reader will skip
(and wrap to the beginning of the file, if necessary) to the first line that begins with the matching :label.

Caution: This label option may not be mixed with do-loop or if-then-else constructs.

STOP --
This action will cause an exit from the ANSYS program at this line, unless running in interactive mode.
In interactive mode, the program will not stop.

*IF

6–61APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

EXIT --
Exit the current do-loop [*EXIT].

CYCLE --
Skip to the end of the current do-loop [*CYCLE].

THEN --
Make this *IF an if-then-else construct (see below).

The following optional values determine the connection between the two logical clauses Oper1 and Oper2

AND --
True if both clauses (Oper1 and Oper2) are true.

OR --
True if either clause is true.

XOR --
True if either (but not both) clause is true.

VAL3
Third numerical value (or parameter which evaluates to a numerical value).

Oper2
Operation label. This will have the same labels as Oper1, except it uses Val3 and Val4.

VAL4
Fourth Numerical value (or parameter value which evaluates to a numerical value).

Base2

Action based on the logical expression (Oper1 and Oper2) being true. They will be the same values as Base1,
except as noted.

Command Default

Read commands sequentially.

Notes

Conditionally causes commands to be read from a specific block or at a specific location. Twenty levels of nested
*IF blocks are allowed. Jumping to a :label line is not allowed with keyboard entry. Jumping into, out of, or
within a do-loop or an if-then-else construct to a :label line is not allowed.

The following is an example of an if-then-else construct:

*IF,VAL1,Oper,VAL2,THEN

*ELSEIF,VAL1,Oper,VAL2

*ELSEIF,VAL1,Oper,VAL2

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–62

*IF

*ELSE

*ENDIF

where "----" represents a block of any number of commands. Any number of *ELSEIF clauses (or none) may be
included (in the location shown). One *ELSE clause (at most) may be included (in the location shown). The *IF
command is executed by evaluating its logical expression. If it is true, the block of commands following it is ex-
ecuted. The construct is considered to be complete and the command following the *ENDIF is executed next.
If the logical expression is false, the next *ELSEIF command (if any) following the block is executed. The execution
logic is the same as for *IF. The effect is that the logical expressions in the *IF and the *ELSEIF commands are
sequentially tested until one is found to be true. Then the block of commands immediately following the expression
is executed, which completes the execution of the if-then-else construct. If all *IF and *ELSEIF expressions are
false, the block following the *ELSE command is executed, if there is one. Only one block of commands (at most)
is executed within the if-then-else construct. If a batch input stream hits an end-of-file during a false *IF condition,
the ANSYS run will not terminate normally. You will need to terminate it externally (use either the UNIX “kill”
function or the Windows task manager). The *IF, *ELSEIF , *ELSE, and *ENDIF commands for each if-then-else
construct must all be read from the same file (or keyboard).

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Solution>Define Loads>Delete>Structural>Section

/INQUIRE, StrArray, FUNC
Returns system information to a parameter.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

StrArray

Name of the "string array" parameter that will hold the returned values. String array parameters are similar
to character arrays, but each array element can be as long as 128 characters. If the string parameter does not
exist, it will be created.

FUNC

Specifies the type of system information returned:

LOGIN --
Returns the pathname of the login directory on UNIX systems or the pathname of the default directory
(including drive letter) on Windows systems.

DOCU --
Returns the pathname of the ANSYS docu directory.

APDL --
Returns the pathname of the ANSYS APDL directory.

PROG --
Returns the pathname of the ANSYS executable directory.

/INQUIRE

6–63APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

AUTH --
Returns the pathname of the directory in which the license file resides.

USER --
Returns the name of the user currently logged-in.

DIRECTORY --
Returns the pathname of the current directory.

JOBNAME --
Returns the current Jobname. The value of Jobname can be up to 250 characters in length.

Returning the Value of an Environment Variable to a Parameter

If FUNC=ENV, the command format is /INQUIRE,StrArray,ENV,ENVNAME,Substring. In this instance, ENV specifies
that the command should return the value of an environment variable. The following defines the remaining
fields:

ENVNAME

Specifies the name of the environment variable.

Substring

If Substring = 1, the first substring (up to the first colon (:)) is returned. If Substring = 2, the second substring
is returned, etc. For Windows platforms, the separating character is semicolon (;). If this argument is either
blank or 0, the entire value of the environment variable is returned.

Returning the Value of a Title to a Parameter

If FUNC = TITLE, the command format is /INQUIRE,StrArray,TITLE,Title_num. In this context, the value of
Title_num can be blank or 1 through 5. If the value is 1 or blank, the title is returned. If the value is 2 through
5, a corresponding subtitle is returned (2 denoting the first subtitle, and so on).

Returning Information About a File to a Parameter

The /INQUIRE command can also return information about specified files within the file system. For these cap-
abilities, the format is /INQUIRE,Parameter,FUNC,Fname, Ext, --. The following defines the fields:

Parameter

Name of the parameter that will hold the returned values.

FUNC

Specifies the type of file information returned:

EXIST --
Returns a 1 if the specified file exists, and 0 if it does not.

DATE --
Returns the date stamp of the specified file in the format yyyymmdd.hhmmss.

SIZE --
Returns the size of the specified file in MB.

WRITE --
Returns the status of the write attribute. A 0 denotes no write permission while a 1 denotes write permis-
sion.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–64

/INQUIRE

READ --
Returns the status of the read attribute. A 0 denotes no read permission while a 1 denotes read permission.

EXEC --
Returns the status of the execute attribute (this has meaning only in UNIX). A 0 denotes no execute per-
mission while a 1 denotes execute permission.

LINES --
Returns the number of lines in an ASCII file.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).

--

Unused field

Notes

The /INQUIRE command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

/MAIL, --, Address, Fname, Ext
Mails file to the specifed address.

APDL: Macro Files

MP ME ST DY <> PR EM EH FL PP ED

--

Unused field.

Address

Email address (up to 64 characters) of the intended recipient of the file.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).

Notes

Issue the /MAIL command to alert someone when a long-running job has completed, as shown in this example:

 ...
 SOLVE
 /MAIL,,yourname@yourdomain.com,jobdone,txt

/MAIL

6–65APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Menu Paths

This command cannot be accessed from a menu.

*MFOURI, Oper, COEFF, MODE, ISYM, THETA, CURVE
Calculates the coefficients for, or evaluates, a Fourier series.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

Oper

Type of Fourier operation:

FIT --
Calculate Fourier coefficients COEFF from MODE, ISYM, THETA, and CURVE.

EVAL --
Evaluate the Fourier curve CURVE from COEFF, MODE, ISYM andTHETA

COEFF

Name of the array parameter vector containing the Fourier coefficients (calculated if Oper = FIT, required as
input if Oper = EVAL). See *SET for name restrictions.

MODE

Name of the array parameter vector containing the mode numbers of the desired Fourier terms.

ISYM

Name of the array parameter vector containing the symmetry key for the corresponding Fourier terms. The
vector should contain keys for each term as follows:

0 or 1 --
Symmetric (cosine) term

-1 --
Antisymmetric (sine) term.

THETA, CURVE
Names of the array parameter vectors containing the theta vs. curve description, respectively. Theta values
should be input in degrees. If Oper = FIT, one curve value should be supplied with each theta value. If Oper
= EVAL, one curve value will be calculated for each theta value.

Notes

Calculates the coefficients of a Fourier series for a given curve, or evaluates the Fourier curve from the given (or
previously calculated) coefficients. The lengths of the COEFF, MODE, and ISYM vectors must be the same--typically
two times the number of modes desired, since two terms (sine and cosine) are generally required for each mode.
The lengths of the CURVE and THETA vectors should be the same or the smaller of the two will be used. There
should be a sufficient number of points to adequately define the curve--at least two times the number of coeffi-
cients. A starting array element number (1) must be defined for each array parameter vector. The vector specific-
ations *VLEN, *VCOL, *VABS, *VFACT, and *VCUM do not apply to this command. Array elements should not
be skipped with the *VMASK and the NINC value of the *VLEN specifications. The vector being calculated (COEFF
if Oper is FIT, or CURVE if Oper is EVAL) must exist as a dimensioned array [*DIM].

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–66

*MFOURI

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Fourier

*MFUN, ParR, Func, Par1
Copies or transposes an array parameter matrix.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting array parameter matrix. See *SET for name restrictions. The parameter must exist
as a dimensioned array [*DIM].

Func

Copy or transpose function:

COPY --
Par1 is copied to ParR

TRAN --
Par1 is transposed to ParR. Rows (m) and columns (n) of Par1 matrix are transposed to resulting ParR
matrix of shape (n,m).

Par1

Array parameter matrix input to the operation.

Notes

Operates on one input array parameter matrix and produces one output array parameter matrix according to:

ParR = f(Par1)

where the function (f) is either a copy or transpose, as described above.

Functions are based on the standard FORTRAN definitions where possible. ParR may be the same as Par1.
Starting array element numbers must be defined for each array parameter matrix. For example,
*MFUN,A(1,5),COPY,B(2,3) copies matrix B (starting at element (2,3)) to matrix A (starting at element (1,5)). The
diagonal corner elements for each submatrix must be defined: the upper left corner by the array starting element
(on this command), the lower right corner by the current values from the *VCOL and *VLEN commands. The
default values are the (1,1) element and the last element in the matrix. No operations progress across matrix
planes (in the 3rd dimension). Absolute values and scale factors may be applied to all parameters [*VABS,
*VFACT]. Results may be cumulative [*VCUM]. Array elements should not be skipped with the *VMASK and the
NINC value of the *VLEN specifications. The number of rows [*VLEN] applies to the Par1 array. See the *VOPER
command for details.

This command is valid in any processor.

*MFUN

6–67APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Functions

*MOPER, ParR, Par1, Oper, Par2, Par3, kDim, --, kOut
Performs matrix operations on array parameter matrices.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting array parameter matrix. See *SET for name restrictions. The parameter must exist
as a dimensioned array [*DIM].

Par1

First array parameter matrix input to the operation. For Oper = MAP, this is an N x 3 array of coordinate locations
at which to interpolate. ParR will then be an N(out) x M array containing the interpolated values.

Oper

Matrix operations:

INVERT --
(*MOPER,ParR,Par1,INVERT)

Square matrix invert: Inverts the n x n matrix in Par1 into ParR. The matrix must be well conditioned.

Warning: Non-independent or ill-conditioned equations can cause erroneous results.

MULT --
(*MOPER,ParR,Par1,MULT,Par2)

Matrix multiply: Multiplies Par1 by Par2. The number of rows of Par2 must equal the number of columns
of Par1 for the operation.

COVAR --
(*MOPER,ParR,Par1,COVAR,Par2)

Covariance: The measure of association between two columns of the input matrix (Par1). Par1, of size
m runs (rows) by n data (columns) is first processed to produce a row vector containing the mean of each
column which is transposed to a column vector (Par2) of n array elements. The Par1 and Par2 operation
then produces a resulting n x n matrix (ParR) of covariances (with the variances as the diagonal terms).

CORR --
(*MOPER,ParR,Par1,CORR,Par2)

Correlation: The correlation coefficient between two variables. The input matrix (Par1), of size m runs
(rows) by n data (columns), is first processed to produce a row vector containing the mean of each column
which is then transposed to a column vector (Par2) of n array elements. The Par1 and Par2 operation
then produces a resulting n x n matrix (ParR) of correlation coefficients (with a value of 1.0 for the diag-
onal terms).

SOLV --
(*MOPER,ParR,Par1,SOLV,Par2)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–68

*MOPER

Solution of simultaneous equations: Solves the set of n equations of n terms of the form an1x1 + an2x2 +
... + annxn = bn where Par1 contains the matrix of a-coefficients, Par2 the vector(s) of b-values, and ParR

the vector(s) of x-results. Par1 must be a square matrix. The equations must be linear, independent, and
well conditioned.

Warning: Non-independent or ill-conditioned equations can cause erroneous results.

SORT --
(*MOPER,ParR,Par1,SORT,Par2)

Matrix sort: Sorts matrix Par1 according to sort vectorPar2 and places the result in Par1. Rows of Par1
are moved to the corresponding positions indicated by the values of Par2. Par2 may be a column of
Par1 (in which case it will also be reordered). ParR is the vector of initial row positions. Sorting Par1
according to ParR should reproduce the initial ordering.

NNEAR --
(*MOPER,ParR,Par1,NNEAR,Toler)

Nearest Node: Quickly determine all the nodes within a specified tolerance of a given array.

ParR is a vector of the nearest selected nodes, or 0 if no nodes are nearer than Toler. Par1 is the n x 3
array of coordinate locations.

ENEAR --
(*MOPER,ParR,Par1,ENEAR,Toler)

Nearest Element: Quickly determine the elements whose centroids are within a specified tolerance of
the points in a given array.

ParR is a vector of the nearest selected elements, or 0 if no element centroids are nearer than Toler. Par1
is the n x 3 array of coordinate locations.

MAP --
(*MOPER,ParR,Par1,MAP,Par2,Par3,kDim,,kOut)

Maps the results from another program onto your ANSYS finite element model. For example, you can
map pressures from a CFD analysis onto your model for a structural analysis.

When you map results, the subsequent Par2 and Par3 arguments define your input values and their
locations, and the arguments that follow determine the search area and interpolation schemes (see below).

For Oper = MAP, output points are incorrect if they are not within the boundaries (area or volume) set
via the specified input points. Also, calculations for out-of-bound points require much more processing
time than do points that are within bounds.

When mapping results from one analysis to another (Oper = MAP), Par1 will be your final, N(out) x 3 array
of points. Par2will be an N(in) x M array that corresponds to the points inPar3. For each point in the
destination mesh, all possible triangles in the source mesh are searched to find the best triangle containing
each point. It then does a linear interpolation inside this triangle. You should carefully specify your inter-
polation method and search criteria in order to provide faster and more accurate results. Results mapping
(Oper = MAP) is available from the command line only.

*MOPER

6–69APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Par2

Second array parameter matrix input to the operation. For the COVAR and CORR operations, this parameter
must exist as a dimensioned array vector without specified values since its values (means) will be calculated
as part of the operations. For MAP, this will be an {N(in) x M} array of values to be interpolated, where N(in)
is the number of points to interpolate from, and M is the number of values at each point. For the ENEAR and
NNEAR operations, this parameter specifies the tolerance for the search.

Par3

Third array parameter, used for Oper = MAP. This is an N x 3 array of coordinate locations corresponding to
the values in Par2.

kDim

Interpolation criteria; used for Oper = MAP:

If kDim = 2 or 0, two dimensional interpolation is applied (interpolate on a surface).
If kDim = 3, three dimensional interpolation is applied (interpolate on a volume).

--

Unused field

kOut

Outside region results; used for Oper = MAP

If kOut = 0, use the value(s) of the nearest region point for points outside of the region.
If kOut = 1, set results extrapolated outside of the region to zero.

Notes

Each array starting element number must be defined for each array parameter matrix. For example, *MOP-
ER,A(2,3),B(1,4),MULT,C(1,5) multiplies submatrix B (starting at element (1,4)) by submatrix C (starting at element
(1,5)) and puts the result in matrix A (starting at element (2,3)).

The diagonal corner elements for each submatrix must be defined: the upper left corner by the array starting
element (on this command), the lower right corner by the current values from the *VCOL and *VLEN commands.
The default values are the (1,1) element and the last element in the matrix. No operations progress across matrix
planes (in the 3rd dimension). Absolute values and scale factors may be applied to all parameters [*VABS,
*VFACT]. Results may be cumulative [*VCUM]. Array elements should not be skipped with the *VMASK and the
NINC value of the *VLEN specifications. See the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Operations

*MSG, Lab, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8
Writes an output message via the ANSYS message subroutine.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Lab

Label for output and termination control:

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–70

*MSG

INFO --
Writes the message with no heading (default).

NOTE --
Writes the message with a "NOTE" heading.

WARN --
Writes the message with a "WARNING" heading. Also writes the message to the errors file, Jobname.ERR.

ERROR --
Writes the message with a "ERROR" heading and causes run termination (if batch) at earliest "clean exit"
point. Also writes the message to the errors file, Jobname.ERR.

FATAL --
Writes the message with a "FATAL ERROR" heading and causes run termination immediately. Also writes
the message to the errors file, Jobname.ERR.

UI --
Writes the message with a "NOTE" heading and displays it in the message dialog box. This option is most
useful in GUI mode.

VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8
Numeric or alphanumeric character values to be included in message. Values may be the results of parameter
evaluations. All numeric values are assumed to be double precision. The FORTRAN nearest integer (NINT)
function is used to form integers for the %I specifier.

Notes

Allows writing an output message via the ANSYS message subroutine. Also allows run termination control. This
command is used only when contained in a prepared file read into the ANSYS program (i.e., *USE,/INPUT, etc.).
A message format must immediately follow the *MSG command (on a separate line, without parentheses, as
described below).

The message format may be up to 80 characters long, consisting of text strings and predefined "data descriptors"
between the strings where numeric or alphanumeric character data are to be inserted. The normal descriptors
are %I for integer data, %G for double precision data, %C for alphanumeric character data, and %/ for a line break.
The corresponding FORTRAN data descriptors are I9, 1PG16.9 and A8, respectively. Each descriptor must be
preceded by a blank. There must be one data descriptor for each specified value (8 maximum) in the order of
the specified values.

Enhanced descriptions may also be used:

w is field width%w.pE

p is precision%w.pG

%w.pF

a single percent sign%%

character string%wC; %wS

left justify string%-wC; %-wS

w blank characters%wX

integer format%wI

pad integer with leading zeros rather than blanks%0wI

w is field width; p is number of characters filled%0w.pI

*MSG

6–71APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Do not begin *MSG format lines with *IF, *ELSE , *ELSEIF , or *ENDIF . If the last nonblank character of the
message format is an ampersand (&), a second line will also be read as a continuation of the format. Up to nine
continuations (ten total lines) may be read. If normal descriptions are used, then consecutive blanks are condensed
into one blank upon output, and a period is appended. Up to ten lines of output of 72 characters each may be
produced (using the %/ descriptor). Two examples follow.

Here is an example of the *MSG command and a format to print a message with two integer values and one real
value:

*MSG, INFO, 'Inner',25,1.2,148
Radius (%C) = %I, Thick = %G, Length = %I

The output line is:

Radius (Inner) = 25, Thick = 1.2, Length = 148.

Here is an example illustrating multiline displays in GUI message windows:

*MSG,UI,Vcoilrms,THTAv,Icoilrms,THTAi,Papprnt,Pelec,PF,indctnc
Coil RMS voltage, RMS current, apparent pwr, actual pwr, pwr factor: %/&
Vcoil = %G V (electrical angle = %G DEG) %/&
Icoil = %G A (electrical angle = %G DEG) %/&
APPARENT POWER = %G W %/&
ACTUAL POWER = %G W %/&
Power factor: %G %/&
Inductance = %G %/&
VALUES ARE FOR ENTIRE COIL (NOT JUST THE MODELED SECTOR)

Note — The /UIS,MSGPOP command controls which messages are displayed in the message dialog box
when the GUI is active. All messages produced by the *MSG command are subject to the /UIS specification,
with one exception, If Lab = UI, the message will be displayed in the dialog box regardless of the /UIS
specification.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*MWRITE, ParR, Fname, Ext, --, Label, n1, n2, n3
Writes a matrix to a file in a formatted sequence.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the array parameter. See *SET for name restrictions.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

If the file name fields are left blank, the default file is the current output file.

Ext

Filename extension (8 character maximum).

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–72

*MWRITE

--

Unused field

Label

Can use a value of IJK, IKJ, JIK, JKI, KIJ, KJI, or blank (JIK).

n1, n2, n3
Write as (((ParR(i,j,k), k = 1,n1), i = 1, n2), j = 1, n3) for Label = KIJ. n1, n2, and n3 default to the corresponding
dimensions of the array parameter ParR.

Notes

Writes a matrix or vector to a specified file in a formatted sequence. You can also use the *VWRITE command
to write data to a specified file. Both commands contain format descriptors on the line immediately following
the command. The format descriptors can be in either Fortran or C format.

Fortran format descriptors are enclosed in parentheses. They must immediately follow the *MWRITE command
on a separate line of the same input file. The word FORMAT should not be included. The format must specify the
number of fields to be written per line, the field width, the placement of the decimal point, etc. There should be
one field descriptor for each data item written. The write operation uses the available system FORTRAN FORMAT
conventions (see your system FORTRAN manual). Any standard FORTRAN real format (such as (4F6.0),
(E10.3,2X,D8.2), etc.) and character format (A) may be used. Integer (I) and list-directed (*) descriptors may not
be used. Text may be included in the format as a quoted string. The FORTRAN descriptor must be enclosed in par-
entheses and the format must not exceed 80 characters (including parentheses).

The “C” format descriptors are used if the first character of the format descriptor line is not a left parenthesis. “C”
format descriptors may be up to 80 characters long, consisting of text strings and predefined "data descriptors"
between the strings where numeric or alphanumeric character data are to be inserted. The normal descriptors
are %I for integer data, %G for double precision data, %C for alphanumeric character data, and %/ for a line break.
Each descriptor must be preceded by a blank. There must be one data descriptor for each specified value in the
order of the specified values. The enhanced formats described in *MSG may also be used.

The starting array element number must be defined. Looping continues in the directions indicated by the Label
argument. The number of loops and loop skipping may also be controlled with the *VLEN and *VMASK com-
mands. These commands work in the N1 direction. The vector specifications *VABS, *VFACT, and *VCUM do
not apply to this command. See the *VOPER command for details. If you are in the GUI the *MWRITE command
must be contained in an externally prepared file and read into ANSYS (i.e., *USE, /INPUT, etc.).

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Write to File

PARRES, Lab, Fname, Ext, --
Reads parameters from a file.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Lab

Read operation:

PARRES

6–73APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

NEW --
Replace current parameter set with these parameters (default).

CHANGE --
Extend current parameter set with these parameters, replacing any that already exist.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).

The extension defaults to PARM if Fname is blank.

--

Unused field

Notes

Reads parameters from a coded file. The parameter file may have been written with the PARSAV command. The
parameters read may replace or change the current parameter set.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Restore Parameters

PARSAV, Lab, Fname, Ext, --
Writes parameters to a file.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Lab

Write operation:

SCALAR --
Write only scalar parameters (default).

ALL --
Write scalar and array parameters. Parameters may be numeric or alphanumeric.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext

Filename extension (8 character maximum).

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–74

PARSAV

The extension defaults to PARM if Fname is blank.

--

Unused field

Notes

Writes the current parameters to a coded file. Previous parameters on this file, if any, will be overwritten. The
parameter file may be read with the PARRES command.

PARSAV/PARRES operations truncate some long decimal strings, and can cause differing values in your solution
data when other operations are performed. A good practice is to limit the number of decimal places you will use
before and after these operations.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Save Parameters

/PMACRO
Specifies that macro contents be written to the session log file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Notes

This command forces the contents of a macro or other input file to be written to Jobname.LOG. It is valid only
within a macro or input file, and should be placed at the top of the file. /PMACROshould be included in any
macro or input file that calls GUI functions.

Menu Paths

This command cannot be accessed from a menu.

/PSEARCH, Pname
Specifies a directory to be searched for "unknown command" macro files.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Pname

Path name (64 characters maximum, and must include the final delimiter) of the middle directory to be
searched. Defaults to the user home directory. If Pname = OFF, search only the ANSYS and current working
directories. If Pname = STAT, list the current middle directory and show the ANSYS_MACROLIB setting.

Command Default

The middle directory searched is the user home directory.

/PSEARCH

6–75APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Notes

Specifies the pathname of a directory for file searches when reading "unknown command" macro files. The search
for the files is typically from the ANSYS directory, then from the user home directory, and then from the current
working directory. This command allows the middle directory searched to be other than the user home directory.

This command is valid only at the Begin Level.

Menu Paths

Utility Menu>Macro>Macro Search Path

*REPEAT, NTOT, VINC1, VINC2, VINC3, VINC4, VINC5, VINC6, VINC7, VINC8, VINC9, VINC10, VINC11
Repeats the previous command.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

NTOT

Number of times the preceding command is executed (including the initial execution). Must be 2 or greater.
NTOT of 2 causes one repeat (for a total of 2 executions).

VINC1, VINC2, VINC3, VINC4, VINC5, VINC6, VINC7, VINC8, VINC9, VINC10, VINC11
Value increments applied to first through eleventh data fields of the preceding command.

Notes

*REPEAT must immediately follow the command that is to be repeated. The numeric arguments of the initial
command may be incremented in the generated commands. The numeric increment values may be integer or
real, positive or negative, zero or blank. Alphanumeric arguments cannot be incremented. For large values of
NTOT, consider printout suppression (/NOPR command) first.

Most commands beginning with slash (/), star (*), as well as "unknown command" macros, cannot be repeated.
For these commands, or if more than one command is to be repeated, include them within a do-loop. Graphics
slash commands are an exception and can be repeated. Commands causing file switching (causing additional
commands to be read) cannot be repeated. If a *REPEAT command immediately follows another *REPEAT
command, the repeat action only applies to the last non-*REPEAT command. Also, *REPEAT should not be used
in interactive mode immediately after a) a command (or its log file equivalent) that uses picking, or b) a command
that requires a response from the user.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–76

*REPEAT

*RETURN, Level
Returns input stream to a higher level.

APDL: Process Controls

MP ME ST DY <> PR EM EH FL PP ED

Level

Number of levels to move up from the current level.

Negative --
Move relative to current level. For example: *Return,-2 will go up two levels from the current level.

Positive --
Move to absolute level. For example: *Return,2 will go to level 2.

Level 0 is the primary input file.

Notes

This command is used to jump to the macro call sequence, ending the current macro file, and returning to the
line after the calling line in the previous file. Unlike the *GO command, this command may be used inside *IF or
*DO constructs.

Menu Paths

This command cannot be accessed from a menu.

*SET, Par, VALUE, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10
Assigns values to user-named parameters.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par

An alphanumeric name used to identify this parameter. Par may be up to 32 characters, beginning with a
letter and containing only letters, numbers, and underscores. Examples: ABC A3X TOP_END. ANSYS command
names, function names, label names, component and assembly names, etc., should not be used. Parameter
names beginning with an underscore (e.g., _LOOP) are reserved for use by ANSYS and should be avoided.
Parameter names ending in an underscore are not listed by the *STATUS command. Array parameter names
must be followed by a subscript, and the entire expression must be 32 characters or less. Examples: A(1,1)
NEW_VAL(3,2,5) RESULT(1000). There is no character parameter substitution for the Par field. Table parameters
that are used in command fields (where constant values are normally given) are limited to 32 characters.

VALUE

Numerical value or alphanumeric character string (up to 8 characters enclosed in single quotes) to be assigned
to this parameter. Examples: A(1,3)=7.4 B='ABC3'. May also be a parameter or a parametric expression. Ex-
amples: C=A(1,3) A(2,2)=(C+4)/2. If blank, delete this parameter. Example: A= deletes parameter A.

VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8, VAL9, VAL10
If Par is an array parameter, values VAL2 through VAL10 (up to the last nonblank value) are sequentially as-
signed to the succeeding array elements of the column. Example: *SET,A(1,4),10,11 assigns A(1,4)=10,
A(2,4)=11. *SET,B(2,3),'file10','file11' assigns B(2,3)='file10', B(3,3)='file11'.

*SET

6–77APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Notes

Assigns values to user-named parameters that may be substituted later in the run. The equivalent (and recom-
mended) format is

Par = VALUE,VAL2,VAL3,VAL4,VAL5,VAL6,VAL7,VAL8,VAL9,VAL10

which may be used in place of *SET,Par, ... for convenience.

This command is valid in any processor.

Parameter Definitions

Parameters (numeric or character) may be scalars (single valued) or arrays (multiple valued in one, two, or three
dimensions). Up to 5000 unique parameter names may be defined in any ANSYS run (fewer than 5000 are available
due to GUI and ANSYS macro requirements); however, a single array parameter name can represent any number
of values. Parameter values may be redefined at any time. Array parameters may also be assigned values within
a do-loop [*DO] for convenience. Internally programmed do-loop commands are also available with the *VXX
commands (*VFILL). Parameter values (except for parameters ending in an underscore) may be listed with the
*STATUS command, displayed with the *VPLOT command (numeric parameters only), and modified with the
*VEDIT command (numeric parameters only). Parameters can also be resolved in comments created by the
/COM command (see /COM for complete documentation). A parameter can be deleted by redefining it with a
blank VALUE. If the parameter is an array, the entire array is deleted. Parameters may also be defined by a response
to a query with the *ASK command or from an "ANSYS-supplied" value with the *GET command.

Array Parameters

Array parameters must be dimensioned [*DIM] before being assigned values. Scalar parameters that are not
defined are initialized to a "near" zero value. Numeric array parameters are initialized to zero when dimensioned,
and character array parameters are initialized to blank. An existing array parameter must be deleted before it
can be redimensioned. Array parameter names must be followed by a subscript list (enclosed in parentheses)
identifying the element of the array. The subscript list may have one, two, or three values (separated by commas).
Typical array parameter elements are A(1,1), NEW_VAL(3,2,5), RESULT(1000). Subscripts for defining an array
element must be integers (or parameter expressions that evaluate to integers). Non-integer values are rounded
to the nearest integer value. All array parameters are stored as 3-D arrays with the unspecified dimensions set
to 1. For example, the 4th array element of a 1-dimensional array, A(4), is stored as array element A(4,1,1). Arrays
are patterned after standard FORTRAN conventions.

Numerical Parameter Substitution

If the parameter name Par is input in a numeric argument of a command, the numeric value of the parameter
(as assigned with *SET, *GET, =, etc.) is substituted into the command at that point. Substitution occurs only if
the parameter name is used between blanks, commas, parentheses, or arithmetic operators (or any combination)
in a numeric argument. Substitution can be prevented by enclosing the parameter name Par within single
quotes ('), if the parameter is alone in the argument; if the parameter is part of an arithmetic expression, the
entire expression must be enclosed within single quotes to prevent substitution. In either case the character
string will be used instead of the numeric value (and the string will be taken as 0.0 if it is in a numeric argument).

A forced substitution is available in the text fields of the /TITLE, /STITLE, /TLABEL, /AN3D, /SYP (ARG1--ARG8),
and *ABBR commands by enclosing the parameter within percent (%) signs. Also, parameter substitution may
be forced within the file name or extension fields of commands having these fields by enclosing the parameter

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–78

*SET

within percent (%) signs. Array parameters [*DIM] must include a subscript (within parentheses) to identify the
array element whose value is to be substituted, such as A(1,3). Out-of-range subscripts result in an error message.
Non-integer subscripts are allowed when identifying a TABLE array element for substitution. A proportional linear
interpolation of values among the nearest array elements is performed before substitution. Interpolation is done
in all three dimensions.

Note — Interpolation is based upon the assigned index numbers which must be defined when the table
is filled [*DIM].

Character Parameter Substitution

Most alphanumeric arguments permit the use of character parameter substitution. When the parameter name
Par input, the alphanumeric value of the parameter is substituted into the command at that point. Substitution
can be suppressed by enclosing the parameter name within single quotes ('). Forced substitution is available
in some fields by enclosing the parameter name within percent (%) signs. Valid forced substitution fields include
command name fields, Fname (filename) or Ext (extension) arguments, *ABBR command (Abbr arguments),
/TITLE and /STITLE commands (Title argument) and /TLABEL command (Text argument). Character parameter
substitution is also available in the *ASK, /AN3D, *CFWRITE, *IF, *ELSEIF, *MSG, *SET, *USE, *VREAD, and
*VWRITE commands. Character array parameters must include a subscript (within parentheses) to identify the
array element whose value is to be substituted.

Parameter Expressions

If a parameter operation expression is input in a numeric argument, the numeric value of the expression is substi-
tuted into the command at that point. Allowable operation expressions are of the form

E1oE2oE3 ...oE10

where E1, E2, etc. are expressions connected by operators (o). The allowable operations (o) are

+ -- * / ** < >

For example, A+B**C/D*E is a valid operation expression. The * represents multiplication and the ** represents
exponentiation.

Note — Exponentiation of a negative number (without parentheses) to an integer power follows standard
FORTRAN hierarchy conventions; that is, the positive number is exponentiated and then the sign is at-
tached. Thus, -4**2 is evaluated as -16. If parentheses are applied, such as (-4)**2, the result is 16.

A parameter is evaluated as a number within parentheses before exponentiation. Exponentiation of a negative
number to a non-integer power is performed by exponentiating the positive number and prepending the minus
sign, for example, -4**2.3 is -(4**2.3). The < and > operators allow conditional substitution. For example, E1<E2
substitutes the value of E1 if the comparison is true or the value of E2 if the comparison is false.

Spaces should not be used around operation symbols since “ *” (a space and a star) makes the rest of the line a
comment. Operation symbols (or symbols and signs) may not be immediately adjacent to each other. Parentheses
may be used to separate symbols and signs, to determine a hierarchy of operations, or for clarity. For example,
A**(-B) must be used instead of A**-B. Numbers ending with +0nn or -0nn are assumed to be of exponential
form (as written on files by some computer systems) so that 123-002 is 123E-2 while 123-2 is 121. This form of
exponential data should not be input directly. The default hierarchy follows the standard FORTRAN conventions,
namely:

*SET

6–79APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

• operations in parentheses (innermost first)

• then exponentiation (right to left)

• then multiplication or division (left to right)

• then unary association (such as +A or -A)

• then addition or subtraction (left to right)

• then logical evaluations (left to right).

Expressions (E) may be a constant, a parameter, a function, or another operation expression (of the form
E1oE2oE3 ...oE10). Functions are of the form FTN(A) where the argument (A) may itself be of the form
E1oE2oE3 ...oE10. Operations are recursive to a level of four deep (three levels of internally nested parentheses).
Iterative floating point parameter arithmetic should not be used for high precision input because of the accumu-
lated numerical round off-error. Up to 10 expressions are accepted within a set of parenthesis.

Valid functions (which are based on standard FORTRAN functions where possible) are:

SineSIN(X)

CosineCOS(X)

TangentTAN(X)

ArcsineASIN(X)

ArccosineACOS(X)

ArctangentATAN(X)

Arctangent (Y/X) with the sign of each component consideredATAN2(Y,X)

Hyperbolic sineSINH(X)

Hyperbolic cosineCOSH(X)

Hyperbolic tangentTANH(X)

Square rootSQRT(X)

Absolute valueABS(X)

Absolute value of X with sign of Y. Y=0 results in positive signSIGN(X,Y)

Nearest integerNINT(X)

Remainder of X/Y Y=0 returns zero (0)MOD(X,Y)

ExponentialEXP(X)

Natural logLOG(X)

Common logLOG10(X)

Random number, where X is the lower bound, and Y is the upper boundRAND(X,Y)

Random sample of Gaussian distributions, where X is the mean, and Y is the standard
deviation

GDIS(X,Y)

Lowercase equivalent of character parameter CPARMLWCASE(CPARM)

Uppercase equivalent of character parameter CPARMUPCASE(CPARM)

Numeric value of character parameter CPARM (If CPARM is a numeric parameter,
returns 0.0)

VALCHR(CPARM)

Character value of numerical parameter PARM. For ABS(PARM) < 10, character value

format is F8.5; for 10 ≤ ABS(PARM) < 1000, format is F8.3; for 1,000 ≤ ABS(PARM)<

10,000,000, format is F8.0. For 10,000,000 ≤ PARM < 100,000,000, format is also
F8.0. Otherwise result is 0.0 and is not a character value.

CHRVAL(PARM)

Set the n2 bit in value b1 (bits are numbered from 0 to 31)IBSET(b1,n2)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–80

*SET

Clear the n2 bit in value b1IBCLEAR(b1,n2)

Test the n2 bit in value b1 (return true (1.0) if bit is set)BTEST(b1,n2)

Bitwise AND of value b1 and b2BITAND(b1,b2)

Bitwise OR of value b1 and b2BITOR(b1,b2)

Bitwise XOR of value b1 and b2BITXOR(b1,b2)

Set the b2 bits in b1BITSET(b1,b2)

Clear the b2 bits in b1BITCLEAR(b1,b2)

Function arguments (X,Y, etc.) must be enclosed within parentheses and may be numeric values, parameters, or
expressions. Input arguments for angular functions must evaluate to radians by default. Output from angular
functions are also in radians by default. See the *AFUN command to use degrees instead of radians for the an-
gular functions. See the *VFUN command for applying these parameter functions to a sequence of array elements.
Additional functions, called "get functions" are described with the *GET command.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Define Inertia
Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>ROM>ElecStruc
Main Menu>ROM Tool>Mode Selection>Edit
Main Menu>Solution>Define Loads>Delete>Structural>Section
Main Menu>Solution>Solve>Electromagnet>Static Analysis>Induct Matrix
Main Menu>Solution>Time Controls>Time Step Prediction
Utility Menu>Parameters>Scalar Parameters

*SREAD, StrArray, Fname, Ext, --, nChar, nSkip, nRead
Reads a file into a string array parameter.

APDL: Array Parameters

MP ME ST DY <> PR EM EH FL PP ED

StrArray

Name of the “string array” parameter which will hold the read file. String array parameters are similar to
character arrays, but each array element can be as long as 128 characters. If the string parameter does not
exist, it will be created. The array will be created as: *DIM,StrArray,STRING,nChar,nRead

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).

--

Unused field

nChar
Number of characters per line to read (default is length of the longest line in the file).

nSkip
Number of lines to skip at the start of the file (default is 0).

*SREAD

6–81APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

nLines
Number of lines to read from the file (default is the entire file).

Notes

The *SREAD command reads from a file into a string array parameter. The file must be an ASCII text file.

Menu Paths

This command cannot be accessed from a menu.

*STATUS, Par, IMIN, IMAX, JMIN, JMAX, KMIN, KMAX, LMIN, LMAX, MMIN, MMAX, KPRI
Lists the current parameters and abbreviations.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par

Specifies the parameter or sets of parameters listed. For array parameters, use IMIN, IMAX, etc. to specify
ranges. Use *DIM to define array parameters. Use *VEDIT to review array parameters interactively. Use
*VWRITE to print array values in a formatted output. If Par is blank, list all scalar parameter values, array
parameter dimensions, and abbreviations. If ARGX, list the active set of local macro parameters (ARG1 to
AR99) [*USE].

The following are possible values for Par

ALL or blank --
Lists all parameters (except those with names beginning or ending with an underbar) and toolbar abbre-
viations.

_PRM --
Lists all parameters with names beginning with an underbar (_). These are ANSYS internal parameters.

PRM_ --
Lists all parameters with names ending with an underbar (_). A good APDL programming convention is
to ensure that all parameters created by your system programmer are named with a trailing underbar.

ABBR --
Lists all toolbar abbreviations.

PARM --
Lists all user parameters.

PARNAME --
Lists only the parameter specified. PARNAME cannot be a parameter name beginning or ending with an
underbar.

ARGX --
Lists all parameter values passed into the current macro (ARG1- AR18).

IMIN, IMAX, JMIN, JMAX, KMIN, KMAX, LMIN, LMAX, MMIN, MMAX
Range of array elements to display (in terms of the dimensions (row, column, plane, book, and shelf). Minimum
values default to 1. Maximum values default to the maximum dimension values. Zero may be input for IMIN,

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–82

*STATUS

JMIN, and KMIN to display the index numbers. See *TAXIS command to list index numbers of 4- and 5-D
tables.

KPRI

Use this field to list your primary variable labels (X, Y, Z, TIME, etc.).

1
List the labels (default). YES, Y, or ON are also valid entries.

0
Do not list the labels. NO, N, or OFF are also valid entries.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>List>Other>Named Parameter
Utility Menu>List>Other>Parameters
Utility Menu>List>Status>Parameters>All Parameters
Utility Menu>List>Status>Parameters>Named Parameters

*TAXIS, ParmLoc, nAxis, Val1, Val2, Val3, Val4, Val5, Val6, Val7, Val8, Val9, Val10
Defines table index numbers.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParmLoc

Name and starting location in the table array parameter for indexing. Indexing occurs along the axis defined
with nAxis.

nAxis

Axis along which indexing occurs. Valid labels are:

1 --
Corresponds to Row. Default.

2 --
Corresponds to Column.

3 --
Corresponds to Plane.

4 --
Corresponds to Book.

5 --
Corresponds to Shelf.

ALL --
Lists all index numbers. Valid only if Val1 = LIST.

*TAXIS

6–83APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Val1 - Val10

Values of the index numbers for the axis nAxis, starting from the table array parameter location ParmLoc.
You can define up to ten values.

To list the index values specified with nAxis, issue Val1 = LIST. If Val1 = LIST, Val2 - Val10 are ignored.

Notes

*TAXIS is a convenient method to define table index values. These values reside in the zero column, row, etc.
Instead of filling values in these zero location spots, use the *TAXIS command. For example,

*TAXIS,longtable(1,4,1,1),2,1.0,2.2,3.5,4.7,5.9

would fill index values 1.0, 2.2, 3.5, 4.7, and 5.9 in nAxis 2 (column location), starting at location 4.

To list index numbers, issue *TAXIS,ParmLoc, nAxis, LIST, where nAxis = 1 through 5 or ALL.

Menu Paths

This command cannot be accessed from a menu.

/TEE, Label, Fname, Ext, --
Writes a list of commands to a specified file at the same time that the commands are being executed.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Label

Indicates how ANSYS is to interpret this /TEE command:

NEW --
Signals the beginning of the command text that is to be written to Fname. If Fname already exists, spe-
cifying NEW causes the contents of Fname to be overwritten.

APPEND --
Indicates that you want to append to Fname the command text that follows.

END --
Signals the end of the command text that is to be written to or appended to Fname.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).

If you plan to execute the file as if it were an ANSYS command, use the extension .mac.

--

Unused field

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–84

/TEE

Notes

You can use the /TEE command to record a macro to a specified file at the same time that the macro is being
executed. It is similar to the UNIX tee command.

For more information about the /TEE command, see the ANSYS APDL Programmer's Guide.

The following example illustrates the use of the /TEE command. If you issue these commands:

/tee,new,myfile,mac
et,1,42,0,0,1
ex,1,3e7
/tee,end
/tee,append,myfile,mac
n,1,8
n,5,11
fill
ngen,5,5,1,5,1,0,1
/tee,end

the content of myfile.mac is:

et,1,42,0,0,1
ex,1,3e7
n,1,8
n,5,11
fill
ngen,5,5,1,5,1,0,1

This command is valid in any processor, but only during an interactive run.

Menu Paths

This command cannot be accessed from a menu.

*TOPER, ParR, Par1, Oper, Par2, FACT1, FACT2, CON1
Operates on table parameters.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

Name of the resulting table parameter. The command will create a table array parameter with this name.
Any existing parameter with this name will be overwritten.

Par1

Name of the first table parameter.

Oper

The operation to be performed: ADD. The operation is: ParR(i,j,k) = FACT1*Par1(i,j,k) + FACT2 *Par2(i,j,k)
+CON1

Par2

Name of the second table parameter.

FACT1

The first table parameter multiplying constant. Defaults to 1.

*TOPER

6–85APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

FACT2

The second table parameter multiplying constant. Defaults to 1.

CON1

The constant increment for offset. Defaults to 0.

Notes

*TOPER operates on table parameters according to: ParR(i,j,k) = FACT1*Par1(i,j,k) + FACT2 *Par2(i,j,k) +CON1

Par1 and Par2 must have the same dimensions and the same variable names corresponding to those dimensions.
Par1 and Par2 must also have identical index values for rows, columns, etc.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Table Operations

*TREAD, Par, Fname, Ext, --, NSKIP
Reads data from an external file into a table array parameter.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par

Table array parameter name as defined by the *DIM command.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

File name has no default.

Ext

Filename extension (8 character maximum).

Extension has no default.

--

Unused field

NSKIP

Number of comment lines at the beginning of the file being read that will be skipped during the reading.
Default = 0.

Notes

Use this command to read in a table of data from an external file into an ANSYS table array parameter. The ex-
ternal file may be created using a text editor or by an external application or program. The external file must be
in tab-delimited, blank-delimited, or comma-delimited format to be used by *TREAD. The ANSYS TABLE type
array parameter must be defined before you can read in an external file. See *DIM for more information.

This command is not applicable to 4- or 5-D tables.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–86

*TREAD

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>TimeInt>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>TimeInt>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>TimeInt>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharge>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharge>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCurrent>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCurrent>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>ImprCurr>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>ImprCurr>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Flow>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Flow>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>Uniform Heat
Gen
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Forces>Body Forces>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Species>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Species>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Species>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Turbulence>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Turbulence>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Turbulence>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On
Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On
Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Element Components

*TREAD

6–87APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Node Components
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Elements

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Elements>Uniform
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>Uniform Heat Gen
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>On Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>TimeInt>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Areas
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Lines
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharge>On Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharge>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCurrent>On Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCurrent>On Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>ImprCurr>On Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>ImprCurr>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Flow>On Keypoints
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Flow>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Elements
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Keypoints
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>Uniform Heat Gen
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Areas
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Keypoints
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Lines
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Areas
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Keypoints
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Lines
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Forces>Body Forces>On Nodes

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–88

*TREAD

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Areas
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Keypoints
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Lines
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Species>On Areas

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Species>On Lines
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Species>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Turbulence>On Areas
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Turbulence>On Lines
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Turbulence>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Areas
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Keypoints
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Lines
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On Elements
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On Lines
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Element Components
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Elements
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Node Components
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Nodes
Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Areas
Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Elements
Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Lines
Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Nodes
Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Areas
Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Elements>Uniform
Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Lines
Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Nodes
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Areas
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Elements
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Lines
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Nodes
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Areas
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Elements
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Keypoints
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Lines
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Nodes
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Volumes
Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>Uniform Heat Gen
Utility Menu>Parameters>Array Parameters>Read from File

*TREAD

6–89APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

/UCMD, Cmd, SRNUM
Assigns a user-defined command name.

APDL: Abbreviations

MP ME ST <> <> <> <> <> <> PP <>

Cmd

User-defined command name. Only the first four characters are significant. Must not conflict with any ANSYS
command name or any user "unknown command" macro name.

SRNUM

User subroutine number (1 to 10) programmed for this command. For example, the command /UCMD,MY-
CMD,3 will execute subroutine USER03 whenever the command MYCMD is entered. Use a blank command
name to disassociate SRNUM from its command. For example, /UCMD,,3 removes MYCMD as a command.

Notes

Assigns a user-defined command name to a user-programmable (system-dependent) subroutine. This feature
allows user-defined commands to be programmed into the ANSYS program. Once programmed, this command
can be input to the program like other commands, and can also be included in the ANSYS start-up file. See *ULIB
for another way of defining user commands.

Up to 10 subroutines are available for user-defined commands (USER01 to USER10). Users must have system
permission, system access, and knowledge to write, compile, and link the appropriate subprocessors into the
ANSYS program at the site where it is to be run. All routines should be written in FORTRAN 77. The USER01 routine
is commented and should be listed from the distribution media (system dependent) for more details. Issue
/UCMD,STAT to list all user-defined command names. Since a user-programmed command is a nonstandard use
of the program, the verification of any ANSYS run incorporating these commands is entirely up to the user. In
any contact with ANSYS customer support regarding the performance of a custom version of the ANSYS program,
you should explicitly state that a user programmable feature has been used. See the ANSYS Advanced Analysis
Techniques Guide for a general description of user-programmable features and Guide to ANSYS User Programmable
Features for a detailed description of these features.

This command is valid only at the Begin Level.

Menu Paths

This command cannot be accessed from a menu.

*ULIB, Fname, Ext, --
Identifies a macro library file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext

Filename extension (8 character maximum).

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–90

/UCMD

--

Unused field

Command Default

No macro library file.

Notes

Identifies a macro library file for the *USE command. A library of macros allows blocks of often used ANSYS
commands to be stacked and executed from a single file. The macro blocks must be enclosed within block
identifier and terminator lines as shown in the example below. If you want to add comment lines to a macro
block, you may place them anywhere within the macro block. (This includes placing them directly on the lines
where the macro block identifier and the macro block terminator appear, as shown in the example.) Do not place
comment lines (or any other lines) outside of a macro block.

ABC! Any valid alphanumeric name (8 characters maximum)
! identifying this data block
---! ANSYS data input commands

/EOF! Terminator for this data block
XYZ! Identify another data block (if desired)
---! ANSYS data input commands

/EOF! Terminator for this data block
(etc.)

The name of the macro library file is identified for reading on the *ULIB command. The name of the macro block
is identified on the *USE command. The commands within the macro block are copied to a temporary file (of
the macro block name) during the *USE operation and executed as if a macro file of that name had been created
by the user. The temporary file is deleted after it has been used. Macro block names should be acceptable filenames
(system dependent) and should not match user created macro file names, since the user macro file will be used
first (if it exists) before the library file is searched. Macro blocks may be stacked in any order. Branching [*GO or
*IF] external to the macro block is not allowed.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Execute Data Block

*USE, Name, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8, ARG9, AR10, AR11, AR12, AR13, AR14, AG15,
AR16, AR17, AR18
Executes a macro file.

APDL: Macro Files

MP ME ST DY <> PR EM <> FL PP ED

Name

Name (32 characters maximum, beginning with a letter) identifying the macro file or a macro block on a
macro library file.

*USE

6–91APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARG8, ARG9, AR10, AR11, AR12, AR13, AR14, AG15, AR16, AR17, AR18
Values passed into the file or block where the parameters ARG1 through ARG9 and AR10 through AR18 are
referenced. Values may be numbers, alphanumeric character strings (up to 8 characters enclosed in single
quotes), parameters (numeric or character) or parametric expressions. See below for additional details.

Notes

Causes execution of a macro file called Name, or, if not found, a macro block "Name" on the macro library file
[*ULIB]. Argument values (numeric or character) are passed into the file or block and substituted for local para-
meters ARG1, ARG2, ..., AR18. The file Name may also be executed as an "unknown command" (i.e., without the
*USE command name) as described below.

A macro is a sequence of ANSYS commands (as many as needed) recorded in a file or in a macro block in a library
file (specified with the *ULIB command). The file or block is typically executed with the *USE command. In addition
to command, numerical and alphanumeric data, the macro may include parameters which will be assigned nu-
merical or alphanumerical character values when the macro is used. Use of the macro may be repeated (within
a do-loop, for example) with the parameters incremented. A macro is defined within a run by "enclosing" a se-
quence of data input commands between a *CREATE and a *END command. The data input commands are
passive (not executed) while being written to the macro file. The macro file (without *CREATE and *END) can
also be created external to ANSYS.

Up to 99 specially named scalar parameters called ARG1 to AR99 are locally available to each macro. Note that
the prefix for the first 9 parameters is "ARG," while the prefix for the last 90 is "AR." A local parameter is one which
is not affected by, nor does it affect, other parameters, even those of the same name, which are used outside of
the macro. The only way a local parameter can affect, or be affected by, parameters outside the macro is if values
are passed out of, or into, the macro by an argument list. Parameters ARG1 through AR18 can have their values
(numeric or character) passed via the argument list on the *USE command (ARG1 through AR19 can be passed
as arguments on the "unknown command" macro). Parameters AR19 through AR99 (AR20 through AR99 in the
"unknown command" macro) are available solely for use within the macro; they cannot be passed via an argument
list. Local parameters are available to do-loops and to /INPUT files processed within the macro. In addition to
an ARG1--AR99 set for each macro, another ARG1--AR99 set is available external to all macros, local to "non-
macro" space.

A macro is exited after its last line is executed. Macros may be nested (such as a *USE or an "unknown command"
within a macro). Each nested macro has its own set of 99 local parameters. Only one set of local parameters can
be active at a time and that is the set corresponding to the macro currently being executed or to the set external
to all macros (if any). When a nested macro completes execution, the previous set of local parameters once again
becomes available. Use *STATUS,ARGX to view current macro parameter values.

An alternate way of executing a macro file is via the "unknown command" route. If a command unknown to the
ANSYS program is entered, a search for a file of that name (plus a .MAC suffix) is made. If the file exists, it is ex-
ecuted, if not, the "unknown command" message is output. Thus, users can write their own commands in terms
of other ANSYS commands. The procedure is similar to issuing the *USE command with the unknown command
in the Name field. For example, the command CMD,10,20,30 is internally similar to *USE,CMD,10,20,30. The macro
file named CMD.MAC will be executed with the three parameters. The *USE macro description also applies to
the "unknown command" macro, except that various directories are searched and a suffix (.MAC) is assumed.
Also, a macro library file is not searched.

A three-level directory search for the "unknown command" macro file may be available (see the ANSYS Operations
Guide). The search order may be: 1) a high-level system directory, 2) the login directory, and 3) the local (working)
directory. Use the /PSEARCH command to change the directory search path. For an "unknown command" CMD,
the first file named CMD.MAC found to exist in the search order will be executed. The command may be input

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–92

*USE

as upper or lower case, however, it is converted to upper case before the file name search occurs. On systems
that uniquely support both upper and lower case file names, the file with the matching lower case name will be
used if it exists, otherwise, the file with the matching upper case name will be used. All macro files placed in the
apdl directory must be upper case.

Note, since undocumented commands exist in the ANSYS program, the user should issue the command intended
for the macro file name to be sure the "unknown command" message is output in the processor where it's to be
used. If the macro is to be used in other processors, the other processors must also be checked.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Execute Data Block

*VABS, KABSR, KABS1, KABS2, KABS3
Applies the absolute value function to array parameters.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

KABSR

Absolute value of results parameter:

0 --
Do not take absolute value of results parameter (ParR).

1 --
Take absolute value.

KABS1

Absolute value of first parameter:

0 --
Do not take absolute value of first parameter (Par1 or ParI).

1 --
Take absolute value.

KABS2

Absolute value of second parameter:

0 --
Do not take absolute value of second parameter (Par2 or ParJ).

1 --
Take absolute value.

KABS3

Absolute value of third parameter:

0 --
Do not take absolute value of third parameter (Par3 or ParK).

*VABS

6–93APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

1 --
Take absolute value.

Command Default

Do not use absolute values.

Notes

Applies an absolute value to parameters used in certain *VXX and *MXX operations. Typical absolute value ap-
plications are of the form:

ParR = |f(|Par1|)|

or

ParR = |(|Par1| o |Par2|)|

The absolute values are applied to each input parameter value before the operation and to the result value after
the operation. Absolute values are applied before the scale factors so that negative scale factors may be used.
The absolute value settings are reset to the default (no absolute value) after each *VXX or *MXX operation. Use
*VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VCOL, NCOL1, NCOL2
Specifies the number of columns in matrix operations.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

NCOL1

Number of columns to be used for Par1 with *MXX operations. Defaults to whatever is needed to fill the
result array.

NCOL2

Number of columns to be used for Par2 with *MXX operations. Defaults to whatever is needed to fill the
result array.

Command Default

Fill all locations of the result array from the specified starting location.

Notes

Specifies the number of columns to be used in array parameter matrix operations. The size of the submatrix used
is determined from the upper left starting array element (defined on the operation command) to the lower right

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–94

*VCOL

array element (defined by the number of columns on this command and the number of rows on the *VLEN
command).

The default NCOL is calculated from the maximum number of columns of the result array (the *DIM column di-
mension) minus the starting location + 1. For example, *DIM,R,,1,10 and a starting location of R(1,7) gives a default
of 4 columns (starting with R(1,7), R(1,8), R(1,9), and R(1,10)). Repeat operations automatically terminate at the
last column of the result array. Existing values in the rows and columns of the results matrix remain unchanged
where not overwritten by the requested input or operation values.

The column control settings are reset to the defaults after each *MXX operation. Use *VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VCUM, KEY
Allows array parameter results to add to existing results.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

KEY

Accumulation key:

0 --
Overwrite results.

1 --
Add results to the current value of the results parameter.

Command Default

Overwrite results.

Notes

Allows results from certain *VXX and *MXX operations to overwrite or add to existing results. The cumulative
operation is of the form:

ParR = ParR + ParR(Previous)

The cumulative setting is reset to the default (overwrite) after each *VXX or *MXX operation. Use *VSTAT to list
settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VCUM

6–95APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

*VEDIT, Par
Allows numerical array parameters to be graphically edited.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par

Name of the array parameter to be edited.

Notes

Invokes a graphical editing system that displays array parameter values in matrix form, and allows the use of the
mouse to edit individual values. The starting array subscripts must be defined, such as *VEDIT,A(4,6,1), to indicate
the section of the array to be edited. The array section starts at the specified array element and continues to the
maximum extent of the array parameter. Row and column index values may be set or changed in any plane, and
those values will be applied to all planes. The menu system must be on [/MENU] when this command is issued.
Graphical editing is not available for character array parameters. The *VEDIT command can not be used in a
macro or other secondary input file.

This command is not applicable to 4- or 5-D arrays.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Define/Edit

*VFACT, FACTR, FACT1, FACT2, FACT3
Applies a scale factor to array parameters.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

FACTR

Scale factor applied to results (ParR) parameter. Defaults to 1.0.

FACT1

Scale factor applied to first parameter (Par1 or ParI). Defaults to 1.0.

FACT2

Scale factor applied to second parameter (Par2 or ParJ). Defaults to 1.0.

FACT3

Scale factor applied to third parameter (Par3 or ParK). Defaults to 1.0.

Command Default

Use 1.0 for all scale factors.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–96

*VEDIT

Notes

Applies a scale factor to parameters used in certain *VXX and *MXX operations. Typical scale factor applications
are of the form:

ParR = FACTR*f(FACT1*Par1)

or

ParR = FACTR*((FACT1*Par1) o (FACT2*Par2))

The factors are applied to each input parameter value before the operation and to the result value after the op-
eration. The scale factor settings are reset to the default (1.0) after each *VXX or *MXX operation. Use *VSTAT to
list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VFILL, ParR, Func, CON1, CON2, CON3, CON4, CON5, CON6, CON7, CON8, CON9, CON10
Fills an array parameter.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting numeric array parameter vector. See *SET for name restrictions. The parameter
must exist as a dimensioned array [*DIM].

Func

Fill function:

DATA --
Assign specified values CON1, CON2, etc. to successive array elements. Up to 10 assignments may be made
at a time. Any CON values after a blank CON value are ignored.

RAMP --
Assign ramp function values: CON1+((n-1)*CON2) , where n is the loop number [*VLEN]. To specify a
constant function (no ramp), set CON2 to zero.

RAND --
Assign random number values based on a uniform distribution: RAND(CON1,CON2), where CON1 is the
lower bound (defaults to 0.0) and CON2 is the upper bound (defaults to 1.0).

GDIS --
Assign random sample of Gaussian distributions: GDIS(CON1,CON2), where CON1 is the mean (defaults to
0.0) and CON2 is the standard deviation (defaults to 1.0).

TRIA --
Assigns random number values based on a triangular distribution: TRIA(CON1,CON2,CON3), where CON1

is the lower bound (defaults to 0.0), CON2 is the location of the peak value (CON1 ≤ CON2 ≤ CON3; CON2

*VFILL

6–97APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

defaults to 0 if CON1 ≤ 0 ≤ CON3, CON1 if 0 ≤ CON1, or CON3 if CON3 ≤ 0), and CON3 is the upper bound

(defaults to 1.0 + CON1 if CON1 ≥ 0 or 0.0 if CON1 ≤ 0).

BETA --
Assigns random number values based on a beta distribution: BETA(CON1,CON2,CON3,CON4), where CON1

is the lower bound (defaults to 0.0), CON2 is the upper bound (defaults to 1.0+CON1 if CON1 ≥ 0 or 0.0 if

CON1 ≤ 0), and CON3 and CON4 are the alpha and beta parameters, respectively, of the beta function. Alpha
and beta must both be positive; they default to 1.0.

GAMM --
Assigns random number values based on a gamma distribution: GAMM(CON1,CON2,CON3), where CON1
is the lower bound (defaults to 0.0), and CON2 and CON3 are the alpha and beta parameters. respectively,
of the gamma function. Alpha and beta must both be positive; they default to 1.0.

CON1, CON2, CON3, CON4, CON5, CON6, CON7, CON8, CON9, CON10
Constants used with above functions.

Notes

Operates on input data and produces one output array parameter vector according to:

ParR = f(CON1, CON2, ...)

where the functions (f) are described above. A starting array element number must be defined for the result array
parameter vector. Operations use successive array elements [*VLEN, *VMASK] with the default being all successive
elements. For example, *VFILL,A(1),RAMP,1,10 assigns A(1) = 1.0, A(2) = 11.0, A(3) = 21.0, etc.
*VFILL,B(5,1),DATA,1.5,3.0 assigns B(5,1) = 1.5 and B(6,1) = 3.0. Absolute values and scale factors may be applied
to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for
details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Fill

*VFUN, ParR, Func, Par1, CON1, CON2, CON3
Performs a function on a single array parameter.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting numeric array parameter vector. See *SET for name restrictions. The parameter
must exist as a dimensioned array [*DIM].

Func

Function to be performed:

ACOS --
Arccosine: ACOS(Par1).

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–98

*VFUN

ASIN --
Arcsine: ASIN(Par1).

ASORT --
Par1 is sorted in ascending order. *VCOL, *VMASK, *VCUM, and *VLEN,,NINC do not apply. *VLEN,NROW
does apply.

ATAN --
Arctangent: ATAN(Par1).

COMP --
Compress: Selectively compresses data set. "True" (*VMASK) values of Par1 (or row positions to be
considered according to the NINC value on the *VLEN command) are written in compressed form to
ParR, starting at the specified position.

COPY --
Copy: Par1 copied to ParR.

COS --
Cosine: COS(Par1).

COSH --
Hyperbolic cosine: COSH(Par1).

DIRCOS --
Direction cosines of the principal stresses (nX9). Par1 contains the nX6 component stresses for the n
locations of the calculations.

DSORT --
Par1 is sorted in descending order. *VCOL, *VMASK, *VCUM, and *VLEN,,NINC do not apply.
*VLEN,NROW does apply.

EULER --
Euler angles of the principal stresses (nX3). Par1 contains the nX6 component stresses for the n locations
of the calculations.

EXP --
Exponential: EXP(Par1).

EXPA --
Expand: Reverse of the COMP function. All elements of Par1 (starting at the position specified) are written
in expanded form to corresponding "true" (*VMASK) positions (or row positions to be considered accord-
ing to the NINC value on the *VLEN command) of ParR.

LOG --
Natural logarithm: LOG(Par1).

LOG10 --
Common logarithm: LOG10(Par1).

NINT --
Nearest integer: 2.783 becomes 3.0, -1.75 becomes -2.0.

NOT --

Logical complement: values ≤ 0.0 (false) become 1.0 (true). Values > 0.0 (true) become 0.0 (false).

PWR --
Power function: Par1**CON1. Exponentiation of any negative number in the vector Par1 to a non-integer
power is performed by exponentiating the positive number and prepending the minus sign. For example,
-4**2.3 is -(4**2.3).

*VFUN

6–99APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

SIN --
Sine: SIN(Par1).

SINH --
Hyperbolic sine: SINH(Par1).

SQRT --
Square root: SQRT(Par1).

TAN --
Tangent: TAN(Par1).

TANH --
Hyperbolic tangent: TANH(Par1).

TANG --
Tangent to a path at a point: the slope at a point is determined by linear interpolation half way between
the previous and next points. Points are assumed to be in the global Cartesian coordinate system. Path
points are specified in array Par1 (having 3 consecutive columns of data, with the columns containing
the x, y, and z coordinate locations, respectively, of the points). Only the starting row index and the
column index for the x coordinates are specified, such as A(1,1). The y and z coordinates of the vector
are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3). The tangent result,
ParR, must also have 3 consecutive columns of data and will contain the tangent direction vector (nor-
malized to 1.0); such as 1,0,0 for an x-direction vector.

NORM --
Normal to a path and an input vector at a point: determined from the cross-product of the calculated
tangent vector (see TANG) and the input direction vector (with the i, j, and k components input as CON1,
CON2, and CON3). Points are assumed to be in the global Cartesian coordinate system. Path points are
specified in array Par1 (having 3 consecutive columns of data, with the columns containing the x, y, and
z coordinate locations, respectively, of the points). Only the starting row index and the column index for
the x coordinates are specified, such as A(1,1). The y and z coordinates of the vector are assumed to begin
in the corresponding next columns, such as A(1,2) and A(1,3). The normal result, ParR, must also have 3
consecutive columns of data and will contain the normal direction vector (normalized to 1.0); such as
1,0,0 for an x-direction vector.

LOCAL --
Transforms global Cartesian coordinates of a point to the coordinates of a specified system: points to be
transformed are specified in array Par1 (having 3 consecutive columns of data, with the columns con-
taining the x, y, and z global Cartesian coordinate locations, respectively, of the points). Only the starting
row index and the column index for the x coordinates are specified, such as A(1,1). The y and z coordinates
of the vector are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3). Results
are transformed to coordinate system CON1 (which may be any valid coordinate system number, such
as 1,2,11,12, etc.). The transformed result, ParR, must also have 3 consecutive columns of data and will
contain the corresponding transformed coordinate locations.

GLOBAL --
Transforms specified coordinates of a point to global Cartesian coordinates: points to be transformed
are specified in array Par1 (having 3 consecutive columns of data, with the columns containing the local
coordinate locations (x, y, z or r, θ, z or etc.) of the points). Only the starting row index and the column
index for the x coordinates are specified, such as A(1,1). The y and z coordinates (or θ and z, or etc.) of
the vector are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3). Local co-
ordinate locations are assumed to be in coordinate system CON1 (which may be any valid coordinate
system number, such as 1,2,11,12, etc.). The transformed result, ParR, must also have 3 consecutive
columns of data, with the columns containing the global Cartesian x, y, and z coordinate locations, re-
spectively.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–100

*VFUN

Par1

Array parameter vector in the operation.

CON1, CON2, CON3
Constants (used only with the PWR, NORM, LOCAL, and GLOBAL functions).

Notes

Operates on one input array parameter vector and produces one output array parameter vector according to:

ParR = f(Par1)

where the functions (f) are described below. Functions are based on the standard FORTRAN definitions where
possible. Out-of-range function results (or results with exponents whose magnitudes are approximately greater
than 32 or less than -32) produce a zero value. Input and output for angular functions may be radians (default)
or degrees [*AFUN]. ParR may be the same as Par1. Starting array element numbers must be defined for each
array parameter vector. For example, *VFUN,A(1),SQRT,B(5) takes the square root of the fifth element of B and
stores the result in the first element of A. Operations continue on successive array elements [*VLEN, *VMASK]
with the default being all successive elements. Absolute values and scale factors may be applied to all parameters
[*VABS, *VFACT]. Results may be cumulative [*VCUM]. Skipping array elements via *VMASK or *VLEN for the
TANG and NORM functions skips only the writing of the results (skipped array element data are used in all calcu-
lations). See the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector Functions

*VGET, ParR, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM, KLOOP
Retrieves values and stores them into an array parameter.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting vector array parameter. See *SET for name restrictions. The parameter must exist
as a dimensioned array [*DIM].

Entity

Entity keyword. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, etc. as shown for Entity = in the
table below.

ENTNUM

The number of the entity (as shown for ENTNUM = in the table below).

Item1

The name of a particular item for the given entity. Valid items are as shown in the Item1 columns of the table
below.

IT1NUM

The number (or label) for the specified Item1 (if any). Valid IT1NUM values are as shown in the IT1NUM
columns of the table below. Some Item1 labels do not require an IT1NUM value.

*VGET

6–101APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Item2, IT2NUM
A second set of item labels and numbers to further qualify the item for which data is to be retrieved. Most
items do not require this level of information.

KLOOP

Field to be looped on:

0 or 2 --
Loop on the ENTNUM field (default).

3 --
Loop on the Item1 field.

4 --
Loop on the IT1NUM field. Successive items are as shown with IT1NUM.

5 --
Loop on the Item2 field.

6 --
Loop on the IT2NUM field. Successive items are as shown with IT2NUM.

Notes

Retrieves values for specified items and stores the values in an output vector of a user-named array parameter
according to:

ParR = f(Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM)

where (f) is the *GET function; Entity, Item1, and Item2 are keywords; and ENTNUM, IT1NUM, and IT2NUM are
numbers or labels corresponding to the keywords. A starting array location number must be defined for the
result array parameter. Looping continues over successive entity numbers (ENTNUM) for the KLOOP default. For
example, *VGET,A(1),ELEM,5,CENT,X returns the centroid x-location of element 5 and stores the result in the first
location of A. Retrieving continues with element 6, 7, 8, etc. until successive array locations [*VLEN, *VMASK]
are filled. Absolute values and scale factors may be applied to the result parameter [*VABS, *VFACT]. Results
may be cumulative [*VCUM]. See the *VOPER command for general details. Results can be put back into an
analysis by writing a file of the desired input commands with the *VWRITE command. See also the *VPUT
command.

Both *GET and *VGET retrieve information from the active data stored in memory. The database is often the
source, and sometimes the information is retrieved from common memory blocks that ANSYS uses to manipulate
information. Although POST1 and POST26 operations use a *.rst file, GET data is accessed from the database or
from the common blocks. Get operations do not access the *.rst file directly.

The *VGET command retrieves both the unprocessed real and the imaginary parts (original and duplicate sector
nodes and elements) of a cyclic symmetry solution.

This command is valid in any processor.

*VGET - PREP7 Items

PREP7 Items

Entity = NODE, ENTNUM = n (node number)

DescriptionIT1NUMItem1

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–102

*VGET

PREP7 Items

X, Y, or Z location in the active coordinate system.X, Y, ZLOC

THXY, THYZ, THZX rotation angle.XY, YZ, ZXANG

Select status of node n (-1 - unselected, 0 - undefined, 1 - selected).NSEL

Entity = ELEM, ENTNUM = n (element number)

DescriptionIT1NUMItem1

Node number at position 1,2,--20 of element n.1,2,--20NODE

Centroid X, Y, or Z location (based on shape function) in the active coordin-
ate system.

X, Y, ZCENT

Number of element adjacent to face 1, 2, -- 6.1, 2, -- 6ADJ

Number assigned to attribute name = MAT, TYPE, REAL, ESYS, ENAM, or
SECN).

nameATTR

Characteristic element geometry. Length of line element (straight line
between ends), area of area element, or volume of volume element. Issuing
*VGET for an element returns a signed value. To always get a positive value,
issue *VABS,1 just prior to issuing *VGET,par(n),ELEM,x,GEOM.

GEOM

Select status of element n (-1 - unselected, 0 - undefined, 1 - selected).ESEL

Element shape test result for selected element n, where Test=ANGD
(SHELL28 corner angle deviation), ASPE (aspect ratio), JACR (Jacobian ratio),
MAXA (maximum corner angle), PARA (deviation from parallelism of oppos-
ite edges), or WARP (warping factor).

TestSHPAR

Entity = KP, ENTNUM = n (keypoint number)

DescriptionIT1NUMItem1

X, Y, or Z location in the active coordinate system.X, Y, ZLOC

Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NODE or
ELEM).

nameATTR

Divisions (element size setting) from KESIZE command.DIV

Select status of keypoint n (-1 - unselected, 0 - undefined, 1 - selected).KSEL

Entity = LINE, ENTNUM = n (line number)

DescriptionIT1NUMItem1

Keypoint number at position 1 or 2.1,2KP

Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NNOD, NELM,
or NDIV). NNOD = number of nodes, NELM = number of elements, NDIV =
number of divisions.

nameATTR

Length.LENG

Select status of line n (-1 - unselected, 0 - undefined, 1 - selected).LSEL

Entity = AREA, ENTNUM = n (area number)

DescriptionIT1NUMItem1

Loop number. Must be input if LINE number is to be retrieved.1,2,-- ILOOP

DescriptionIT2NUMItem2

Line number at position 1, 2, --- p.1, 2, -- pLINE

Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NNOD, or
NELM). NNOD = number of nodes, NELM = number of elements.

nameATTR

Area (after last ASUM).AREA

Select status of area n (-1 - unselected, 0 - undefined, 1 - selected).ASEL

*VGET

6–103APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

PREP7 Items

Entity = VOLU, ENTNUM = n (volume number)

DescriptionIT1NUMItem1

Shell number. Must be input if AREA number is to be retrieved.1,2,--lSHELL

DescriptionIT2NUMItem2

Area number at position 1, 2, --- p.1, 2, -- pAREA

Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NNOD, or
NELM). NNOD = number of nodes, NELM = number of elements.

nameATTR

Volume (after last VSUM).VOLU

Select status of volume n (-1 - unselected, 0 - undefined, 1 - selected).VSEL

Entity = CDSY, ENTNUM = n (coordinate system number)

DescriptionIT1NUMItem1

X, Y, or Z origin location (global Cartesian coordinate).X, Y, ZLOC

THXY, THYZ, or THZX rotation angle (°) relative to the global Cartesian co-
ordinate system.

XY, YZ, ZXANG

Number assigned to attribute (name = KCS, KTHET, KPHI, PAR1, or PAR2). A
-1.0 is returned for KCS if coordinate system is undefined).

nameATTR

Entity = RCON, ENTNUM = n (real constant set number)

DescriptionIT1NUMItem1

Real constant value for constant 1,2,--- m.1,2,--mCONST

Entity = TLAB, ENTNUM = n (Tlab is the data table label: BKIN, MKIN, MISO, etc. as described on the TB
command. n is the material number.)

DescriptionIT1NUMItem1

Temperature value (if any) at which to retrieve table data.valTEMP

DescriptionIT2NUMItem2

Constant number whose value is to be retrieved (see Data Tables - Implicit
Analysis in the ANSYS Elements Reference). For constants input as X, Y points,
the constant numbers are consecutive with the X constants being the odd
numbers, beginning with one.

numCONST

*VGET - POST1 Items

Entity = NODE, ENTNUM = n (node number)

Vector items are in the active results coordinate system unless otherwise specified.

DescriptionIT1NUMItem1

Valid labels for nodal degree of freedom results are:

X, Y, or Z structural displacement.X, Y, ZU

X, Y, or Z structural rotation.X, Y, ZROT

Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3)
= 0 or 1, use TBOT, TE2, TE3, . . ., TTOP instead of TEMP. Alternative get
functions: TEMP(N), TBOT(N), TE2(N), etc.

TEMP

Pressure.PRES

Electric potential.VOLT

Magnetic scalar potential.MAG

X, Y, or Z fluid velocity.X, Y, ZV

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–104

*VGET

Entity = NODE, ENTNUM = n (node number)

Vector items are in the active results coordinate system unless otherwise specified.

DescriptionIT1NUMItem1

X, Y, or Z magnetic vector potential.X, Y, ZA

Current.CURR

Electromotive force drop.EMF

Turbulent kinetic energy (FLOTRAN).ENKE

Turbulent energy dissipation (FLOTRAN).ENDS

Valid labels for element nodal results are:

DescriptionIT1NUMItem1

Component stress.X, Y, Z, XY, YZ, XZS

Principal stress.1,2,3"

Stress intensity or equivalent stress.INT, EQV"

Component total strain (EPEL + EPPL + EPCR).X, Y, Z, XY, YZ, XZEPTO

Principal total strain.1, 2, 3"

Total strain intensity or total equivalent strain.INT, EQV"

Component elastic strain.X, Y, Z, XY, YZ, XZEPEL

Principal elastic strain.1, 2, 3"

Elastic strain intensity or elastic equivalent strain.INT, EQV"

Component plastic strain.X, Y, Z, XY, YZ, XZEPPL

Principal plastic strain.1, 2, 3"

Plastic strain intensity or plastic equivalent strain.INT, EQV"

Component creep strain.X, Y, Z, XY, YZ, XZEPCR

Principal creep strain.1, 2, 3"

Creep strain intensity or creep equivalent strain.INT, EQV"

Component thermal strain.X, Y, Z, XY, YZ, XZEPTH

Principal thermal strain.1, 2, 3"

Thermal strain intensity or thermal equivalent strain.INT, EQV"

Swelling strain.EPSW

Equivalent stress (from stress-strain curve).SEPLNL

Stress state ratio.SRAT"

Hydrostatic pressure.HPRES"

Accumulated equivalent plastic strain.EPEQ"

Plastic state variable.PSV"

Plastic work/volume.PLWK"

Component magnetic field intensity from current sources (in the
global Cartesian coordinate system).

X, Y, ZHS

Body temperatures (calculated from applied temperatures) as used
in solution.

TEMPBFE

Component thermal gradient and sum.X, Y, Z, SUMTG

Component thermal flux and sum.X, Y, Z, SUMTF

Component pressure gradient and sum.X, Y, Z, SUMPG

Component electric field and sum.X, Y, Z, SUMEF

*VGET

6–105APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = NODE, ENTNUM = n (node number)

Vector items are in the active results coordinate system unless otherwise specified.

DescriptionIT1NUMItem1

Component electric flux density and sum.X, Y, Z, SUMD

Component magnetic field intensity and sum.X, Y, Z, SUMH

Component magnetic flux density and sum.X, Y, Z, SUMB

Component magnetic force and sum.X, Y, Z, SUMFMAG

Valid labels for FLOTRAN nodal results are:

DescriptionIT1NUMItem1

Total temperature.TTOT

Heat flux.HFLU

Heat transfer (film) coefficient.HFLM

Fluid laminar conductivity.COND

Pressure coefficient.PCOE

Total (stagnation) pressure.PTOT

Mach number.MACH

Stream function. (2-D applications only.)STRM

Fluid density.DENS

Fluid laminar viscosity.VISC

Fluid effective viscosity.EVIS

Fluid effective conductivity.ECON

Y+, a turbulent law of the wall parameter.YPLU

Shear stress at the wall.TAUW

Entity = ELEM, ENTNUM = n (element number)

Valid labels for element results are:

Any user-defined element table label (see ETABLE command).LabETAB

Menu Paths

Utility Menu>Parameters>Get Array Data

*VITRP, ParR, ParT, ParI, ParJ, ParK
Forms an array parameter by interpolation of a table.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting array parameter. See *SET for name restrictions. The parameter must exist as a
dimensioned array [*DIM].

ParT

The name of the TABLE array parameter. The parameter must exist as a dimensioned array of type TABLE
[*DIM].

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–106

*VITRP

ParI

Array parameter vector of I (row) index values for interpolation in ParT.

ParJ

Array parameter vector of J (column) index values for interpolation in ParT (which must be at least 2-D).

ParK

Array parameter vector of K (depth) index values for interpolation in ParT (which must be 3-D).

Notes

Forms an array parameter (of type ARRAY) by interpolating values of an array parameter (of type TABLE) at specified
table index locations according to:

ParR = f(ParT, Parl, ParJ, ParK)

where ParT is the type TABLE array parameter, and ParI, ParJ, ParK are the type ARRAY array parameter vectors
of index values for interpolation in ParT. See the *DIM command for TABLE and ARRAY declaration types. Linear
interpolation is used. Starting array element numbers must be defined for each array parameter. The starting
array element number for the TABLE array (ParT) is not used (but a value must be input). For example, *VIT-
RP,R(5),TAB(1,1),X(2),Y(4) uses the second element of X and the fourth element of Y as index values (row and
column) for a 2-D interpolation in TAB and stores the result in the fifth element of R. Operations continue on
successive array elements [*VLEN, *VMASK] with the default being all successive elements. Absolute values and
scale factors may be applied to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See
the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector Interpolate

*VLEN, NROW, NINC
Specifies the number of rows to be used in array parameter operations.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

NROW

Number of rows to be used with the *VXX or *MXX operations. Defaults to the number of rows needed to
fill the result array.

NINC

Perform the operation on every NINC row (defaults to 1).

Command Default

Fill all locations of the result array from the specified starting location.

*VLEN

6–107APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Notes

Specifies the number of rows to be used in array parameter operations. The size of the submatrix used is determ-
ined from the upper left starting array element (defined on the operation command) to the lower right array
element (defined by the number of rows on this command and the number of columns on the *VCOL command).
NINC allows skipping row operations for some operation commands. Skipped rows are included in the row count.
The starting row number must be defined on the operation command for each parameter read and for the result
written.

The default NROW is calculated from the maximum number of rows of the result array (the *DIM row dimension)
minus the starting location + 1. For example, *DIM,R,,10 and a starting location of R(7) gives a default of 4 loops
(filling R(7), R(8), R(9), and R(10)). Repeat operations automatically terminate at the last row of the result array.
Existing values in the rows and columns of the results matrix remain unchanged where not overwritten by the
requested input or operation values.

The stride (NINC) allows operations to be performed at regular intervals. It has no effect on the total number of
row operations. Skipped operations retain the previous result. For example, *DIM,R,,6, with a starting location
of R(1), NROW = 10, and NINC = 2 calculates values for locations R(1), R(3), and R(5) and retains values for locations
R(2), R(4), and R(6). A more general skip control may be done by masking [*VMASK]. The row control settings
are reset to the defaults after each *VXX or *MXX operation. Use *VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VMASK, Par
Specifies an array parameter as a masking vector.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par

Name of the mask parameter. The starting subscript must also be specified.

Command Default

No mask parameter specified (use true for all operations).

Notes

Specifies the name of the parameter whose values are to be checked for each resulting row operation. The mask
vector usually contains only 0 (for false) and 1 (for true) values. For each row operation the corresponding mask
vector value is checked. A true value allows the operation to be done. A false value skips the operation (and retains
the previous results). A mask vector can be created from direct input, such as M(1) = 1,0,0,1,1,0,1; or from the
DATA function of the *VFILL command. The NOT function of the *VFUN command can be used to reverse the
logical sense of the mask vector. The logical compare operations (LT, LE, EQ, NE, GE, and GT) of the *VOPER
command also produce a mask vector by operating on two other vectors. Any numeric vector can be used as a
mask vector since the actual interpretation assumes values less than 0.0 are 0.0 (false) and values greater than

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–108

*VMASK

0.0 are 1.0 (true). If the mask vector is not specified (or has fewer values than the result vector), true (1.0) values
are assumed for the unspecified values. Another skip control may be input with NINC on the *VLEN command.
If both are present, operations occur only when both are true. The mask setting is reset to the default (no mask)
after each *VXX or *MXX operation. Use *VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VOPER, ParR, Par1, Oper, Par2, CON1, CON2
Operates on two array parameters.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting array parameter vector. See *SET for name restrictions. The parameter must exist
as a dimensioned array [*DIM].

Par1

First array parameter vector in the operation. May also be a scalar parameter or a literal constant.

Oper

Operations:

ADD--
Addition: Par1+Par2.

SUB --
Subtraction: Par1-Par2.

MULT --
Multiplication: Par1*Par2.

DIV --
Division: Par1/Par2 (a divide by zero results in a value of zero).

MIN --
Minimum: minimum of Par1 and Par2.

MAX --
Maximum: maximum of Par1 and Par2.

LT --
Less than comparison: Par1<Par2 gives 1.0 if true, 0.0 if false.

LE --

Less than or equal comparison: Par1 ≤ Par2 gives 1.0 if true, 0.0 if false.

EQ --
Equal comparison: Par1 = Par2 gives 1.0 if true, 0.0 if false.

NE --
Not equal comparison: Par1 ≠ Par2 gives 1.0 if true, 0.0 if false.

*VOPER

6–109APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

GE --

Greater than or equal comparison: Par1 ≥ Par2 gives 1.0 if true, 0.0 if false.

GT --
Greater than comparison: Par1>Par2 gives 1.0 if true, 0.0 if false.

DER1 --
First derivative: d(Par1)/d(Par2). The derivative at a point is determined over points half way between
the previous and next points (by linear interpolation). Par1 must be a function (a unique Par1 value for
each Par2 value) and Par2 must be in ascending order.

DER2 --

Second derivative: d2(Par1)/d(Par2)2. See also DER1.

INT1 --

Single integral: Par1 d(Par2), where CON1 is the integration constant. The integral at a point is determ-
ined by using the single integration procedure described in the ANSYS, Inc. Theory Reference.

INT2 --

Double integral: Par1 d(Par2), where CON1 is the integration constant of the first integral and CON2
is the integration constant of the second integral. If Par1 contains acceleration data, CON1 is the initial
velocity and CON2 is the initial displacement. See also INT1.

DOT --
Dot product: Par1 . Par2. Par1 and Par2 must each have three consecutive columns of data, with the
columns containing the i, j, and k vector components, respectively. Only the starting row index and the
column index for the i components are specified for Par1 and Par2, such as A(1,1). The j and k components
of the vector are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3).

CROSS --
Cross product: Par1 x Par2. Par1, Par2, and ParR must each have 3 components, respectively. Only
the starting row index and the column index for the i components are specified for Par1, Par2, and
ParR, such as A(1,1). The j and k components of the vector are assumed to begin in the corresponding
next columns, such as A(1,2) and A(1,3).

GATH --
Gather: For a vector of position numbers, Par2, copy the value of Par1 at each position number to ParR.
Example: for Par1 = 10,20,30,40 and Par2 = 2,4,1; ParR = 20,40,10.

SCAT --
Scatter: Opposite of GATH operation. For a vector of position numbers, Par2, copy the value of Par1 to
that position number in ParR. Example: for Par1 = 10,20,30,40,50 and Par2 = 2,1,0,5,3; ParR =
20,10,50,0,40.

Par2

Second array parameter vector in the operation. May also be a scalar parameter or a literal constant.

CON1

First constant (used only with the INT1 and INT2 operations).

CON2

Second constant (used only with the INT2 operation).

Notes

Operates on two input array parameter vectors and produces one output array parameter vector according to:

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–110

*VOPER

ParR = Par1 o Par2

where the operations (o) are described below. ParR may be the same as Par1 or Par2. Absolute values and scale
factors may be applied to all parameters [*VABS, *VFACT]. Results may be cumulative [*VCUM]. Starting array
element numbers must be defined for each array parameter vector, such as *VOPER,A(1),B(5),ADD,C(3) which
adds the third element of C to the fifth element of B and stores the result in the first element of A. Operations
continue on successive array elements [*VLEN, *VMASK] with the default being all successive elements. Skipping
array elements via *VMASK or *VLEN for the DER_ and INT_ functions skips only the writing of the results (skipped
array element data are used in all calculations).

Parameter functions and operations are available to operate on a scalar parameter or a single element of an array
parameter, such as SQRT(B) or SQRT(A(4)). See the *SET command for details. Operations on a sequence of array
elements can be done by repeating the desired function or operation in a do-loop [*DO]. The vector operations
within the ANSYS program (*VXX commands) are internally programmed do-loops that conveniently perform
the indicated operation over a sequence of array elements. If the array is multidimensional, only the first subscript
is incremented in the do-loop, that is, the operation repeats in column vector fashion "down" the array. For ex-
ample, for A(1,5), A(2,5), A(3,5), etc. The starting location of the row index must be defined for each parameter
read and for the result written.

The default number of loops is from the starting result location to the last result location and can be altered with
the *VLEN command. A logical mask vector may be defined to control at which locations the operations are to
be skipped [*VMASK]. The default is to skip no locations. Repeat operations automatically terminate at the last
array element of the result array column if the number of loops is undefined or if it exceeds the last result array
element. Zeroes are used in operations for values read beyond the last array element of an input array column.
Existing values in the rows and columns of the results matrix remain unchanged where not changed by the re-
quested operation values. The result array column may be the same as the input array column since results in
progress are stored in a temporary array until being moved to the results array at the end of the operation. Results
may be overwritten or accumulated with the existing results [*VCUM]. The default is to overwrite results. The
absolute value may be used for each parameter read or written [*VABS]. A scale factor (defaulting to 1.0) is also
applied to each parameter read and written [*VFACT].

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector Operations

*VPLOT, ParX, ParY, Y2, Y3, Y4, Y5, Y6, Y7, Y8
Graphs columns (vectors) of array parameters.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParX

Name of the array parameter whose column vector values will be the abscissa of the graph. If blank, row
subscript numbers are used instead. ParX is not sorted by the program.

ParY

Name of the array parameter whose column vector values will be graphed against the ParX values.

*VPLOT

6–111APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Y2, Y3, Y4, Y5, Y6, Y7, Y8
Additional column subscript of the ParY array parameter whose values are to be graphed against the ParX
values.

Notes

The column to be graphed and the starting row for each array parameter must be specified as subscripts. Addi-
tional columns of the ParY array parameter may be graphed by specifying column numbers for Y2, Y3, ...,Y8. For
example, *VPLOT,TIME (4,6), DISP (8,1),2,3 specifies that the 1st, 2nd, and 3rd columns of array parameter DISP
(all starting at row 8) are to be graphed against the 6th column of array parameter TIME (starting at row 4). The
columns will be graphed from the starting row to their maximum extent. See the *VLEN and *VMASK commands
to limit or skip data to be graphed. The array parameters specified on the *VPLOT command must be of the
same type (type ARRAY or TABLE; [*DIM]. Arrays of type TABLE will be graphed as continuous curves. Arrays of
type ARRAY will be displayed in bar chart fashion.

The normal curve labeling scheme for *VPLOT is to label curve 1 “COL 1”, curve 2 “COL 2” and so on. You can
use the /GCOLUMN command to apply user-specifed labels (8 characters maximum) to your curves. See Modi-
fying Curve Labels in the ANSYS APDL Programmer's Guide for more information on using /GCOLUMN.

When a graph plot reaches minimum or maximum y-axis limits, ANSYS indicates the condition by clipping the
graph. The clip appears as a horizontal magenta line. ANSYS calculates y-axis limits automatically; however, you
can modify the (YMIN and YMAX) limits via the /YRANGE command.

This command is valid in any processor.

Menu Paths

Utility Menu>Plot>Array Parameters

*VPUT, ParR, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM, KLOOP
Restores array parameter values into the ANSYS database.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the input vector array parameter. See *SET for name restrictions. The parameter must exist as
a dimensioned array [*DIM] with data input.

Entity

Entity keyword. Valid keywords are shown for Entity = in the table below.

ENTNUM

The number of the entity (as shown for ENTNUM= in the table below).

Item1

The name of a particular item for the given entity. Valid items are as shown in the Item1 columns of the table
below.

IT1NUM

The number (or label) for the specified Item1 (if any). Valid IT1NUM values are as shown in the IT1NUM
columns of the table below. Some Item1 labels do not require an IT1NUM value.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–112

*VPUT

Item2, IT2NUM
A second set of item labels and numbers to further qualify the item for which data is to be stored. Most items
do not require this level of information.

KLOOP

Field to be looped on:

0 or 2 --
Loop on the ENTNUM field (default).

3 --
Loop on the Item1 field.

4 --
Loop on the IT1NUM field. Successive items are as shown with IT1NUM.

5 --
Loop on the Item2 field.

6 --
Loop on the IT2NUM field. Successive items are as shown with IT2NUM.

Notes

The *VPUT command is not supported for PowerGraphics displays. Inconsistent results may be obtained if this
command is not used in /GRAPHICS, FULL.

Plot and print operations entered via the GUI (Utility Menu> Pltcrtls, Utility Menu> Plot) incorporate the
AVPRIN command. This means that the principal and equivalent values are recalculated. If you use *VPUT to
put data back into the database, issue the plot commands from the command line to preserve your data.

This operation is basically the inverse of the *VGET operation. Vector items are put directly (without any coordinate
system transformation) into the ANSYS database. Items can only replace existing items of the database and not
create new items. Degree of freedom results that are replaced in the database are available for all subsequent
postprocessing operations. Other results are changed temporarily and are available mainly for the immediately
following print and display operations. The vector specification *VCUM does not apply to this command. The
valid labels for the location fields (Entity, ENTNUM, Item1, and IT1NUM) are listed below. Item2 and IT2NUM
are not currently used. Not all items from the *VGET list are allowed on *VPUT since putting values into some
locations could cause the database to be inconsistent.

This command is valid in any processor.

*VPUT - POST1 Items

Entity = NODE, ENTNUM = n (node number)

DescriptionIT1NUMItem1

Valid labels for nodal degree of freedom results are:

X, Y, or Z structural displacement.X, Y, ZU

X, Y, or Z structural rotation.X, Y, ZROT

Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3)
= 0 or 1, use TBOT, TE2, TE3, . . ., TTOP instead of TEMP. Alternative get
functions: TEMP(N), TBOT(N), TE2(N), etc.

TEMP

Pressure.PRES

*VPUT

6–113APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Entity = NODE, ENTNUM = n (node number)

DescriptionIT1NUMItem1

Electric potential.VOLT

Magnetic scalar potential.MAG

X, Y, or Z fluid velocity.X, Y, ZV

X, Y, or Z magnetic vector potential.X, Y, ZA

Current.CURR

Electromotive force drop.EMF

Turbulent kinetic energy (FLOTRAN).ENKE

Turbulent energy dissipation (FLOTRAN).ENDS

Valid labels for element nodal results are:

DescriptionIT1NUMItem1

Component stress.X, Y, Z, XY, YZ, XZS

Principal stress.1, 2, 3"

Stress intensity or equivalent stress.INT, EQV"

Component total strain (EPEL + EPPL + EPCR).X, Y, Z, XY, YZ, XZEPTO

Principal total strain.1,2,3"

Total strain intensity or total equivalent strain.INT, EQV"

Component elastic strain.X, Y, Z, XY, YZ, XZEPEL

Principal elastic strain.1, 2, 3"

Elastic strain intensity or elastic equivalent strain.INT, EQV"

Component plastic strain.X, Y, Z, XY, YZ, XZEPPL

Principal plastic strain.1,2,3"

Plastic strain intensity or plastic equivalent strain.INT, EQV"

Component creep strain.X, Y, Z, XY, YZ, XZEPCR

Principal creep strain.1, 2, 3"

Creep strain intensity or creep equivalent strain.INT, EQV"

Component thermal strain.X, Y, Z, XY, YZ, XZEPTH

Principal thermal strain.1, 2, 3"

Thermal strain intensity or thermal equivalent strain.INT, EQV"

Swelling strain.EPSW

Equivalent stress (from stress-strain curve).SEPLNL

Stress state ratio.SRAT"

Hydrostatic pressure.HPRES"

Accumulated equivalent plastic strain.EPEQ"

Plastic state variable.PSV"

Plastic work/volume.PLWK"

Component thermal gradient.X, Y, ZTG

Component thermal flux.X, Y, ZTF

Component pressure gradient.X, Y, ZPG

Component electric field.X, Y, ZEF

Component electric flux density.X, Y, ZD

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–114

*VPUT

Entity = NODE, ENTNUM = n (node number)

DescriptionIT1NUMItem1

Component magnetic field intensity.X, Y, ZH

Component magnetic flux density.X, Y, ZB

Component magnetic force.X, Y, ZFMAG

Valid labels for FLOTRAN nodal results are:

DescriptionIT1NUMItem1

Total temperature.TTOT

Heat flux.HFLU

Heat transfer (film) coefficient.HFLM

Fluid laminar conductivity.COND

Pressure coefficient.PCOE

Total (stagnation) pressure.PTOT

Mach number.MACH

Stream function. (2-D applications only.)STRM

Fluid density.DENS

Fluid laminar viscosity.VISC

Fluid effective viscosity.EVIS

Fluid effective conductivity.ECON

Y+, a turbulent law of the wall parameter.YPLU

Shear stress at the wall.TAUW

Entity = ELEM, ENTNUM = n (element number)

Valid labels for element results are:

Any user-defined element table label (see ETABLE command).LabETAB

Menu Paths

Utility Menu>Parameters>Array Operations>Put Array Data

*VREAD, ParR, Fname, Ext, --, Label, n1, n2, n3, NSKIP
Reads data and produces an array parameter vector or matrix.

APDL: Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting array parameter vector. See *SET for name restrictions. The parameter must exist
as a dimensioned array [*DIM]. String arrays are limited to a maximum of 8 characters.

Fname

File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

If the Fname field is left blank, reading continues from the current input device, such as the terminal.

*VREAD

6–115APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Ext

Filename extension (8 character maximum).

--

Unused field

Label

Can take a value of IJK, IKJ, JIK, JKI, KIJ, KJI, or blank (IJK).

n1, n2, n3
Read as (((ParR (i,j,k), k = 1,n1), i = 1, n2), j = 1, n3) for Label = KIJ. n2 and n3 default to 1.

NSKIP

Number of lines at the beginning of the file being read that will be skipped during the reading. Default = 0.

Notes

Reads data from a file and fills in an array parameter vector or matrix. Data are read from a formatted file or, if
the menu is off [/MENU,OFF] and Fname is blank, from the next input lines. The format of the data to be read
must be input immediately following the *VREAD command. The format specifies the number of fields to be
read per record, the field width, and the placement of the decimal point (if none specified in the value). The read
operation follows the available FORTRAN FORMAT conventions of the system (see your system FORTRAN
manual). Any standard FORTRAN real format (such as (4F6.0), (E10.3,2X,D8.2), etc.) or alphanumeric format (A)
may be used. Alphanumeric strings are limited to a maximum of 8 characters for any field (A8). Integer (I) and
list-directed (*) descriptors may not be used. The parentheses must be included in the format and the format must
not exceed 80 characters (including parentheses). The input line length is limited to 128 characters.

A starting array element number must be defined for the result array parameter vector (numeric or character).
For example, entering these two lines:

*VREAD,A(1),ARRAYVAL
(2F6.0)

will read two values from each line of file ARRAYVAL and assign the values to A(1), A(2), A(3), etc. Reading continues
until successive row elements [*VLEN, *VMASK, *DIM] are filled.

For an array parameter matrix, a starting array element row and column number must be defined. For example,
entering these two lines:

VREAD,A(1,1),ARRAYVAL,,,IJK,10,2
(2F6.0)

will read two values from each line of file ARRAYVAL and assign the values to A(1,1), A(2,1), A(3,1), etc. Reading
continues until n1 (10) successive row elements are filled. Once the maximum row number is reached, subsequent
data will be read into the next column (e.g., A(1,2), A(2,2), A(3,2), etc.)

For numerical parameters, absolute values and scale factors may be applied to the result parameter [*VABS,
*VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for details. If you are in the GUI the
*VREAD command must be contained in an externally prepared file read into the ANSYS program (i.e., *USE,
/INPUT, etc.).

This command is not applicable to 4- or 5-D arrays.

This command is valid in any processor.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–116

*VREAD

Menu Paths

Utility Menu>Parameters>Array Parameters>Read from File

*VSCFUN, ParR, Func, Par1
Determines properties of an array parameter.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

ParR

The name of the resulting scalar parameter. See *SET for name restrictions.

Func

Functions:

MAX --
Maximum: the maximum Par1 array element value.

MIN --
Minimum: the minimum Par1 array element value.

LMAX --
Index location of the maximum Par1 array element value. Array Par1 is searched starting from its specified
index.

LMIN --
Index location of the minimum Par1 array element value. Array Par1 is searched starting from its specified
index.

FIRST --
Index location of the first nonzero value in array Par1. Array Par1 is searched starting from its specified
index.

LAST --
Index location of the last nonzero value in array Par1. Array Par1 is searched starting from its specified
index.

SUM --
Sum: Par1 (the summation of the Par1 array element values).

MEDI --
Median: value of Par1 at which there are an equal number of values above and below.

MEAN --
Mean: (σ Par1)/NUM, where NUM is the number of summed values.

VARI --
Variance: (σ ((Par1-MEAN)**2))/NUM.

STDV --
Standard deviation: square root of VARI.

RMS --
Root-mean-square: square root of (σ (Par1**2))/NUM.

NUM --
Number: the number of summed values (masked values are not counted).

*VSCFUN

6–117APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

Par1

Array parameter vector in the operation.

Notes

Operates on one input array parameter vector and produces one output scalar parameter according to:

ParR = f(Par1)

where the functions (f) are described below. The starting array element number must be defined for the array
parameter vector. For example, *VSCFUN,MU,MEAN,A(1) finds the mean of the A vector values, starting from
the first value and stores the result as parameter MU. Operations use successive array elements [*VLEN, *VMASK]
with the default being all successive array elements. Absolute values and scale factors may be applied to all
parameters [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector-Scalar Func

*VSTAT
Lists the current specifications for the array parameters.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

Notes

Lists the current specifications for the *VABS, *VCOL, *VCUM, *VFACT, *VLEN, and *VMASK commands.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*VWRITE, Par1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9, Par10, Par11, Par12, Par13, Par14, Par15, Par16,
Par17, Par18, Par19
Writes data to a file in a formatted sequence.

APDL: Array Parameters

MP ME ST DY <> PR EM <> FL PP ED

Par1 - Par19
You can write up to 19 parameters (or constants) at a time. Any Par values after a blank Par value are ignored.
If you leave them all blank, one line will be written (to write a title or a blank line). If you input the keyword
SEQU, a sequence of numbers (starting from 1) will be written for that item.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–118

*VSTAT

Notes

You use *VWRITE to write data to a file in a formatted sequence. Data items (Par1, Par2, etc.) may be array
parameters, scalar parameters, character parameters (scalar or array), or constants. You must evaluate expressions
and functions in the data item fields before using the *VWRITE command, since initially they will be evaluated
to a constant and remain constant throughout the operation. Unless a file is defined with the *CFOPEN command,
data is written to the standard output file. Data written to the standard output file may be diverted to a different
file by first switching the current output file with the /OUTPUT command. You can also use the *MWRITE com-
mand to write data to a specified file. Both commands contain format descriptors on the line immediately following
the command. The format descriptors can be in either Fortran or C format.

You must enclose Fortran format descriptors in parentheses. They must immediately follow the *VWRITE command
on a separate line of the same input file. Do not include the word FORMAT. The format must specify the number
of fields to be written per line, the field width, the placement of the decimal point, etc. You should use one field
descriptor for each data item written. The write operation uses your system's available FORTRAN FORMAT con-
ventions (see your system FORTRAN manual). You can use any standard FORTRAN real format (such as (4F6.0),
(E10.3,2X,D8.2), etc.) and alphanumeric format (A). Alphanumeric strings are limited to a maximum of 8 characters
for any field (A8) using the Fortran format. Use the “C” format for string arrays larger than 8 characters. Integer
(I) and list-directed (*) descriptors may not be used. You can include text in the format as a quoted string. The
parentheses must be included in the format and the format must not exceed 80 characters (including parentheses).
The output line length is limited to 128 characters.

The “C” format descriptors are used if the first line of the format descriptor is not a left parenthesis. “C” format
descriptors are up to 80 characters long, consisting of text strings and predefined "data descriptors" between
the strings where numeric or alphanumeric character data will be inserted. The normal descriptors are %I for
integer data, %G for double precision data, %C for alphanumeric character data, and %/ for a line break. Each
descriptor must be preceded by a blank. There must be one data descriptor for each specified value (8 maximum)
in the order of the specified values. The enhanced formats described in *MSG may also be used.

For array parameter items, you must define the starting array element number. Looping continues (incrementing
the vector index number of each array parameter by one) each time you output a line, until the maximum array
vector element is written. For example, *VWRITE,A(1) followed by (F6.0) will write one value per output line, i.e.,
A(1), A(2), A(3), A(4), etc. You write constants and scalar parameters with the same values for each loop. You can
also control the number of loops and loop skipping with the *VLEN and *VMASK commands. The vector spe-
cifications *VABS, *VFACT, and *VCUM do not apply to this command. If looping continues beyond the supplied
data array's length, zeros will be output for numeric array parameters and blanks for character array parameters.
For multi-dimensioned array parameters, only the first (row) subscript is incremented. See the *VOPER command
for details. If you are in the GUI, the *VWRITE command must be contained in an externally prepared file and
read into ANSYS (i.e., *USE, /INPUT, etc.).

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Write to File

*VWRITE

6–119APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

/WAIT, DTIME
Causes a delay before the reading of the next command.

APDL: Process Controls

MP ME ST DY <> PR EM <> FL PP ED

DTIME

Time delay (in seconds). Maximum time delay is 59 seconds.

Notes

The command following the /WAIT will not be processed until the specified wait time increment has elapsed.
Useful when reading from a prepared input file to cause a pause, for example, after a display command so that
the display can be reviewed for a period of time. Another "wait" feature is available via the *ASK command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.6–120

/WAIT

Appendix A. APDL Gateway Commands
When you need to determine the applicability of a command or a group of commands to a specific product, the
following *GET functions will return a TRUE or a FALSE (a 1 or a 0) value to indicate if the command in question
is valid for your ANSYS product.

 Additional *get commands for a new entity=PRODUCT

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Item2 It2num Description
pname -P option from Ansys command line
name start 1-n Ansys product name. A character string
 of 8 characters is returned starting at
 position It2num. Use *dim and *do to get
 all 32 characters.
Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
/aux12 Check for Ansys gateway command/feature /AUX12
/config Check for Ansys gateway command/feature /CONFIG
/ucmd Check for Ansys gateway command/feature /UCMD
addam Check for Ansys gateway command/feature ADDAM
alphad Check for Ansys gateway command/feature ALPHAD
antype Check for Ansys gateway command/feature ANTYPE
antype static Check for Ansys gateway command/feature ANTYPE,STATIC
antype buckle Check for Ansys gateway command/feature ANTYPE,BUCKLE
antype modal Check for Ansys gateway command/feature ANTYPE,MODAL
antype harmic Check for Ansys gateway command/feature ANTYPE,HARMIC
antype trans Check for Ansys gateway command/feature ANTYPE,TRANS
antype substr Check for Ansys gateway command/feature ANTYPE,SUBSTR
antype spectr Check for Ansys gateway command/feature ANTYPE,SPECTR
arclen Check for Ansys gateway command/feature ARCLEN
betad Check for Ansys gateway command/feature BETAD
blc4 Check for Ansys gateway command/feature BLC4
blc5 Check for Ansys gateway command/feature BLC5
block Check for Ansys gateway command/feature BLOCK
cdread Check for Ansys gateway command/feature CDREAD
con4 Check for Ansys gateway command/feature CON4
cone Check for Ansys gateway command/feature CONE
cqc Check for Ansys gateway command/feature CQC
cyl4 Check for Ansys gateway command/feature CYL4
cyl5 Check for Ansys gateway command/feature CYL5
cylind Check for Ansys gateway command/feature CYLIND

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
damorph Check for Ansys gateway command/feature DAMORPH
demorph Check for Ansys gateway command/feature DEMORPH
dsum Check for Ansys gateway command/feature DSUM
dvmorph Check for Ansys gateway command/feature DVMORPH
edadapt Check for Ansys gateway command/feature EDADAPT
edbvis Check for Ansys gateway commands/feature EDBVIS
eddc Check for Ansys gateway commands/feature EDDC
edcgen Check for Ansys gateway commands/feature EDCGEN
edclist Check for Ansys gateway commands/feature EDCLIST
edcontact Check for Ansys gateway commands/feature EDCONTACT
edcpu Check for Ansys gateway commands/feature EDCPU
edcrb Check for Ansys gateway commands/feature EDCRB
edcsc Check for Ansys gateway commands/feature EDCSC
edcts Check for Ansys gateway commands/feature EDCTS
edcurve Check for Ansys gateway commands/feature EDCURVE
eddamp Check for Ansys gateway commands/feature EDDAMP
edenergy Check for Ansys gateway commands/feature EDENERGY
edfplot Check for Ansys gateway commands/feature EDFPLOT
edhgls Check for Ansys gateway commands/feature EDHGLS
edhtime Check for Ansys gateway commands/feature EDHTIME

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

edhist Check for Ansys gateway commands/feature EDHIST
edint Check for Ansys gateway commands/feature EDINT
edvel Check for Ansys gateway commands/feature EDVEL
edlcs Check for Ansys gateway commands/feature EDLCS
edldplot Check for Ansys gateway commands/feature EDLDPLOT

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
edload Check for Ansys gateway commands/feature EDLOAD
edmp Check for Ansys gateway commands/feature EDMP
ednb Check for Ansys gateway commands/feature EDNB
edndtsd Check for Ansys gateway commands/feature EDNDTSD
edout Check for Ansys gateway commands/feature EDOUT
edpart Check for Ansys gateway commands/feature EDPART
edread Check for Ansys gateway commands/feature EDREAD
eddrelax Check for Ansys gateway commands/feature EDDRELAX
edrst Check for Ansys gateway commands/feature EDRST
edshell Check for Ansys gateway commands/feature EDSHELL
edsolve Check for Ansys gateway commands/feature EDSOLVE
edstart Check for Ansys gateway commands/feature EDSTART
edweld Check for Ansys gateway commands/feature EDWELD
edwrite Check for Ansys gateway commands/feature EDWRITE
ekill Check for Ansys gateway commands/feature EKILL
emis Check for Ansys gateway commands/feature EMIS
et Check for Ansys gateway commands/feature ET

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
etchg Check for Ansys gateway commands/feature ETCHG
fldata Check for Ansys gateway commands/feature FLDATA
flotest Check for Ansys gateway commands/feature FLOTEST
flread Check for Ansys gateway commands/feature FLREAD
fvmesh Check for Ansys gateway commands/feature FVMESH
grp Check for Ansys gateway commands/feature GRP
hropt Check for Ansys gateway commands/feature HROPT
hropt full Check for Ansys gateway commands/feature HROPT,FULL
hropt reduc Check for Ansys gateway commands/feature HROPT,REDUC
hropt msup Check for Ansys gateway commands/feature HROPT,MSUP
igesin Check for Ansys gateway commands/feature IGESIN
igesout Check for Ansys gateway commands/feature IGESOUT
modopt Check for Ansys gateway commands/feature MODOPT
modopt reduc Check for Ansys gateway commands/feature MODOPT,REDUC
modopt subsp Check for Ansys gateway commands/feature MODOPT,SUBSP
modopt unsym Check for Ansys gateway commands/feature MODOPT,UNSYM
modopt damp Check for Ansys gateway commands/feature MODOPT,DAMP
modopt lanb Check for Ansys gateway commands/feature MODOPT,LANB
modopt qrdamp Check for Ansys gateway commands/feature MODOPT,QRDAMP
mooney Check for Ansys gateway commands/feature MOONEY
mp Check for Ansys gateway commands/feature MP
mp ex Check for Ansys gateway commands/feature MP,EX
mp alpx Check for Ansys gateway commands/feature MP,ALPX
mp reft Check for Ansys gateway commands/feature MP,REFT
mp prxy Check for Ansys gateway commands/feature MP,PRXY

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
mp nuxy Check for Ansys gateway commands/feature MP,NUXY
mp gxy Check for Ansys gateway commands/feature MP,GXY
mp damp Check for Ansys gateway commands/feature MP,DAMP
mp mu Check for Ansys gateway commands/feature MP,MU
mp dens Check for Ansys gateway commands/feature MP,DENS
mp c Check for Ansys gateway commands/feature MP,C
mp enth Check for Ansys gateway commands/feature MP,ENTH
mp kxx Check for Ansys gateway commands/feature MP,KXX
mp hf Check for Ansys gateway commands/feature MP,HF
mp emis Check for Ansys gateway commands/feature MP,EMIS
mp qrate Check for Ansys gateway commands/feature MP,QRATE
mp visc Check for Ansys gateway commands/feature MP,VISC
mp sonc Check for Ansys gateway commands/feature MP,SONC
mp rsvx Check for Ansys gateway commands/feature MP,RSVX

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.A–2

Appendix A. APDL Gateway Commands

mp perx Check for Ansys gateway commands/feature MP,PERX
mp murx Check for Ansys gateway commands/feature MP,MURX
mp mgxx Check for Ansys gateway commands/feature MP,MGXX
mp hgls Check for Ansys gateway commands/feature MP,HGLS
mp rigid Check for Ansys gateway commands/feature MP,RIGID
mp cable Check for Ansys gateway commands/feature MP,CABLE
mp ortho Check for Ansys gateway commands/feature MP,ORTHO
mp lsst Check for Ansys gateway commands/feature MP,LSST
mpdata Check for Ansys gateway commands/feature MPDATA
mpdata ex Check for Ansys gateway commands/feature MPDATA,EX
mpdata alpx Check for Ansys gateway commands/feature MPDATA,ALPX

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
mpdata reft Check for Ansys gateway commands/feature MPDATA,REFT
mpdata prxy Check for Ansys gateway commands/feature MPDATA,PRXY
mpdata nuxy Check for Ansys gateway commands/feature MPDATA,NUXY
mpdata gxy Check for Ansys gateway commands/feature MPDATA,GXY
mpdata damp Check for Ansys gateway commands/feature MPDATA,DAMP
mpdata mu Check for Ansys gateway commands/feature MPDATA,MU
mpdata dens Check for Ansys gateway commands/feature MPDATA,DENS
mpdata c Check for Ansys gateway commands/feature MPDATA,C
mpdata enth Check for Ansys gateway commands/feature MPDATA,ENTH
mpdata kxx Check for Ansys gateway commands/feature MPDATA,KXX
mpdata hf Check for Ansys gateway commands/feature MPDATA,HF
mpdata emis Check for Ansys gateway commands/feature MPDATA,EMIS
mpdata qrate Check for Ansys gateway commands/feature MPDATA,QRATE
mpdata visc Check for Ansys gateway commands/feature MPDATA,VISC
mpdata sonc Check for Ansys gateway commands/feature MPDATA,SONC
mpdata rsvx Check for Ansys gateway commands/feature MPDATA,RSVX
mpdata perx Check for Ansys gateway commands/feature MPDATA,PERX
mpdata murx Check for Ansys gateway commands/feature MPDATA,MURX
mpdata mgxx Check for Ansys gateway commands/feature MPDATA,MGXX
mpdata lsst Check for Ansys gateway commands/feature MPDATA,LSST
mscap Check for Ansys gateway commands/feature MSCAP
msdata Check for Ansys gateway commands/feature MSDATA
msmeth Check for Ansys gateway commands/feature MSMETH
msnomf Check for Ansys gateway commands/feature MSNOMF
msprop Check for Ansys gateway commands/feature MSPROP

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
msquad Check for Ansys gateway commands/feature MSQUAD
msrelax Check for Ansys gateway commands/feature MSRELAX
mssolu Check for Ansys gateway commands/feature MSSOLU
msspec Check for Ansys gateway commands/feature MSSPEC
msvary Check for Ansys gateway commands/feature MSVARY
nlgeom Check for Ansys gateway commands/feature NLGEOM
nrlsum Check for Ansys gateway commands/feature NRLSUM
optyp Check for Ansys gateway commands/feature OPTYP
optyp subp Check for Ansys gateway commands/feature OPTYP,SUBP
optyp first Check for Ansys gateway commands/feature OPTYP,FIRST
optyp rand Check for Ansys gateway commands/feature OPTYP,RAND
optyp run Check for Ansys gateway commands/feature OPTYP,RUN
optyp fact Check for Ansys gateway commands/feature OPTYP,FACT
optyp grad Check for Ansys gateway commands/feature OPTYP,GRAD
optyp sweep Check for Ansys gateway commands/feature OPTYP,SWEEP
optyp user Check for Ansys gateway commands/feature OPTYP,USER
opuser Check for Ansys gateway commands/feature OPUSER
pri2 Check for Ansys gateway commands/feature PRI2
prism Check for Ansys gateway commands/feature PRISM
psdcom Check for Ansys gateway commands/feature PSDCOM
psdfrq Check for Ansys gateway commands/feature PSDFRQ
psolve Check for Ansys gateway commands/feature PSOLVE
rate Check for Ansys gateway commands/feature RATE
resume Check for Ansys gateway commands/feature RESUME
rpr4 Check for Ansys gateway commands/feature RPR4

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
rprism Check for Ansys gateway commands/feature RPRISM
save Check for Ansys gateway commands/feature SAVE

Appendix A. APDL Gateway Commands

A–3APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

se Check for Ansys gateway commands/feature SE
sesymm Check for Ansys gateway commands/feature SESYMN
setran Check for Ansys gateway commands/feature SETRAN
solve Check for Ansys gateway commands/feature SOLVE
sph4 Check for Ansys gateway commands/feature SPH4
sph5 Check for Ansys gateway commands/feature SPH5
sphere Check for Ansys gateway commands/feature SPHERE
spop Check for Ansys gateway commands/feature SPOP
spop sprs Check for Ansys gateway commands/feature SPOP,SPRS
spop mprs Check for Ansys gateway commands/feature SPOP,MPRS
spop ddam Check for Ansys gateway commands/feature SPOP,DDAM
spop psd Check for Ansys gateway commands/feature SPOP,PSD
srss Check for Ansys gateway commands/feature SRSS
tb Check for Ansys gateway commands/feature TB
tb bkin Check for Ansys gateway commands/feature TB,BKIN
tb mkin Check for Ansys gateway commands/feature TB,MKIN
tb miso Check for Ansys gateway commands/feature TB,MISO
tb biso Check for Ansys gateway commands/feature TB,BISO
tb aniso Check for Ansys gateway commands/feature TB,ANISO
tb dp Check for Ansys gateway commands/feature TB,DP
tb anand Check for Ansys gateway commands/feature TB,ANAND
tb melas Check for Ansys gateway commands/feature TB,MELAS
tb user Check for Ansys gateway commands/feature TB,USER

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
tb creep Check for Ansys gateway commands/feature TB,CREEP
tb swell Check for Ansys gateway commands/feature TB,SWELL
tb bh Check for Ansys gateway commands/feature TB,BH
tb piez Check for Ansys gateway commands/feature TB,PIEZ
tb fail Check for Ansys gateway commands/feature TB,FAIL
tb mooney Check for Ansys gateway commands/feature TB,MOONEY
tb water Check for Ansys gateway commands/feature TB,WATER
tb anel Check for Ansys gateway commands/feature TB,ANEL
tb concr Check for Ansys gateway commands/feature TB,CONCR
tb pflow Check for Ansys gateway commands/feature TB,PFLOW
tb evisc Check for Ansys gateway commands/feature TB,EVISC
tb plaw Check for Ansys gateway commands/feature TB,PLAW
tb foam Check for Ansys gateway commands/feature TB,FOAM
tb honey Check for Ansys gateway commands/feature TB,HONEY
tb comp Check for Ansys gateway commands/feature TB,COMP
tb nl Check for Ansys gateway commands/feature TB,NL
tb nliso Check for Ansys gateway commands/feature TB,NLISO
tb chab Check for Ansys gateway commands/feature TB,CHAB
tb boyce Check for Ansys gateway commands/feature TB,BOYCE
tb eos Check for Ansys gateway commands/feature TB,EOS
torus Check for Ansys gateway commands/feature TORUS
trnopt Check for Ansys gateway commands/feature TRNOPT
trnopt full Check for Ansys gateway commands/feature TRNOPT,FULL
trnopt reduc Check for Ansys gateway commands/feature TRNOPT,REDUC
trnopt msup Check for Ansys gateway commands/feature TRNOPT,MSUP

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
usrcal Check for Ansys gateway commands/feature USRCAL
v Check for Ansys gateway commands/feature V
va Check for Ansys gateway commands/feature VA
vadd Check for Ansys gateway commands/feature VADD
vcvfill Check for Ansys gateway commands/feature VCVFILL
vdrag Check for Ansys gateway commands/feature VDRAG
vext Check for Ansys gateway commands/feature VEXT
vgen Check for Ansys gateway commands/feature VGEN
vglue Check for Ansys gateway commands/feature VGLUE
vinp Check for Ansys gateway commands/feature VINP
vinv Check for Ansys gateway commands/feature VINV
vlscale Check for Ansys gateway commands/feature VLSCALE
vmesh Check for Ansys gateway commands/feature VMESH
voffset Check for Ansys gateway commands/feature VOFFSET
vovlap Check for Ansys gateway commands/feature VOVLAP
vptn Check for Ansys gateway commands/feature VPTN
vrotat Check for Ansys gateway commands/feature VROTAT
vsba Check for Ansys gateway commands/feature VSBA

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.A–4

Appendix A. APDL Gateway Commands

vsbv Check for Ansys gateway commands/feature VSBV
vsbw Check for Ansys gateway commands/feature VSBW
vsymm Check for Ansys gateway commands/feature VSYMM
vtran Check for Ansys gateway commands/feature VTRAN

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
elem i Check to see if Ansys element type "i" is allowed.

Entity=PRODUCT,ENTNUM=0 (or blank)
Item1 It1num Description (return values: 1=allowed, 0=not allowed)
limit node Get maximum allowed node number
limit elem Get maximum allowed element number
limit kp Get maximum allowed keypoint number
limit line Get maximum allowed line number
limit area Get maximum allowed area number
limit vol Get maximum allowed volume number
limit dof Get maximum allowed dof number
limit mdof Get maximum allowed master dof number

Appendix A. APDL Gateway Commands

A–5APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

A–6

Appendix B. GET Function Summary
A "get function" is available for some items, and can be used instead of the *GET command. The function returns
the value and uses it where the function is input (bypassing the need for storing the value with a parameter
name and inputting the parameter name where the value is to be used). For example, assume the average X-
location of two nodes is to be calculated. Using the *GET command, parameter L1 can be assigned the X location
of node 1 (*GET, L1, NODE, 1, LOC, X), and parameter L2 can be assigned the X location of node 2, then the mid
location can be computed from MID = (L1+L2)/2. However, using the node location "get function" NX(N), which
returns the X location of node N, MID can be computed directly from MID = (NX(1)+NX(2))/2, without the need
for intermediate parameters L1 and L2. Get functions return values in the active coordinate system unless stated
otherwise.

Get function arguments may themselves be parameters or other get functions. The get function
NELEM(ENUM,NPOS) returns the node number in position NPOS for element ENUM. Combining functions,
NX(NELEM(ENUM,NPOS)) returns the X location of that node. Get functions (where available) are shown with the
corresponding *GET items in the tables below and are summarized at the end of this command description.

Get functions are described at the beginning of this command (see Notes) and are shown as alternatives to the
*GET items where they apply. They are summarized here (grouped by functionality) for convenience.

Table B.1 *GET - Get Function Summary

"Get Function" Summary

DescriptionEntity Status Get Function

Status of node N: -1=unselected, 0=undefined, 1=selected.NSEL(N)

Status of element E: -1=unselected, 0=undefined, 1=selected.ESEL(E)

Status of keypoint K: -1=unselected, 0=undefined, 1=selected.KSEL(K)

Status of line L: -1=unselected, 0=undefined, 1=selected.LSEL(L)

Status of area A: -1=unselected, 0=undefined, 1=selected.ASEL(A)

Status of volume V: -1=unselected, 0=undefined, 1=selected.VSEL(V)

Next Selected Entity

Next selected node having a node number greater than N.NDNEXT(N)

Next selected element having an element number greater than E.ELNEXT(E)

Next selected keypoint having a keypoint number greater than K.KPNEXT(K)

Next selected line having a line number greater than L.LSNEXT(L)

Next selected area having an area number greater than A.ARNEXT(A)

Next selected volume having a volume number greater than V.VLNEXT(V)

Locations

Centroid X-coordinate of element E in global Cartesian coordinate
system. Centroid is determined from the selected nodes on the element.

CENTRX(E)

Centroid Y-coordinate of element E in global Cartesian coordinate
system. Centroid is determined from the selected nodes on the element.

CENTRY(E)

Centroid Z-coordinate of element E in global Cartesian coordinate
system. Centroid is determined from the selected nodes on the element.

CENTRZ(E)

X-coordinate of node N in the active coordinate system.NX(N)

Y-coordinate of node N in the active coordinate system.NY(N)

Z-coordinate of node N in the active coordinate system.NZ(N)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

"Get Function" Summary

DescriptionEntity Status Get Function

X-coordinate of keypoint K in the active coordinate systemKX(K)

Y-coordinate of keypoint K in the active coordinate systemKY(K)

Z-coordinate of keypoint K in the active coordinate systemKZ(K)

X-coordinate of line L at length fraction LFRAC (0.0 to 1.0).LX(L,LFRAC)

Y-coordinate of line L at length fraction LFRAC (0.0 to 1.0).LY(L,LFRAC)

Z-coordinate of line L at length fraction LFRAC (0.0 to 1.0).LZ(L,LFRAC)

X slope of line L at length fraction LFRAC (0.0 to 1.0).LSX(L,LFRAC)

Y slope of line L at length fraction LFRAC (0.0 to 1.0).LSY(L,LFRAC)

Z slope of line L at length fraction LFRAC (0.0 to 1.0).LSZ(L,LFRAC)

Nearest to Location

Number of the selected node nearest the X,Y,Z point (in the active
coordinate system, lowest number for coincident nodes).

NODE(X,Y,Z)

Number of the selected keypoint nearest the X,Y,Z point (in the active
coordinate system, lowest number for coincident nodes).

KP(X,Y,Z)

Distances

Distance between nodes N1 and N2.DISTND(N1,N2)

Distance between keypoints K1 and K2.DISTKP(K1,K2)

Distance between the centroid of element E and node N. Centroid is
determined from the selected nodes on the element.

DISTEN(E,N)

Angles (in radians by default -- see the *AFUN command)

Subtended angle between two lines (defined by three nodes where
N1 is the vertex node). Default is in radians.

ANGLEN(N1,N2,N3)

Subtended angle between two lines (defined by three keypoints where
K1 is the vertex keypoint). Default is in radians.

ANGLEK(K1,K2,K3)

Nearest to Entity

Selected node nearest node N.NNEAR(N)

Selected keypoint nearest keypoint K.KNEAR(K)

Selected element nearest node N. The element position is calculated
from the selected nodes.

ENEARN(N)

Areas

Area of the triangle with vertices at nodes N1, N2, and N3.AREAND(N1,N2,N3)

Area of the triangle with vertices at keypoints K1, K2, and K3.AREAKP(K1,K2,K3)

Area at node N apportioned from selected elements attached to node
N. For 2-D planar solids, returns edge area associated with the node.
For axisymmetric solids, returns edge surface area associated with the
node. For 3-D volumetric solids, returns face area associated with the
node. For 3–D, select all the nodes of the surface of interest before using
ARNODE.

ARNODE(N)

Normals

X-direction cosine of the normal to the plane containing nodes N1,
N2, and N3.

NORMNX(N1,N2,N3)

Y-direction cosine of the normal to the plane containing nodes N1,
N2, and N3.

NORMNY(N1,N2,N3)

Z-direction cosine of the normal to the plane containing nodes N1,
N2, and N3.

NORMNZ(N1,N2,N3)

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.B–2

Appendix B. GET Function Summary

"Get Function" Summary

DescriptionEntity Status Get Function

X-direction cosine of the normal to the plane containing keypoints K1,
K2, and K3.

NORMKX(K1,K2,K3)

Y-direction cosine of the normal to the plane containing keypoints K1,
K2, and K3.

NORMKY(K1,K2,K3)

Z-direction cosine of the normal to the plane containing keypoints K1,
K2, and K3.

NORMKZ(K1,K2,K3)

Connectivity

Element connected to node N. LOC is the position in the resulting list
when many elements share the node. A zero is returned at the end of
the list.

ENEXTN(N,LOC)

Node number in position NPOS (1--20) of element E.NELEM(E,NPOS)

Returns the bit pattern for the active DOFs at the specified node.

bit 0 is UX, bit 1 is UY,... bit 5 is ROTZ
bits 6,7,8 are AX,AY,AZ
bits 9,10,11 are VX,VY,VZ
bit 18 is PRES, bit 19 is TEMP, bit 20 is VOLT, bit 21 is MAG
bit 24 is EMF, bit 25 is CURR
For a node with UX,UY,UZ the return value will be 7 (bits 0,1,2)
For a node with UX,UY,UZ,ROTX,ROTY,ROTZ the return value will be 63
(bits 0,1,2,3,4,5)

NODEDOF(N)

Faces

For 2-D planar solids and 3-D volumetric solids, element adjacent to a
face (FACE) of element E. The face number is the same as the surface
load key number. Only elements of the same dimensionality and shape
are considered. A -1 is returned if more than one is adjacent.

ELADJ(E,FACE)

Node in position LOC of a face number FACE of element E. The face
number is the same as the surface load key number. LOC is the nodal
position on the face (for an IJLK face, LOC=1 is at node I, 2 is at node J,
etc.)

NDFACE(E,FACE,LOC)

Face number of element E containing the selected nodes. The face
number output is the surface load key. If multiple load keys occur on
a face (such as for line and area elements) the lowest load key for that
face is output.

NMFACE(E)

For 2-D planar solids and 3-D volumetric solids, returns the area of the
face of element E containing the selected nodes. For axisymmetric
elements, the area is the full (360 degree) area.

ARFACE(E)

Degree of Freedom Results

UX structural displacement at node N.UX(N)

UY structural displacement at node N.UY(N)

UZ structural displacement at node N.UZ(N)

ROTX structural rotation at node N.ROTX(N)

ROTY structural rotation at node N.ROTY(N)

ROTZ structural rotation at node N.ROTZ(N)

Temperature at node N. For SHELL131 and SHELL132 elements with
KEYOPT(3) = 0 or 1, use TBOT(N), TE2(N), TE3(N), . . ., TTOP(N) instead of
TEMP(N).

TEMP(N)

Pressure at node N.PRES(N)

Appendix B. GET Function Summary

B–3APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

"Get Function" Summary

DescriptionEntity Status Get Function

VX fluid velocity at node N.VX(N)

VY fluid velocity at node N.VY(N)

VZ fluid velocity at node N.VZ(N)

Turbulent kinetic energy (FLOTRAN) at node N.ENKE(N)

Turbulent energy dissipation (FLOTRAN) at node N.ENDS(N)

Electric potential at node N.VOLT(N)

Magnetic scalar potential at node N.MAG(N)

AX magnetic vector potential at node N.AX(N)

AY magnetic vector potential at node N.AY(N)

AZ magnetic vector potential at node N.AZ(N)

Returns information about the data base manager

Number of pages in core.VIRTINQR(1)

Page size in integer words.VIRTINQR(4)

Maximum number of pages allowed on disk.VIRTINQR(7)

Number of read/write operations on page.VIRTINQR(8)

Maximum record number on page.VIRTINQR(9)

Maximum pages touched.VIRTINQR(11)

Returns the current value of ANSYS filtering keywords.

Returns the current value the keyword specified by KEYWORD. See the
ANSYS UIDL Programmer's Guide for a list of keywords and values.

KWGET(KEYWORD)

Character String Functions Strings must be dimensioned (see *DIM) as a character parameter or enclosed in
single apostrophes ('char').

Functions which return a double precision value of a numeric character string.

a8 is a decimal value expressed in a string.VALCHR(a8)

a8 is an octal value expressed in a string.VALOCT (a8)

a8 is a hex value expressed in a string.VALHEX(a8)

Functions which return an 8 character string of a numeric value.

dp is a double precision variable.CHRVAL (dp)

dp is an integer value.CHROCT (dp)

dp is an integer value.CHRHEX(dp)

Functions which manipulate strings: StrOut is the output string (or character parameter) Str1 and Str2 are input strings.
Strings are a maximum of 128 characters. (see *DIM)

Get the nChar substring starting at character nLoc in Str1.StrOut = STRSUB(Str1, nLoc,nChar)

Add Str2 at the end of Str1.StrOut = STRCAT(Str1,Str2)

Add Str2 to Str1 starting at character nLoc.StrOut = STRFILL(Str1,Str2,nLoc)

Remove all blanks from Str1StrOut = STRCOMP(Str1)

Left-justify Str1StrOut = STRLEFT(Str1)

Get starting location of Str2 in Str1.nLoc = STRPOS(Str1,Str2)

Location of last nonblank characternLoc = STRLENG(Str1)

Upper case of Str1StrOut = UPCASE(Str1)

Lower case of Str1StrOut = LWCASE(Str1)

The following functions manipulate file names.

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.B–4

Appendix B. GET Function Summary

"Get Function" Summary

DescriptionEntity Status Get Function

Produces a contiguous pathstring. e.g. directory/filename.extPath String = JOIN ('directory','filename','ex-
tension')

Produces a contiguous pathstring. e.g. directory/filenamePath String = JOIN ('directory','filename')

Produces a separate output of the directory from the pathstring.SPLIT('PathString', 'DIR')

Produces a separate output of the complete filename (with extension)
from the pathstring.

SPLIT('PathString', 'FILE')

Produces a separate output of the filename from the pathstring.SPLIT('PathString', 'NAME')

Produces a separate output of the file extension from the pathstring.SPLIT('PathString', 'EXT')

Appendix B. GET Function Summary

B–5APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

B–6

Index
Symbols
*ABBR command, 6–3
*AFUN command, 6–5
*ASK command, 6–6
*CFCLOS command, 6–6
*CFOPEN command, 6–7
*CFWRITE command, 6–8
*CREATE command, 6–8
*CYCLE command, 6–9
*DEL command, 6–9
*DIM command, 6–11
*DO command, 6–14
*DOWHILE command, 6–15
*ELSE command, 6–16
*ELSEIF command, 6–16
*END command, 6–17
*ENDDO command, 6–18
*ENDIF command, 6–18
*EXIT command, 6–19
*GET command, 6–19
*GO command, 6–60
*IF command, 6–61
*MFOURI command, 6–66
*MFUN command, 6–67
*MOPER command, 6–68
*MSG command, 6–70
*MWRITE command, 6–72
*REPEAT command, 6–76
*RETURN command, 6–77
*SET command, 6–77
*SREAD command, 6–81
*STATUS command, 6–82
*TAXIS command, 6–83
*TOPER command, 6–85
*TREAD command, 6–86
*ULIB command, 6–90
*USE command, 6–91
*VABS command, 6–93
*VCOL command, 6–94
*VCUM command, 6–95
*VEDIT command, 6–96
*VFACT command, 6–96
*VFILL command, 6–97
*VFUN command, 6–98
*VGET command, 6–101
*VITRP command, 6–106
*VLEN command, 6–107
*VMASK command, 6–108
*VOPER command, 6–109

*VPLOT command, 6–111
*VPUT command, 6–112
*VREAD command, 6–115
*VSCFUN command, 6–117
*VSTAT command, 6–118
*VWRITE command, 6–118
/DFLAB command, 6–10
/DIRECTORY command, 6–14
/INQUIRE command, 6–63
/MAIL command, 6–65
/PMACRO command, 6–75
/PSEARCH command, 6–75
/TEE command, 6–84
/UCMD command, 6–90
/WAIT command, 6–120

A
*ABBR command, 2–1, 3–11
*ABBRES command, 2–3, 6–3
abbreviations

defined, 2–1
files, 2–3
nesting on toolbar, 2–3

*ABBSAV command, 2–3, 6–4
*ABCHECK command

defined, 5–5
*ABFINI command, 5–5
*AFUN command, 3–12
ANSYS startup options, 3–3
ANSYS_MACROLIB environment variable, 4–2
APDL

comments, 3–12
defined, 1–1
macros, 4–1
mathematical functions, 3–12
operators, 3–12

AR20 through AR99, 4–8
ARG1 through AR19, 4–8
ARRAY

defined, 3–14
examples, 3–16

array parameters, 3–14
1-D table example, 3–23
2-D table example, 3–23
3-D table example, 3–23
ARRAY, 3–14
basics, 3–15
CHAR, 3–14, 3–16, 3–20

examples, 3–16
naming conflict, 3–20

defining, 3–19
editing interactively, 3–21

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

examples, 3–16
filling from a data file, 3–23, 3–23
filling vectors, 3–21
interpolating values, 3–27
labeling, 3–44
listing, 3–19, 3–29, 3–29
matrix operations, 3–35
operations, 3–32
plotting, 3–40
specifying values, 3–19
TABLE, 3–14, 3–17, 3–17

examples, 3–17
writing data files, 3–30

Array parameters
ARRAY, 3–16

examples, 3–16
*ASK command, 3–10

defined, 5–1

C
*CFCLOS command, 4–3
*CFOPEN command, 3–30, 4–3
*CFWRITE command, 3–10, 4–3
CHAR

defined, 3–14
examples, 3–16
limitation with *VEDIT, 3–21
naming conflict, 3–20

character parameters, 3–8
comment character, 3–12
*CREATE command, 4–3
create macro dialog box, 4–4
*CSET command, 5–2
*CYCLE command, 4–12, 4–12

defined, 4–13

D
data descriptors, 3–10, 3–30

in messages, 5–4
data files

writing from arrays, 3–30
/DECRYPT command, 6–2
macros

introduction to programming, 4–1
*DIM command, 3–11, 3–19, 3–20
*DO command, 4–12

defined, 4–13
do-loops, 4–12

vector operations, 3–32
do-while, 4–13

E
*ELSE command, 4–9, 5–4

defined, 4–13
*ELSEIF command, 3–10, 4–9, 5–4

defined, 4–13
/ENCRYPT command

defined, 6–1
encrypting macros, 6–1
*END command, 4–3
*ENDDO command, 4–12

defined, 4–13
*ENDIF command, 4–9, 5–4

defined, 4–13
/EOF command, 4–6
ETABLE command, 3–1
*EXIT command, 4–12, 4–12

defined, 4–13
expressions, 3–12

F
FILE command, 3–9
/FILENAME command, 3–9
files

abbreviations, 2–3
Format

data descriptors, 3–30
functions, 3–12

G
*GET command, 3–11

assigning parameters, 3–3
GET functions, 3–4
global encryption key, 6–2
*GO command, 4–9, 4–12
/GOPR command, 4–12, 6–1
GUI

interfacing with, 5–1

H
home directory, 4–2

I
*IF command, 3–10, 4–12, 4–13, 5–4

defined, 4–9
/INPUT command, 3–9, 4–1

L
Array parameters

CHAR, 3–21
limitation with *VEDIT, 3–21

login directory, 4–2

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.Index–2

Index

looping, 4–12, 4–13

M
macros

control functions, 4–9, 4–13
quick reference, 4–13

creating, 4–1
creating status bar, 5–5
creating STOP button, 5–5
creating with a text editor, 4–5
displaying messages, 5–4
encrypting, 6–1
executing, 4–7, 6–2

encrypted, 6–2
general examples, 4–16
library files, 4–6
local variables, 4–8
naming, 4–1
nesting, 4–1, 4–9
passing arguments to, 4–8
picking, 5–7
prompting for single parameter, 5–1
prompting with dialog box, 5–2
search path, 4–2
writing to session log, 5–7

matrix operations, 3–35
messages

types of, 5–4
*MFOURI command, 3–35
*MFUN command, 3–35
*MOPER command, 3–35

examples, 3–35
*MSG command, 3–10

defined, 5–4, 5–4
MULTIPRO command

defined, 5–2
example, 5–2

N
/NOPR command, 6–1

O
operators, 3–12

order of evaluation, 3–12
/OUTPUT command, 3–9

P
parameters, 3–1, 4–1

array (see array parameters)
assigning ANSYS-supplied values, 3–3
assigning at startup, 3–3
assigning during execution, 3–2

assigning through ANSYS command line, 3–3
assigning through ANSYS Launcher, 3–3
character, 3–8, 3–8, 3–11
defining, 3–2
deleting, 3–8, 3–8
dynamic substitution of, 3–11
forcing substitution of, 3–9
listing, 3–7
maximum number, 3–7
PASSWORD, 6–2
preventing substitution of, 3–9
resuming, 3–13
saving, 3–13
substituting numeric values, 3–9
using *GET, 3–3
using get functions, 3–3
using in-line get functions, 3–4
writing, 3–13
_RETURN, 5–5
_RETURN parameter, 4–14
_STATUS parameter, 4–14

Parameters
naming conventions, 3–1

parametric expressions, 3–12
parametric functions, 3–12
PARRES command, 3–10, 3–13, 6–73
PARSAV command, 3–10, 3–13, 6–74
passing arguments to macros, 4–8
plotting

array vectors, 3–40
labeling, 3–44

/PMACRO command, 5–7

R
*REPEAT command, 4–11
repeating a command, 4–11
RESUME command, 3–9
parameters

retrieving or restoring parameter values, 3–29

S
*SET command, 3–2, 3–11, 3–19, 3–20
specification commands

vector and matrix operations, 3–37
start.ans file, 3–3
status bar, 5–5
*STATUS command, 3–7, 3–11, 3–29, 3–37

examples, 3–29
/STITLE command, 3–9, 3–11
STOP button

creating using a macro, 5–5

Index

Index–3APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.

T
TABLE

defined, 3–14
examples, 3–17

/TEE command, 4–4
text editor, 4–5
/TITLE command, 3–9, 3–11
/TLABEL command, 3–9, 3–11
toolbar

default buttons, 2–1
modifying, 2–1
nesting abbreviations on, 2–3

*TREAD command, 3–19, 3–23, 3–23

U
UIDL functions

calling in macros, 5–7
/UIS command, 5–4
*ULIB command, 4–7
UNIX shells, 3–3
unknown command

method for executing macros, 4–7
*USE command, 4–7, 4–7

V
*VABS command, 3–37
*VCOL command, 3–37
*VCUM command, 3–37
vector operations, 3–32
*VEDIT command, 3–11, 3–19

defined, 3–21
*VFACT command, 3–37

example, 3–37
*VFILL command, 3–11, 3–19, 3–32

defined, 3–21, 3–37
*VFUN command, 3–11, 3–32

examples, 3–32, 3–37
*VGET command, 3–11, 3–32
*VITRP command, 3–11, 3–32
*VLEN command, 3–11, 3–37

examples, 3–37, 3–37
*VMASK command, 3–11, 3–37

example, 3–37, 3–37
*VOPER command, 3–11, 3–32

examples, 3–32, 3–32
gather and scatter, 3–32

*VPLOT command
defined, 3–40, 3–40, 3–44

*VPUT command
defined, 3–29

*VREAD command, 3–10, 3–11, 3–19, 3–23, 3–32, 3–32,
3–37

*VSCFUN command, 3–11, 3–32
*VSTAT command, 3–37, 3–37
*VWRITE command, 3–10, 3–11, 3–13, 3–32, 3–37

data descriptors, 3–30, 3–30

W
windows

current directory, 4–2

APDL Programmer's Guide . ANSYS Release 8.1 . 001973 . © SAS IP, Inc.Index–4

Index

	APDL Programmer's Guide
	Table of Contents
	Chapter 1: Introducing APDL
	1.1. What Is APDL?

	Chapter 2: Working with the Toolbar
	2.1. Adding Commands to the Toolbar
	2.2. Modifying the Toolbar
	2.2.1. Example: Adding a Toolbar Button
	2.2.2. Saving Toolbar Buttons

	2.3. Nesting Toolbar Abbreviations

	Chapter 3: Using Parameters
	3.1. Parameters
	3.2. Guidelines for Parameter Names
	3.2.1. Hiding Parameters from *STATUS

	3.3. Defining Parameters
	3.3.1. Assigning Parameter Values During Execution
	3.3.2. Assigning Parameter Values At Startup
	3.3.3. Assigning ANSYS-Supplied Values to Parameters
	3.3.3.1. Using the *GET Command
	3.3.3.2. Using In-line Get Functions

	3.3.4. Listing Parameters

	3.4. Deleting Parameters
	3.5. Using Character Parameters
	3.6. Substitution of Numeric Parametric Values
	3.6.1. Preventing Substitution
	3.6.2. Substitution of Character Parametric Values
	3.6.2.1. Forced Substitution
	3.6.2.2. Other Places Where Character Parameters Are Valid
	3.6.2.3. Character Parameter Restrictions

	3.7. Dynamic Substitution of Numeric or Character Parameters
	3.8. Parametric Expressions
	3.9. Parametric Functions
	3.10. Saving, Resuming, and Writing Parameters
	3.11. Array Parameters
	3.11.1. Array Parameter Basics
	3.11.2. Array Parameter Examples
	3.11.3. TABLE Type Array Parameters
	3.11.4. Defining and Listing Array Parameters
	3.11.5. Specifying Array Element Values
	3.11.5.1. Specifying Individual Array Values
	3.11.5.2. Filling Array Vectors
	3.11.5.3. Interactively Editing Arrays
	3.11.5.4. Filling an Array From a Data File Using *VREAD
	3.11.5.5. Filling a TABLE Array From a Data File Using *TREAD
	3.11.5.6. Interpolating Values
	3.11.5.7. Retrieving Values into or Restoring Array Parameter Values
	3.11.5.8. Listing Array Parameters

	3.11.6. Writing Data Files
	3.11.6.1. Format Data Descriptors

	3.11.7. Operations Among Array Parameters
	3.11.7.1. Vector Operations
	3.11.7.2. Matrix Operations
	3.11.7.3. Specification Commands for Vector and Matrix Operations

	3.11.8. Plotting Array Parameter Vectors
	3.11.9. Modifying Curve Labels

	Chapter 4: APDL as a Macro Language
	4.1. What is an APDL Macro?
	4.2. Creating a Macro
	4.2.1. Macro File Naming Conventions
	4.2.2. Macro Search Path
	4.2.3. Creating a Macro Within ANSYS
	4.2.3.1. Using *CREATE
	4.2.3.2. Using *CFWRITE
	4.2.3.3. Using /TEE
	4.2.3.4. Using Utility Menu> Macro> Create Macro

	4.2.4. Creating Macros with a Text Editor
	4.2.5. Using Macro Library Files

	4.3. Executing Macros and Macro Libraries
	4.4. Local Variables
	4.4.1. Passing Arguments to a Macro
	4.4.2. Local Variables Within Macros
	4.4.3. Local Variables Outside of Macros

	4.5. Controlling Program Flow in APDL
	4.5.1. Nested Macros: Calling Subroutines Within a Macro
	4.5.2. Unconditional Branching: Goto
	4.5.3. Conditional Branching: The *IF Command
	4.5.4. Repeating a Command
	4.5.5. Looping: Do-Loops
	4.5.6. Implied (colon) Do Loops
	4.5.7. Additional Looping: Do-While

	4.6. Control Functions Quick Reference
	4.7. Using the _STATUS and _RETURN Parameters in Macros
	4.8. Using Macros with Components and Assemblies
	4.9. Reviewing Example Macros

	Chapter 5: Interfacing with the GUI
	5.1. Prompting Users for a Single Parameter Value
	5.2. Prompting Users With a Dialog Box
	5.3. Using Macros to Display Your Own Messages
	5.4. Creating and Maintaining a Status Bar from a Macro
	5.5. Picking within Macros
	5.6. Calling Dialog Boxes From a Macro

	Chapter 6: Encrypting Macros
	6.1. Preparing a Macro for Encryption
	6.2. Creating an Encrypted Macro
	6.3. Running an Encrypted Macro

	APDL Commands Reference
	*ABBR
	ABBRES
	ABBSAV
	*AFUN
	*ASK
	*CFCLOS
	*CFOPEN
	*CFWRITE
	*CREATE
	*CYCLE
	*DEL
	/DFLAB
	*DIM
	/DIRECTORY
	*DO
	*DOWHILE
	*ELSE
	*ELSEIF
	*END
	*ENDDO
	*ENDIF
	*EXIT
	*GET
	*GO
	*IF
	/INQUIRE
	/MAIL
	*MFOURI
	*MFUN
	*MOPER
	*MSG
	*MWRITE
	PARRES
	PARSAV
	/PMACRO
	/PSEARCH
	*REPEAT
	*RETURN
	*SET
	*SREAD
	*STATUS
	*TAXIS
	/TEE
	*TOPER
	*TREAD
	/UCMD
	*ULIB
	*USE
	*VABS
	*VCOL
	*VCUM
	*VEDIT
	*VFACT
	*VFILL
	*VFUN
	*VGET
	*VITRP
	*VLEN
	*VMASK
	*VOPER
	*VPLOT
	*VPUT
	*VREAD
	*VSCFUN
	*VSTAT
	*VWRITE
	/WAIT

	Appendix A. APDL Gateway Commands
	Appendix B. GET Function Summary
	Index

