APDL Programmer's
Guide

ANSYS Release 8.1

001973
April 2004

ANSYS, Inc.is a
UL registered
1SO 9001: 2000
Company

APDL Programmer's Guide

ANSYS Release 8.1

ANSYS, Inc.
Southpointe

275 Technology Drive
Canonsburg, PA 15317
ansysinfo@ansys.com
http://www.ansys.com
(T) 724-746-3304

(F) 724-514-9494

Revision History

Number Release Date

001620 ANSYS 6.1 March 2002
001695* ANSYS 7.0 October 2002
001788* ANSYS 7.1 May 2003
001901* ANSYS 8.0 October 2003
001973** ANSYS 8.1 April 2004

* ANSYS Documentation on CD.

** Included in ANSYS Documentation on CD and in print.

Trademark Information

ANSYS, DesignSpace, DesignModeler, ANSYS DesignXplorer VT, ANSYS DesignXplorer, ANSYS Emax, ANSYS Workbench environment, CFX, AI*Environment,
CADOE and any and all ANSYS, Inc. product names referenced on any media, manual or the like, are registered trademarks or trademarks of subsidiaries
of ANSYS, Inc. located in the United States or other countries.

Copyright © 2004 SAS IP, Inc. All rights reserved. Unpublished rights reserved under the Copyright Laws of the United States.
ANSYS, Inc. is a UL registered ISO 9001: 2000 Company
ANSYS Inc. products may contain U.S. Patent No. 6,055,541

Microsoft, Windows, Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation.
Inventor and Mechanical Desktop are registered trademarks of Autodesk, Inc.

SolidWorks is a registered trademark of SolidWorks Corporation.

Pro/ENGINEER is a registered trademark of Parametric Technology Corporation.

Unigraphics, Solid Edge and Parasolid are registered trademarks of Electronic Data Systems Corporation (EDS).
ACIS and ACIS Geometric Modeler are registered trademarks of Spatial Technology, Inc.

"FLEXIm License Manager" is a trademark of Macrovision Corporation.
Other product and company names mentioned herein are the trademarks or registered trademarks of their respective owners.

This ANSYS, Inc. software product and program documentation is ANSYS Confidential Information and are furnished by ANSYS, Inc. under an ANSYS
software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, warranties, disclaimers and remedies,
and other provisions. The Program and Documentation may be used or copied only in accordance with the terms of that license agreement.

See the ANSYS, Inc. online documentation or the ANSYS, Inc. documentation CD for the complete Legal Notice.

If this is a copy of a document published by and reproduced with the permission of ANSYS, Inc., it might not reflect the organization or physical appearance
of the original. ANSYS, Inc. is not liable for any errors or omissions introduced by the copying process. Such errors are the responsibility of the party
providing the copy.

Table of Contents

T.INEFOAUCING APDLL ...ttt e e e e ettt e e e e e s e e s aaaeeeeeeeesessnssssaeaeaeseessssnsssnenaeessensansnnes 1-1
T WRATIS APDLY .ttt ettt ettt e e e s ettt e e e e e e s anb b e reeeeeesesaamsnereeeeeeeesennnnnreneeas 1-1
2. Working With the TOOIDArooooiiiiiiiii e e e e e e s e e e e s e s e ernnees 2-1
2.1. Adding Commands t0 the TOOIDATceiiiiiiiiieiiieeee et e e e e e s e esnanes 2-1
2.2. MOdIfying the TOOIDATuviiiiiiieieeteee et e e e e e e et e e e e s s e s annbeaeeeeeesensnnssnneees 2-1
2.2.1. Example: Adding a TOOIbar BUTLONooeveiiiiiiiieieeeeeiiteee et e e e e e e e e e e 2-2
2.2.2.5aviNg TOOIDAr BULTONSeeiiiiiieiieeieiciiitttee e e e ettt e e e e e e sttt e e e e s e s esnannaeeeeeesesennnsnnneens 2-3
2.3. Nesting Toolbar ADDIeVIatioNscciiiiieieiiiiiiiiee et e e ee st ee e e e e eearereeeeeeseesnnnnnaeeeeseens 2-3
B.USING PAram@LENSooiiiiiiiiiiiiiiiteee ettt et e e e e e sttt e et eeesesaaaabateeeeesesasssstbnaeaeasssesanssssanaeasssssnnnnnes 3-1
T I o= T =101 1= (] £ PP PP PORR R UPPPPTPPPRt 3-1
3.2. Guidelines for Parameter NAMEScoeveiueiiiiieeeeeieriiiiteee e e e e ettt e e e e e e sessbarteeeeeeeesesnnreneaeeessnens 3-1
3.2.1. Hiding Parameters from *STATUSccoiiiiiiiiieee ettt ettt e e e e et e e e e e s s s e baenees 3-2

3.3. DEfiNING PAramELersccceiiiiieiiiiieetee e ettt ee e e e s ettt et e s e s e sttt e eeeeseseansbbeaaeeesssessnsssnaaaeesennns 3-2
3.3.1. Assigning Parameter Values DUring EXECULIONcoeriuiiiiiiieriiiiriiiieeee e e e eeiieeeeee e e e e s 3-2
3.3.2. Assigning Parameter Values At STartupoeeeeeveiiiiieeeiiieiiieeeee e e e eesiirtee e e e e s e seinrreeeeeessseanes 3-3
3.3.3. Assigning ANSYS-Supplied Values t0 Parameterscceeevveeieiiiiiieeeeeeneesiieeeeee e eesieeeees 3-3
3.3.3.1. Using the *GET COMMANGcciiiiiiiiiiiiiieeeeeeiiiiitee e e e e eesiierreeeeesssseantaeaeeeeesesssnsseneees 3-3

3.3.3.2. UsSinNg IN-lin€@ GEL FUNCIONSeiiiiiiiieiiiiiieee ettt e e ettt e e e e s seibeneeeeeeesessaaees 3-4

334, LiSTING PAr@meTterS ...coeeeeeieieeeeeeeeeeeee aeaeaeaeaeaanns 3-7

R R B 1Y [y o Te I =] =1 0 1S (=] G 3-8
3.5.USING Character PAramMELErSuuuuuiururiririririrereeerirerereeertrerereserereeerererreeeeerereeeeee.......—..——. 3-8
3.6. Substitution of NumMeric Parametric ValUEScccoiiveiiiiiiieieee ettt ettt e e s e e e e e 3-9
3.6.1. Preventing SUDSTITUTIONccviiiiiiieiiieiiecieieeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeesesesesssessssersesssesrasarsaraene 3-9
3.6.2. Substitution of Character Parametric ValUesooeuuiiiiiiieiiieiiiiieeee et e e 3-9
3.6.2.1. FOrced SUDSTITULION . ..eeuviiiiiieie ittt e e e e s st e e e e e e s s senreeaeeas 3-9

3.6.2.2. Other Places Where Character Parameters Are Validcoooeciiiiieeiiniiiiiiiiiieeeeeeeee 3-10

3.6.2.3. Character Parameter RESTIICIONScecuuvveiiieieeiieiiiiieeee e ettt e e e e e e e e s 3-11

3.7. Dynamic Substitution of Numeric or Character Parametersooovveeciiiiieeeeiienieiiiiieeee e e 3-11
3.8. ParametriC EXPIrOSSIONS ..vvuuieeeeiieiiiiiiieee e e e e ettt eese e e e e e ettt ereeeeeeeeetataa e eeseeaeenatsanaaaesesasensssnnnnnnns 3-12
3.9. ParametriC FUNCHIONScooiiiiiiiiiiiiiiiiititiiititettttet ettt ettt et eee ettt eeee ettt et e et e et e et et ettt teeeeeeeeeeeeeeeeeeene 3-12
3.10. Saving, Resuming, and Writing Parametersccoeeeeeeeeeeeeie e 3-13
3.1 AITAY PArameEters ... ittt e e et et e e e e et e e e e e e e e reeerens 3-14
3,111, Array Parameter BaSiCS ..ceeeeeeee e s e 3-15
3.11.2. Array Parameter EXamMPIESeuviiiiiiiiiiiiieteee ettt ee e ettt e e e e s s et e e e e e e e s e 3-16
3.11.3. TABLE Type Array Parametersccoovuummiiiiiieiiiiiiicee ettt ettt e e e et s eeeeee 3-17
3.11.4. Defining and Listing Array Parameterseuuiieeiiiiiniiiiiiiteeeeeeeeeiieteee e e e e s eiiieeeeeeeeeenas 3-19
3.11.5. Specifying Array ElIement ValUEscooeeeiiiiiiiiiiiiieieeteee ettt et e e e e e s 3-19
3.11.5.1. Specifying Individual Array ValUEscccooveiiiiiiiiiiiieiiieeeee et 3-20
31152 FilliNG Array VECEOIS ceceeiiieiiiiiieeee e ettt et e e ettt e e e e e s ettt e e e e s e s seasbaeaeaeeesens 3-21
3.11.5.3. Interactively EAIting Arrays ...cc.eueeieieiiieeieeiiieteee ettt ettt e e e e e s 3-21
3.11.5.4. Filling an Array From a Data File USINg *VREADoovveiuiiiiieieenieiiiieeeee e 3-23
3.11.5.5. Filling a TABLE Array From a Data File Using *TREADccoovviiiiiiiiieriiiieiiiieceeeee e 3-23
3.11.5.6. Interpolating ValUEsccoooviieiiieieeeeeeeeeeeeeeeeee e 3-27
3.11.5.7. Retrieving Values into or Restoring Array Parameter Valuesccccvveeeeeriinninnnnen. 3-29
3.11.5.8. Listing Array ParameEterscuuueiiuiieiiiiitiiieitiiieieieeeteeereeeeeeerereeerererererererererererererereee 3-29

T B BT o T Y= T 1[Nt 3-30
3.11.6.1. FOrmat Data DeSCIIPTOIS ..uuuuieeiiiiiiiiiiiiiee e eeeectiiiiee e e e e e eeetiee e e e e e eeeeaabaseeeeseeaesessenn 3-30

3.11.7. Operations AMoNg Array Parametersccoeeiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee et 3-32

20 I A R VT (o T @] o 1= - [] o - TSP UUPT PPN 3-32
3.11.7.2. MAtriX OPEIAtioNScciiiiiiiiiiiieee e eeeeetiiiee e e e e e eeertti e eeeseeeeeaatataseeseeesessssnnnaeseeessnsssnnnns 3-35

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

APDL Programmer's Guide

3.11.7.3. Specification Commands for Vector and Matrix Operationsccccceeeeeeeeeeeennnnn.n. 3-37

3.11.8. Plotting Array Parameter VECTOISuiiiiiiiieiiiiiiieeeeeeeeiiitte e e e e e seritee e e e e e s e ssieraeeeeeeeeas 3-40

3.11.9. Modifying CUIVE Labelsccciiiiiiiiiiiieeee ettt ettt e e e s e et reee e e e e enas 3-44

4, APDL @S @ MacCro LANQUAGEco.uiiiiiiiiiiiiiiiee ittt e e ettt e e ettt s e eettieseeeanaseeensnsseeansnssseensnnsseenennnns 4-1

4. 1. What iS @N APDL MACIO?ueeiiiiieieeeee ettt e e e e e ettt e e e e e s ettt e e e e e e s esabbbtteeeeeeessaansbbaaaaeeessensans 4-1

4.2, CreatiNng @ IMACKO ..uuuiiiiieiiiiiiieee e e e eeetiiree e e e e e et ettt saeeeeeeeeaabb e eeeeeaeesssassaseeeeasesssnsnnseeseeeseesssnnnns 4-1

4.2.1. Macro File Naming CONVENTIONS ...ccceeeeiiieieieiiieeeieeeeeseeeseeeeeeeeese e e se s e e e e e e e e e ee s e ee e e s e e e e e s e e e e e seeeeenens 4-1

4.2.2. MACro SEArCh Path c.ccciiiiiiiiiiiee ettt e e ettt e e e e s et e e e e e eeas 4-2

4.2.3. Creating a Macro Within ANSYS ... 4-3

4.2.3.1. USING ¥CREATEottiieiiei ettt ettt et e e e e ettt et e e e e e se bttt eeeeesssaaaebbeaeeaeessananns 4-3

4.2.3.2.USING ¥CFWRITE ..ottt ettt e ettt e e e e e ettt e e e e e e e sesbaaeaaeeeeens 4-3

4.2.3.3.USING /TEE oottt ettt e e e e e ettt e e e e e s e sttt e e e e e e e s s aabbbaeeeeeeeeanaans 4-4

4.2.3.4. Using Utility Menu> Macro> Create MacCroeeeeieeiieiiiiiiiieeeeeeeeeniieteeeeeese e 4-4

4.2.4. Creating Macros With @ TeXt EQItOFuvviviiiiiiiiiiiiiiiiiiiiiririeeserereresesererereresesererererererera.. 4-5

4.2.5.USING MaCrO LIDrary FIl@Sccootiiiiiiiiiieiee ettt ettt ettt e e e e e eeee e 4-6

4.3. Executing Macros and Macro LIDIari@suuoiiioiiieiiciieici e e 4-7

4.4, LOCAI VATIADIESeiiiiiiiiee ettt ettt e e e e ettt e e e e e sttt et ee e e e e e sttt aeeeeeeseanaans 4-8

4.4.1. Passing Arguments 10 @ IMACIOccuvuuuuieiiiiiiiiiiiiiie e e e e eeeeriiiie e e e e eeeeaataaseeseaaeeanssennnsesesaesesrees 4-8

4.4.2. Local Variables Within IMaCIOSuuiiieiiiiiiiiiiiee ettt e ettt e e e e e s e ebbeeeee e e e s e 4-8

4.4.3. Local Variables OutSide Of MACIOSuiiiiiiiiiiiiiiitieee ettt e e e ettt e e e e e s s sibtreeeeeeeens 4-8

4.5. Controlling Program FIOW iNAPDLcceiviiiiiiiiiiiiieieeeeeieieeeeeeeeeeeeeseeeseeesesssesesssssessssssssssssesssrssemerene 4-9

4.5.1. Nested Macros: Calling Subroutines Within @ Macroccooeeeieiiieieieieiecece e, 4-9

4.5.2. Unconditional BranChing: GOTOuuveriririiiieririiirirerererererererererererererererer—.———————. 4-9

4.5.3. Conditional Branching: The *IF COMMANduuuuuiuiiiuiiiiriiriiiriririeieeeeereeeree.—————. 4-9

4.5.4. Repeating @ COMMANGuiiiiiiiiieieieieieiesesesesesese s e s e se s e s e e s e e s s s e s snsnsnnnsnsnnnnen 4-11

4.5.5. LOOPING: DO-LOOPS ..vuuieiiiiiiiiiiiiiiie et e etettiiiisse s e e eeetttaiisseeeeeeaeaaatansseseeesansrsssnssesasessesrsnnnnseses 4-12

4.5.6. IMplied (COION) DO LOOPSuuvuiiiiiiiiiiiiiiiiieiirrirrrireerererereseeeeereereereee.—.—————————————...—.—.——.. 4-12

4.5.7. Additional Looping: DO-WHIIEuuuiiiiiiiiiiiiiiiiiiiiiiiiririeeereererererersrsersrrrese... 4-13

4.6. Control FUNCtions QUICK REFEIENCEcceeiiiiiiiiiiiiee ettt 4-13

4.7.Using the _STATUS and _RETURN Parameters in MaCrOSuuvuverererererererererererererererererermmm. 4-14

4.8. Using Macros with Components and ASSEMDIIESuuuviuiviiiiiiiiiiiiiiiiiiiiiiieieireerr—————. 4-16

4.9. ReVieWing EXamMPIE MACIOSccvvviiiiiiiiiieiiieieieieeeeeeeee et ee e ee aaeseeeeesaeaeaeaes 4-16

S5.Interfacing With the GUI ... e e e rrrr e e e e e e e arbrraeaeeaeeas 5-1

5.1. Prompting Users for a Single Parameter Valuecoccuviiiiieeiie et evreneee e 5-1

5.2. Prompting Users With @ Dialog BOXcceevieiiirieeeieerireereeererereseserereserereresesesmmesememmmemmm.. 5-2

5.3. Using Macros to Display YOUr OWN MESSAQESuuuuuuuuuurmummmmmnnnnnnnnnnnnnnnnmnnnnnnmnnnsmmnnnnnnnnnnnnnnnsnnnnnnnnns 5-4

5.4. Creating and Maintaining a Status Bar from @ Macroc.cooeieciiiiieeee e e et e e e e eeervreeee e e e 5-5

5.5. PicKing WItNIN IMACIOSvvvvviiiiiiiirireririreretererererereresereresererererereeareeerer.re..eereer............. 5-7

5.6. Calling Dialog BOXES FrOM @ IMACKOuuuuuuuuuuueiurururiniraianereeerereuenererereraranerererererenennreresesenenenereneranene. 5-7

6. ENCIYPEING IVTACKOSouiiiiiiiiiiiiiiiiiii bbb ettt ebabebababebebabebebesebsbesebssesabebesasebesesnnes 6-1

6.1. Preparing a Macro fOr ENCIYPLIONceiiiiiiieiiciiiiieee e e eeccctree e e e e e e everree e e e e s e s sneearaeeeeeeseennnsnnnnens 6-1

6.2. Creating an ENCryPted IMACKOuuvvviiiririririierrrrrrerrrrererereerreereeesresreeeeerereereeeee..... 6-1

6.3. RUNNING @N ENCIYPLEA IMACIO .cvviiiiiiiiiiiiiieeteeeeeeeeeeeeeeeeeteeeeereeeteseseseeesesereseserererererereree.. 6-2

|. APDL COMMANAS REFEIENCE «...veeieiiiiiee ettt ettt ettt e st e e st be e e e sabbeeessabbaeeesnanaaeens 6-3

A. APDL GateWay COMMANGSvvvvrtrrierererrrererererereeeeerererererereresererereemeeee.....—...................... A-1

B. GET FUNCEION SUMIM@IY cettiiiiiieiiiiiiiiiiiiieeeeeeeettiiiieeeeeeeeretttutassesseeeesssnsnsssssesessssssssssnssesesssssssnnsnssssessssnssnns B-1

[0 Te 1<) T PO TP PP PP UO PP PPPPPPPTPRR: Index-1
List of Figures

D I Ko o] | o T- T o USSP PPPTPURRURPP 2-1

Vi APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

APDL Programmer's Guide

2.2. Adding a NeW ADDIEVIAtIONcceiiiiiiiiiiiiiiiiieiiteieeeeeeeeeeeererereeereeeeerererererererererarererrrarerararararererarrrr.. 2-2
2.3. TOOIDAr With NEW BULLON ...eiiiiiiiiiiiiiiiieee ettt e e e s e sttt et e e e e e sesabbbaaeeeeeeens 2-3
3.1. A Graphical Representation 0f @ 2-D ATauuiiiieiiiiiiiiiiiiiee ettt e e e e e et e e e e e s s e sinereeeeeeees 3-15
3.2. A Graphical Representation 0f @ 3-D ArTayuuiiiiiiiiiiiiiiiiieee e eeeitteee e e ettt e e e e s s e snrreeeeeeees 3-15
3.3. A Graphical Representation 0f @ 5-D ATaYuuiiiieiiiiiiiiiiiiiee ettt e e e e e st e e e e e s s e ssaaereeeeeeees 3-16
3.4. A Graphical Representation of @ TAble ArTayceiieiiiiiiieei ettt e e et e e e e e e s e 3-18
3.5. An Example *VEDIT Dialog BoX for an ARRAYccoeeieiiiiieieieeeeeeeeeeeeeeeeeeeeeeeee 3-22
3.6. An Example *VEDIT Dialog BoX for @a TABLEccoviiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 3-22
3.7. ASample 1-D TABLE Array Dialog BOXuutiiieiiiriiiiiiiiiieeeeeeeiiiiitttee e e e e eeiieteeeeeesessiintaeeeeesesennanes 3-24
3.8. ASample 2-D TABLE Array Dialog BOXuutiiieiiirieiiiiiieeeeeeeeeiiiietteeeeeseeiiieteeeeeesessiirteeeeeeessenanes 3-25
3.9. ASample 3-D TABLE Array Dialog BOXuueiiieiiiiieiiiiiiiieeeeeeeiiiiittteeeeeeesiieteeeeeesessiibaeeeeeesssenanes 3-27
3.10. Time-History FOrcing FUNCHIONeeee e 3-28
TR B Y- T o o [N o PRt 3-41
TN Y- T o o1 [N = o PPNt 3-42
TR ST Y- T o o1 [N = o PPt 3-43
TR Y- T o o1 [N o o PRt 3-44
3.15. Sample Plot With User-specified Labelsuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiisieirssieeeeseesesesessserssssesersrer.. 3-45
4.1. ANSYS Message Box for Unknown Command ..., 4-2
4.2. The Create MeNU Dialog BOXuuuuuiuiiriririririririrertrereeerererererereeereeereeeree.e.................—.——.—.. 4-5
4.3. AMacro Created iN @ TeXE EAILOruuiiiiiiiiiiiiieee ettt ettt e e e e e sttt e e e e e e e s abaaeeeeeeeenns 4-6
4.4, A Sample If-Then-Else CONSTIUCE ...ccceeeeeiiie e, 4-11
5.7. AN EXampPle *ASK DIalOg BOX ...uvvvuvvuviuiiiuriuuriueuuresssusesereseuesssesessseseseseseresesesesererereserer......—————————. 5-2
5.2. A Typical Multiple-Prompt DIialog BOXcceiieiieriuiiiiitieeeeeeeiitttee e e e ettt e e e e e s eiiteeeeeeeesessaaeeaeas 5-4
5.3. ATypical Status DIalog BOXceeueeiiiiiiiiiiiieiiettee ettt ettt e e e e e e ettt et e e e e s e seaibbaeeaeeeeesenanes 5-7
List of Tables

4.7, _RETURN VAIUES ...ceeieiiiiteteeee ettt ettt et e e e ettt et e e e e e snb et et e e e e e sesnnnnreeeeeeeesseannreneees 4-14
B.1. *GET - Get FUNCLION SUMMAIYcoiiiiiiiiiiee ettt eeeettttiee s e e e e e teeebase s e eeeseeeessaaasseeeeseessnnnnssssseenenes B-1

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc. Vii

viii

Chapter 1: Introducing APDL

1.1. What Is APDL?

APDL stands for ANSYS Parametric Design Language, a scripting language that you can use to automate common
tasks or even build your model in terms of parameters (variables). APDL also encompasses a wide range of other
features such as repeating a command, macros, if-then-else branching, do-loops, and scalar, vector and matrix
operations.

While APDL is the foundation for sophisticated features such as design optimization and adaptive meshing, it
also offers many conveniences that you can use in your day-to-day analyses. In this guide we'll introduce you to
the basic features - parameters; macros; branching, looping, and repeating; and array parameters - and show
you some simple examples. As you become more adept at the language, you will see that the applications for
APDL are limited only by your imagination.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

1-2

Chapter 2: Working with the Toolbar

2.1. Adding Commands to the Toolbar

You can add frequently used ANSYS functions or macros to the ANSYS toolbar (creating macros is covered
starting in Chapter 4, “APDL as a Macro Language”). You do this by defining abbreviations. An abbreviation is an
alias (up to eight characters long) for an ANSYS command, GUI function name, or macro name. For example,
MATPROP might be an abbreviation for a macro that lists material properties, SAVE_DB is an abbreviation for
the SAVE command, and QUIT is an abbreviation for the Fnc_/EXIT function (which launches the Exit from
ANSYS dialog box).

The ANSYS program provides two ways to use abbreviations. You can issue the abbreviation (and execute the
macro, command, etc. that it performs) by typing it at the beginning of a command line. If you are using the
ANSYS GUI, you can also execute the macro or command by pressing the appropriate button on the ANSYS
toolbar.

The toolbar shown in Figure 2.1: “Toolbar” contains buttons that correspond to existing abbreviations.
Figure 2.1 Toolbar

AAA ANSYS Tooba AAA|
SAVE DE | RESUM_DE | IJLI1T| F'I:IWHGHPI-|| E{‘AE|

While some abbreviations, such as SAVE_DB, are predefined, the abbreviations the toolbar contains and the
functions they execute are up to you. A single toolbar can hold up to 100 abbreviations (you can "nest" toolbars
to extend this number). You can redefine or delete abbreviations at will; however, abbreviations are not auto-
matically saved and must be explicitly saved to a file and reloaded for each ANSYS session.

2.2, Modifying the Toolbar

You can create abbreviations either through the *ABBR command or through the Utility Menu> Macro> Edit
Abbreviations or Utility Menu> MenuCtrls> Edit Toolbar menu items. Using one of the menu items is
preferable for two reasons:

Clicking OK automatically updates the toolbar (using the *ABBR command requires that you use the
Utility Menu> MenuCtrls> Update Toolbar menu item to make your new abbreviation appear on the
toolbar).

* You can easily edit the abbreviation if required.
The syntax for the *ABBR command and related dialogs is
*ABBR, Abbr, String
Abbr

The abbreviation name that will appear on the toolbar button. The name can contain up to eight characters.

String
The String argument is the name of the macro or command that Abbr represents. If String is the name of a
macro, the macro must be within the macro search path. For more information about using macros, see
Chapter 4, “APDL as a Macro Language”. If St r i ng references an ANSYS picking menu or dialog box (using

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Chapter 2: Working with the Toolbar

UIDL), then specify "Fnc_string." For example, in the abbreviation definitions for "QUIT" and "POWRGRPH"
shown above, "Fnc_/QUIT" and "Fnc_/GRAPHICS" are unique UIDL function names which identify the ANSYS
picking menu or dialog box associated with the QUIT and POWRGRPH abbreviations respectively. For more
information about accessing UIDL functions, see Section 5.6: Calling Dialog Boxes From a Macro. St ri ng
can contain up to 60 characters but cannot include any of the following:

+ The character "$"

* The commands C**¥*, /COM, /GOPR, /NOPR, /QUIT, /Ul, or *END

The default ANSYS toolbar has the following abbreviations predefined:

*ABBR, SAVE DB, SAVE

*ABBR, RESUM DB, RESUME

*ABBR, QUIT, Fnc_/EXIT

*ABBR, POARGRPH, Fnc_/ GRAPHI CS

2.2.1. Example: Adding a Toolbar Button

For example, to add a button to the toolbar that calls the macro file mymacro.mac, you would enter the values
shown in the following figure in the Utility Menu> MenuCtrls> Edit Toolbar dialog box.

Figure 2.2 Adding a New Abbreviation

Edit Toolbar/Abbreviations

e ——

The new button is appended to the button bar as shown in the following figure.

2-2 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 2.3: Nesting Toolbar Abbreviations

Figure 2.3 Toolbar with New Button

AAN ANSYS Tookbar AAA|
sm_ns| FIEEI.II'-LDE[uun] F‘ﬂ".-."HEHFI-Il E-Eﬁ.E] wmmn|

2.2.2. Saving Toolbar Buttons

Toolbar buttons are not persistent from one ANSYS session to the next; however, they are saved and maintained
in the database so that any "resume" of the session will still contain these abbreviations. To save your custom
button definitions, you must explicitly save them to a file through the Utility Menu> MenuCtrls> Save Toolbar
menu item (ABBSAV command) and restore them for each session using the Utility Menu> MenuCtrls> Restore
Toolbar menu item (ABBRES command). You can do this programmatically in a macro.

Note — If any abbreviations already exist in the named file, the ABBSAV command overwrites them.

The format of the abbreviations file is the APDL commands that are used to create the abbreviations. Thus, if

you wish to edit a large set of buttons or change their order, you may find using a text editor to be the most

convenient method. For example, the following is the file that results from saving the default toolbar buttons.
/ NOPR

*ABB, SAVE_DB , SAVE
* ABB, RESUM DB, RESUME

*ABB,QUT ,Fnc/EXIT
* ABB, POARGRPH, Fnc_/ GRAPHI CS
/ GO

The *ABB commands (the abbreviated form of *ABBR) define the buttons. The /NOPR at the top turns off
echoing to the log file while the /GO at the bottom turns log file echoing on.

2.3. Nesting Toolbar Abbreviations

The save-and-restore features described above allow you to nest abbreviations. By nesting abbreviations under
one button, you can define specialized toolbars (if you have many abbreviations, having them on a single toolbar
can be cluttered, making it difficult to find the proper button). To nest abbreviations, you simply define an ab-

breviation that restores an abbreviation file. For example, the following command defines PREP_ABR as an ab-
breviation that restores abbreviations from the file prep.abbr.

* ABBR, PREP_ABR, ABBRES, , PREP, ABBR

PREP_ABR will appear as a button on the toolbar. Clicking it will replace the existing buttons with the set of
buttons defined in the prep.abbr file.

By defining abbreviations to restore these files and including those abbreviations in the appropriate files, you
can have a virtually unlimited number of abbreviations in a given ANSYS session. You can even extend this
concept and create your own menu hierarchy by nesting several abbreviation files. If you implement such a
hierarchy, it's a good practice to add an abbreviation as a "return” button in each file to navigate back through
the menus.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 2-3

2-4

Chapter 3: Using Parameters

3.1. Parameters

Parameters are APDL variables (they are more similar to Fortran variables than to Fortran parameters). You don't
need to explicitly declare the parameter type. All numeric values (whether integer or real) are stored as double-
precision values. Parameters that are used but not defined are assigned a near-zero, or "tiny," value of approxim-

ately 2% For example, if parameter A is defined as A=B, and B is not defined, then A is assigned the tiny value.

ANSYS uses two types of parameters: scalar and array. The first part of this chapter discusses information that is
applicable to both types. Starting with Section 3.11: Array Parameters, the information is specific to array type
parameters.

Character strings (up to eight characters long) can be assigned to parameters by simply enclosing the string in
single quotes. APDL also provides several types of array parameters: numeric, character, string and table (a special
numeric type that automatically interpolates values).

You can use a parameter (instead of a literal number or character string) as an argument to any ANSYS command;
the parameter is evaluated and its current value is used for that argument. For example, if you assign the value
2.7 to a parameter named AA and then issue the command

N, 12, AA, 4
the ANSYS program will interpret the command as
N, 12,2.7, 4

(which defines node 12 at X=2.7 and Y=4).

Note — If array, table, or character parameters are used within a macro or input file, those parameters
should be dimensioned (if array or table) and defined within that macro or input file. If you fail to follow
this practice, ANSYS will produce error messages stating that those parameters are undefined. ANSYS
will produce the error messages even if the parameters lie within unexecuted *IF statements, as para-
meter substitution is done before the branching for the *IF is checked.

3.2. Guidelines for Parameter Names

Parameter names must:

+ Begin with a letter
+ Contain only letters, numbers, and underscore characters

+ Contain no more than 32 characters
Examples of valid and invalid parameter names are
Valid:

ABC
Pl
X_ORY

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Chapter 3: Using Parameters

Invalid:

MY_PARAMETER_NAME_LONGER_THAN_32 CHARACTERS (more than 32 characters)
2CF3 (begins with a number)
M&E (invalid character "&")

When naming parameters:
Avoid parameter names that match commonly used ANSYS labels, such as:

- Degree of freedom (DOF) labels (TEMP, UX, PRES, etc.)

- Convenience labels (ALL, PICK, STAT, etc.)

- User-defined labels (such as those defined with the ETABLE command)
- Array type field labels (such as CHAR, ARRAY, TABLE, etc.)

+ Parameter names ARG1 through ARG9 and AR10 through AR99 are reserved for local parameters. Generally,
local parameters are used in macros (see Section 4.4: Local Variables). Use of these names as "regular”
parameters is not recommended.

Parameter names must not match abbreviations defined with the *ABBR command. For more information
about abbreviations, see Section 2.1: Adding Commands to the Toolbar.

Do not begin parameter names with an underscore (_). This convention is reserved for parameters used
by the GUI and ANSYS-supplied macros.

APDL programmers supporting an organization should consider naming their parameters with a trailing
underscore(_). These can displayed as a group using the *STATUS command and deleted from memory
as a group through the *DEL command.

3.2.1. Hiding Parameters from *STATUS

Section 3.3.4: Listing Parameters discusses listing parameters through the *STATUS command. You can use a
parameter naming convention to "hide" parameters from the *STATUS command. Any parameter whose name
ends in an underscore (_) will not be listed by *STATUS.

This capability was added specifically for those who are developing APDL macros for large audiences. You can
use this to build macros that your ANSYS users and other macro programmers cannot list.

3.3. Defining Parameters

Unless otherwise specified, the information in the next several sections applies to both scalar and array type
parameters. Beginning with Section 3.11: Array Parameters, the information is specific to array type parameters.

You can either assign values to parameters or retrieve values supplied by ANSYS and store these values in para-
meters. For retrieving values from ANSYS, you can use either the *GET command or the various in-line get
functions. The following sections cover these subjects in detail.

3.3.1. Assigning Parameter Values During Execution

You can use the *SET command to define parameters. The following examples illustrate a set of example para-
meters defined using *SET:

*SET, ABC, - 24
*SET, R, 2. 07E11

3-2 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.3: Defining Parameters

*SET, XORY, ABC
*SET, CPARM ' CASE1'

You can use an "=" as a shorthand way of calling the *SET command (this is the most convenient method). The
format of the shortcut is Name = Value, where Name is the name assigned to the parameter and Value is the
numeric or character value stored in that parameter. For character parameters, the assigned value must be enclosed
in single quotes and cannot exceed eight alphanumeric characters. The following are examples of "=" in use:
ABC=- 24
QR=2. 07E11

XORY=ABC
CPARMF' CASEL'

In the GUI, you can either type the "="directly in the ANSYS input window or in the "Selection" field of the Scalar
Parameter dialog box (accessed by the Utility Menu> Parameters> Scalar Parameters menu item).

3.3.2. Assigning Parameter Values At Startup

You can define parameters as arguments when launching ANSYS from the operating system command line.
Simply type parameter definitions after the ANSYS execution command (which is system dependent) using the
format -Name Value. For example, the following defines two parameters (parm1 and parm2) having the values
89.3 and -0.1:

ansys81 -parml 89.3 -parn2 -0.1

It is a good practice to avoid assigning one or two character parameter names at startup to avoid conflicts with
ANSYS command line options.

Note — Remember that UNIX shells treat single quotes and many other non-alphanumeric characters
as special symbols. When defining character parameters, you must tell UNIX not to interpret the quotes
by inserting a back slash (\) before the single quotes. For example, the following defines two character
parameters having the values “filename' and "200.'

ansys81 -cparml \'filenanme\' -cparn \'200\'

If you use the ANSYS Launcher to start ANSYS, you can define parameters through the Interactive or Batch
menu items (using the -Name Value format described above).

If you are defining a large number of parameters at startup, you'll find it much more convenient to define these
in the start81.ans file or through a separate file that you can load through the /INPUT command instead of the
command line.

3.3.3. Assigning ANSYS-Supplied Values to Parameters
ANSYS provides two powerful methods for retrieving values:

The *GET command, which retrieves a value from a specified item and stores it in a specified parameter.

The in-line get functions, which can be used in operations. Each get function returns a specific value from
a specific item.

3.3.3.1. Using the *GET Command

The *GET command (Utility Menu> Parameters> Get Scalar Data) retrieves an ANSYS-supplied value for an
item (a node, an element, an area, etc.) and stores it as a user-named parameter. Various keyword, label, and
number combinations identify the retrieved item. For example, *GET,A,ELEM,5,CENT, X returns the centroid x-
location of element 5 and stores the result as parameter A.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-3

Chapter 3: Using Parameters

The format for the *GET command is:

*GET, Par, Entity, ENTNUM | t enil, | TINUM | t en2, | T2NUM
where

« Par is the name of the parameter to store the retrieved item.

+ Entityisakeyword forthe item to be stored. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, etc.
For a complete list of valid keywords, see the *GET description in the ANSYS Commands Reference.

« ENTNUMis the number of the entity (or zero for all entities).

« Iteml is the name of an item for a particular entity. For example, if Ent i t y is ELEM, | t entl will be either
NUM (the highest or lowest element number in the selected set) or COUNT (the number of elements in
the set). (For a complete list of | t enl values for each entity type, see the *GET description in the ANSYS
Commands Reference.)

You can think of the *GET command as a path down a tree structure, from general to specific information.

The following examples show the *GET command in use. The first command below gets the material attribute
(the MAT reference number) of element 97 and assigns it to parameter BCD:

* CGET, BCD, ELEM 97, ATTR, MAT BCD = Material nunber of elenment 97

* CET, V37, ELEM 37, VOLU V37 = vol une of el enent 37

*CGET, EL52, ELEM 52, HGEN EL52 = value of heat generation in elenent 52
* GET, OPER, ELEM 102, HCCE, 2 OPER = heat coefficient of elenent 102, face2

*GET, TMP, ELEM 16, TBULK, 3
* GET, NMAX, NCDE, , NUM MAX
* GET, HNOD, NODE, 12, HGEN

*GET, COORD, ACTI VE, , CSYS

TMP = bul k tenperature of element 16, face3
NMAX = nmexi num acti ve node nunber

HNOD = val ue of heat generation at node 12
COORD = active coordi nate system nunber

3.3.3.2. Using In-line Get Functions

For some items, you can use in-line "get functions" in place of the*GET command. A get function returns a value
for an item and uses it directly in the current operation. This process allows you to bypass the dual steps of
storing the value with a parameter name and then entering the parameter name in an operation. For example,
suppose that you want to calculate the average x-location of two nodes. You could do the following using the
*GET function:

1. Issue the following command to assign the x-location of Node 1 to parameter L1.

*GET, L1, NODE, 1, LOC, X

2. Issue a second *GET command to assign the x-location of Node 2 to parameter L2.
3. Compute the middle location from MID=(L1+L2)/2.
A shorter method is to use the node location "get function" NX(N), which returns the x-location of node N. You

can use it to calculate the MID location without setting intermediate parameters L1 and L2, as is shown in the
following example:

M D=(NX(1) +NX(2))/ 2

Get function arguments can themselves be parameters or other get functions. For instance, get function
NELEM(ENUM,NPOS) returns the node number in position NPOS for element ENUM. Combining functions
NX(NELEM(ENUM,NPQS)) returns the x-location of that node.

The following table summarizes the available get functions:

3-4 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.3: Defining Parameters

Get Function

Retrieved Value

Entity Status:

NSEL(N) Status of node N (-1=unselected, 0O=undefined, 1=selected)
ESEL(E) Status of element E (-1=unselected, 0=undefined, 1=selected)
KSEL(K) Status of keypoint K(-1=unselected, 0=undefined, 1=selected)
LSEL(L) Status of line L(-1=unselected, O=undefined, 1=selected)
ASEL(A) Status of area A (-1=unselected, O=undefined, 1=selected)
VSEL(V) Status of volume E (-1=unselected, O=undefined, 1=selected)

Next Selected Entity:

NDNEXT(N)

Next selected node having a node number greater than N

ELNEXT(E) Next selected element having an element number greater than E

KPNEXT(K) Next selected keypoint having a keypoint number greater than K

LSNEXT(L) Next selected line having a line number greater than L

ARNEXT(A) Next selected area having an area number greater than A

VLNEXT(V) Next selected volume having a volume number greater than vV

Locations:

CENTRX(E) Centroid x-coordinate of element E in global Cartesian coordinate system.
Centroid is determined from the selected nodes on the element.

CENTRY(E) Centroid y-coordinate of element E in global Cartesian coordinate system.
Centroid is determined from the selected nodes on the element.

CENTRZ(E) Centroid z-coordinate of element E in global Cartesian coordinate system.
Centroid is determined from the selected nodes on the element.

NX(N) X-coordinate of node Nin the active coordinate system

NY(N) Y-coordinate of node Nin the active coordinate system

NZ(N) Z-coordinate of node Nin the active coordinate system

KX(K) X-coordinate of keypoint Kin the active coordinate system

KY(K) Y-coordinate of keypoint Kin the active coordinate system

KZ(K) Z-coordinate of keypoint K in the active coordinate system

LX(L, LFRAC) X-coordinate of line L at length fraction LFRAC (0.0 to 1.0)

LY(L, LFRAC) Y-coordinate of line L at length fraction LFRAC (0.0 to 1.0)

LZ(L, LFRAC) Z-coordinate of line L at length fraction LFRAC (0.0 to 1.0)

Nearest to Location:

NODE(X, Y, 2) Number of the selected node nearest the X, Y, Z point (in the active coordinate
system; lowest number for coincident nodes)

KP(X, Y, 2) Number of the selected keypoint nearest the X, Y, Z point (in the active coordin-
ate system; lowest number for coincident keypoints)

Distance:

DISTND(N1,N2) Distance between nodesN1 and N2

DISTKP(K1, K2) Distance between keypoints K1 and K2

DISTEN(E, N) Distance between the centroid of element Eand node N. Centroid is determined

from the selected nodes on the element.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

3-5

Chapter 3: Using Parameters

Angles:

ANGLEN(N1, N2, N3)

Subtended angle between two lines (defined by three nodes where N1 is the
vertex node). Defaultis in radians (see the *AFUN command to select degrees).

ANGLEK(K1, K2, K3)

Subtended angle between two lines (defined by three keypoints where K1 is
the vertex keypoint). Default is in radians (see the *AFUN command to select
degrees).

Nearest to Entity:

NNEAR(N) Selected node nearest node N

KNEAR(K) Selected keypoint nearest keypoint K

ENEARN(N) Selected element nearest node N. The element position is calculated from the
selected nodes.

Areas:

AREAND(N1, N2, N3)

Area of the triangle with vertices at nodes N1, N2, N3

AREAKP(K1, K2, K3)

Area of the triangle with vertices at keypoints K1, K2, K3

ARNODE(N) Area at node Napportioned from selected elements attached to node N. For
2-D planar solids, returns edge area associated with the node. For axisymmetric
solids, returns edge surface area associated with the node. For 3-D volumetric
solids, returns face area associated with the node.

Normals:

NORMNX(NL, N2, N3)

X-direction cosine of the normal to the plane containing nodes N1, N2,
N3

NORMNY(N1, N2, N3)

Y-direction cosine of the normal to the plane containing nodes N1, N2,
N3

NORMNZ(N1, N2, N3)

Z-direction cosine of the normal to the plane containing nodes N1, N2,
N3

NORMKX(K1, K2, K3)

X-direction cosine of the normal to the plane containing keypoints
K1, K2, K3

NORMKY(K1, K2, K3)

Y-direction cosine of the normal to the plane containing keypoints
K1, K2, K3

NORMKZ(K1, K2, K3)

Z-direction cosine of the normal to the plane containing keypoints
K1, K2, K3

Connectivity:

ENEXTN(N,LOC)

Element connected to node N. LOCis the position in the resulting list when
many elements share the node. A zero is returned at the end of the list.

NELEM(E, NPOS)

Node number in position NPOS (1-20) of element E

Faces:

ELADJ(E, FACE)

For 2-D planar solids and 3-D volumetric solids, element adjacent to a face
(FACE) of element E. The face number is the same as the surface load key
number. Only elements of the same dimensionality and shape are con-
sidered. A -1 is returned if more than one element is adjacent; A O is re-
turned if there are no adjacent elements.

NDFACE(E, FACE, LOC)

Node in position LOCof a face number FACE of element E. The face number
is the same as the surface load key number. LOCis the nodal position on
the face (for an IJLK face, LOC= 1 is at node |, 2 is at node J, etc.).

3-6

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.3: Defining Parameters

Faces:

NMFACE(E) Face number of element E containing the selected nodes. The face number
output is the surface load key. If multiple load keys occur on a face (such
as for line and area elements), the lowest load key for that face is output.

ARFACE(E) For 2-D planar solids and 3-D volumetric solids, returns the area of the face

of element E containing the selected nodes. For axisymmetric elements,
the area is the full (360°) area.

Degree of Freedom Results:

UX(N) UX structural displacement at node N

UY(N) UY structural displacement at node N

UZ(N) UZ structural displacement at node N

ROTX(N) ROTX structural rotation at node N

ROTY(N) ROTY structural rotation at node N

ROTZ(N) ROTZ structural rotation at node N

TEMP(N) Temperature at node N. For SHELL131 and SHELL132 elements with KEYOPT(3)
=0or 1,use TBOT(N), TE2(N), TE3(N), ..., TTOP(N) instead of TEMP(N).

PRES(N) Pressure at node N

VX(N) VX fluid velocity at node N

VY(N) VY fluid velocity at node N

VZ(N) VZ fluid velocity at node N

ENKE(N) Turbulent kinetic energy (FLOTRAN) at node N

ENDS(N) Turbulent energy dissipation (FLOTRAN) at node N

VOLT(N) Electric potential at node N

MAG(N) Magnetic scalar potential at node N

AX(N) AX magnetic vector potential at node N

AY(N) AY magnetic vector potential at node N

AZ(N) AZ magnetic vector potential at node N

3.3.4. Listing Parameters

Once you have defined parameters, you can list them using the *STATUS command. If the *STATUS command
is issued without arguments, it provides a list of all of the currently defined parameters. The following example
shows the command and a typical listing.

*STATUS

PARAMETER STATUS-

(5 PARAMETERS DEFI NED)

NAME VALUE TYPE DI MENSI ONS
ABC -24.0000000 SCALAR

HEI GHT 57. 0000000 SCALAR

R 2.070000000E+11 SCALAR

X_ORY -24.0000000 SCALAR

CPARM CASE1 CHARACTER

You can also access this information through either the Utility Menu> List> Other> Parameters or Utility

Menu> List> Status> Parameters> All Parameters menu items.

Note — Any parameters beginning or ending in an underscore (_) are not shown by the *STATUS com-

mand.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

3-7

Chapter 3: Using Parameters

You can check the status of individual parameters by providing these as arguments to the *STATUS command.
The following example shows the status of the ABC parameter.

*STATUS, ABC

PARAMETER STATUS- abc (5 PARAMETERS DEFI NED)
NAMVE VALUE TYPE DI MENSI ONS
ABC -24.0000000 SCALAR

You can also check the status of specific parameters through the Utility Menu> List> Other> Named Parameter
or Utility Menu> List> Status> Parameters> Named Parameters menu items.

Note — Although ANSYS allows a maximum of 5000 parameters, fewer than 5000 are available to the
user due to GUl and ANSYS macro requirements. The number of parameters defined by the user interface
(internal parameters) is listed by the *STATUS command. The command *GET,par ,PARM, MAX returns
the total number of parameters defined.

3.4. Deleting Parameters

You can delete specific parameters in two ways:

+ Issue the "=" command, leaving the right-hand side of the command blank. For example, to delete the
QR parameter issue this command:

Q?:
* Issue the *SET command (Utility Menu> Parameters> Scalar Parameters), but don't specify a value for

the parameter. For example, to delete the QR parameter via the *SET command issue the command as
follows:

* SET, R,

Setting a numeric parameter equal to zero does not delete it. Similarly, setting a character parameter equal to
empty single quotes (" *) or placing blanks within single quotes does not delete the parameter.

3.5. Using Character Parameters

Typically, character parameters are used to provide file names and extensions. The desired file name can be as-
signed to a character parameter, and that parameter can be used anywhere a file name is required. Similarly, a

file extension can be assigned to a character parameter and used where appropriate (typically the Ext command
argument). In batch mode, this allows you to easily change file names for multiple runs by simply changing the
initial alphanumeric "value" of the character parameter in your input file.

Note — Remember that character parameters are limited to a total of eight characters.
The following is a list of general uses for character parameters.

« Asarguments to any applicable command field (that is, where alphanumeric input is expected)
* As macro name arguments for the *USE command (Utility Menu> Macro> Execute Data Block)

NAMVE=" MACRO I MACRO is the nane of a macro file
* USE, NAMVE I Calls MACRO

* Asarguments to macro calls for *USE and for the "unknown command" macro. Any of the following macro
calls are allowed:

3-8 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.6: Substitution of Numeric Parametric Values

ABC=' SX
* USE, NAVE, ABC

or
*USE, NAME, ' SX

DEF=' SY'
NEWVACRO, DEF I Calls existing macro file NEWVACRO MAC

or

NEWVACRO, ' SY'

3.6. Substitution of Numeric Parametric Values

Whenever you use a parameter name in a numeric command field, its value is automatically substituted. If no
value has been assigned to the parameter (that is, if the parameter has not been defined), a near-zero value

(27'%) will be substituted, usually without warning.

Note — Defining the parameter after it is used in a command does not "update” the command in most
cases. (Exceptions are the commands /TITLE, /STITLE, *ABBR, and /TLABEL. See Section 3.6.2.1: Forced
Substitution for more information.) For example:

Y ! Node 1 at (2.7,0)
! Redefining paraneter Y now does not update node 1

< Z X<

ok N o
01X ~

3.6.1. Preventing Substitution

You can prevent parameter substitution by enclosing the parameter name with single quotes ('), for example,
'XYZ'. The literal string is then used; therefore, this feature is valid only in non-numerical fields.

Conversely, you can force parameter substitution in titles, subtitles, and filenames by enclosing the parameter
name with percent signs (%). For example,
/ TI TLE, TEMPERATURE CONTOURS AT TI ME=%Mb

specifies a title in which the numerical value of parameter TM is substituted. Note that the parameter is substituted
at the time the title is used.

3.6.2. Substitution of Character Parametric Values

Use of a character parameter in an alphanumeric command field generally results in automatic substitution of
its value. Forced substitution and character parameter restrictions are explained below.

3.6.2.1. Forced Substitution

As with numerical parameters, you can force the substitution of a character parameter value in certain cases
where substitution would not occur otherwise. This is done by enclosing the character parameter name with
percent signs (%). Forced substitution of character parameters is valid for the following commands:

+ [TITLE command (Ti t | e field). Specifies titles for various printed output.

+ /STITLE command (Ti t | e field). Specifies subtitles, similar to/TITLE. (You cannot access the /STITLE
command directly in the GUL.)

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-9

Chapter 3: Using Parameters

* [TLABEL command (Text field). Specifies text string for annotation.
+ *ABBR command (Abbr field). Defines an abbreviation.

Forced substitution is also valid in the following types of fields:

* Anyfilename or extension command argument. These arguments apply to commands such as /FILNAME,
RESUME, /INPUT, /OUTPUT, and FILE. (Direct parameter substitution is also valid in these fields.)

* Any 32 character field: A typical example is the name of macros. (Direct substitution is not valid for these
fields.)

+ Asacommand name in any command name field. Also as an "unknown command" macro name in field
1. For example:

R=" RESUVE'
%% MODEL, DB

The following example of the command input method shows forced substitution for a subtitle definition and
for a directory name.

A=' TEST'

B='.RST'

C=' | ANSYS

D='/ MODELS/

/ STI TLE, , RESULTS FROM FI LE %C8YAY8B%

SUBTITLE 1 =
RESULTS FROM FI LE / ANSYS/ MODELS/ TEST. RST

/ POST1
FI LE, A, RST, %C%0% ! Read results from/ANSYS/ MODELS/ TEST. RST

3.6.2.2. Other Places Where Character Parameters Are Valid

In addition to the more general applications already discussed, there are some specific instances where character
parameters are allowed for added convenience. The commands which are affected and details of usage are
outlined below.

*ASK
This command may prompt you for an alphanumeric string (up to eight characters enclosed in single quotes)

which is assigned to a character scalar parameter. (You cannot access the *ASK command directly in the
GUL.)

*CFWRITE
This command writes ANSYS commands to the file opened by *CFOPEN. It can be used to write a character
parameter assignment to that file. For example, *CFWRITE,B = 'FILE'is valid. (You cannot access the *CFWRITE
and *CFOPEN commands directly in the GUL.)

*IF and *ELSEIF
Character parameters may be used for the VAL1 and VAL2 arguments of these commands. For the Oper ar-
gument, only labels EQ (equal) and NE (not equal) are valid when using character parameters. (You cannot
access the *IF and *ELSEIF commands directly in the GUI.) Example:

CPARME' NO
*| F, CPARM NE, ' YES' , THEN

*MSG
Character parameters are allowed as input for the VAL1 through VAL8 arguments. The data descriptor %C
is used to indicate alphanumeric character data on the format line (which must follow the *MSG command).

3-10 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.7: Dynamic Substitution of Numeric or Character Parameters

The %C corresponds to the FORTRAN descriptor A8. (You cannot access the ¥*MSG command directly in the
GUL.)

PARSAV and PARRES
These commands will save character parameters to a file (PARSAV command or menu path Utility Menu>
Parameters> Save Parameters) and resume character parameters from a file (PARRES or Utility Menu>
Parameters> Restore Parameters).

*VREAD
This command (Utility Menu> Parameters> Array Parameters> Read from File) can be used to read al-
phanumeric character data from a file and produce a character array parameter. The FORTRAN character
descriptor (A) may be used in the format line which must follow the *VREAD command.

*VWRITE
This command (menu path Utility Menu> Parameters> Array Parameters> Write to File) can be used to
write character parameter data to a file in a formatted sequence. The FORTRAN character descriptor (A) may
be used in the format line which must follow the *VWRITE command.

3.6.2.3. Character Parameter Restrictions

Although character parameters have much of the same functionality as numerical parameters, there are several
instances where character parameters are not valid.

+ Character parameter substitution is not allowed for the Par argument of the *SET, *GET, *DIM, and
*STATUS commands.
+ Interactive editing of array parameters (*VEDIT command) is not available for character array parameters.

* Vector operation commands, such as *VOPER, *VSCFUN, *VFUN, *VFILL, *VGET, and *VITRP, do not
work with character array parameters.

* When operating on character parameters, the specification commands *VMASK and *VLEN are applicable
only to the *VWRITE and *VREAD commands.

Character parameters are not valid in parametric expressions which use addition, subtraction, multiplication,
etc.

3.7. Dynamic Substitution of Numeric or Character Parameters

Dynamic substitution of parameters will occur for the following commands: /TITLE, /STITLE, *ABBR, /AN3D,
and /TLABEL. Dynamic substitution allows the revised value of a parameter to be used, even if the command
which uses the parameter value has not been reissued.
Example:

XYZ=' CASE 1’

[/ TITLE, This is %XYZ%
APLOT

The title "This is CASE 1" will appear on the area plot.

You can then change the value of XYZ and the new title will appear on subsequent plots, even though you did
not reissue /TITLE.

XYZ=' CASE 2'

The title "This is CASE 2" will appear on subsequent plots.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-11

Chapter 3: Using Parameters

3.8. Parametric Expressions

Parametric expressions involve operations among parameters and numbers such as addition, subtraction, mul-
tiplication, and division. For example:

X=A+B

P=(R2+R1)/ 2

D=- B+(E**2) - (4*A*C) | Evaluates to D = -B + E? - 4AC

XYZ=(A<B) +Y**2 | Evaluates to XYZ = A+ Y2 if Ais less than B

| otherwise to XYZ = B + Y?
| NC=AL+(31. 4/ 9)

Me((X2- X1) ** 2- (Y2- Y1) **2) [2

The following is a complete list of APDL operators:

Operator Operation

+ Addition

_ Subtraction

* Multiplication
/ Division

** Exponentiation

< Less-Than Comparison

> Greater-Than Comparison

You can also use parentheses for clarity and for "nesting" of operations, as shown above. The order in which the
ANSYS program evaluates an expression is as follows:
1. Operations in parentheses (innermost first)
Exponentiation (in order, from right to left)
Multiplication and division (in order, from left to right)
Unary association (such as +A or -A)

Addition and subtraction (in order, from left to right)

o v > W N

Logical evaluation (in order, from left to right)

Thus an expression such as Y2=A+B**C/D*E will be evaluated in this order: B**C first, /D second, *E third, and
+A last. For clarity, you should use parentheses in expressions such as these. Parentheses can be nested up to
four levels deep, and up to nine operations can be performed within each set of parentheses. As a general rule,
avoid using blank spaces between operators in expressions. In particular, never include a blank space before the
* character because the rest of the input line (beginning with the *) will be interpreted as a comment and
therefore will be ignored. (Do not use this convention as a comment; use an exclamation point (!) for this purpose.)

3.9. Parametric Functions

A parametric function is a programmed sequence of mathematical operations which returns a single value, such
as SIN(X), SQRT(B), and LOG(13.2). The following table provides a complete list of functions currently available
in ANSYS.

ABS(x) Absolute value of x.
SIGN(x,y) Absolute value of x with sign of y. y=0 results in positive sign.
EXP(x) Exponential of x ().

3-12 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.10: Saving, Resuming, and Writing Parameters

LOG(x) Natural log of x (In (x)).

LOG10(x) Common log of x (log;4(x)).

SQRT(x) Square root of x.

NINT(x) Nearest integer to x.

MOD(x,y) Remainder of x/y. y=0 returns zero (0).

RAND(x,y) Random number (uniform distribution) in the range x to y (x = lower bound, y
= upper bound).

GDIS(x,y) Random sample of a Gaussian (normal) distribution with mean x and standard

deviation y.

SIN(x), COS(x), TAN(x)

Sine, Cosine, and Tangent of x. x is in radians by default, but can be changed
to degrees with *AFUN.

SINH(x), COSH(x),
TANH(x)

Hyperbolic sine, Hyperbolic cosine, and Hyperbolic tangent of x.

ASIN(x), ACOS(x),
ATAN(x)

Arcsine, Arccosine, and Arctangent of x. x must be between -1.0 and +1.0 for
ASIN and ACOS. Output is in radians by default, but can be changed to degrees
with *AFUN. Range of output is -pi/2 to +pi/2 for ASIN and ATAN, and 0 to pi
for ACOS.

ATAN2(y,x) Arctangent of y/x with the sign of each component considered. Output is in
radians by default, but can be changed to degrees with *AFUN. Range of output
is -pi to +pi.

VALCHR (CPARM Numerical value of CPARM(if CPARMis non-numeric, returns 0.0).

CHRVAL (PARM Character value of numerical parameter PARM Number of decimal places de-
pends on magnitude.

UPCASE CPARM Upper case equivalent of CPARM

LWCASE (CPARM) Lower case equivalent of CPARM

The following are examples of parametric functions:

Pl =ACOS(- 1)

! Pl = arc cosine of -1, Pl calculated to machi ne accuracy

Z3=C0S(2* THETA) - Z1**2
R2=SQRT(ABS(RL- 3))

X=RAND - 24, R2)

* AFUN, DEG

THETA=ATAN(SQRT(3))
PH =ATAN2(- SQRT(3), - 1)

* AFUN, RAD

X249=NX(249)

I X = random nunber between -24 and R2

Units for angular functions are degrees
THETA eval uates to 60 degrees

PH evaluates to -120 degrees

Units for angular functions reset to radians

I X-coordinate of node 249

SLOPE=(KY(2) - KY(1))/ (KX(2) - KX(1))

CHNUMECHRVAL (X)
UPPER=UPCASE(LABEL) !

! Slope of line joining keypoints 1 and 2

! CHNUM = character value of X
UPPER = uppercase character value of paranmeter LABEL

3.10. Saving, Resuming, and Writing Parameters

If you must use currently defined parameters in another ANSYS session, you can write them to a file and then
read (resume) that file. When you read the file, you can either completely replace currently defined parameters
or add to them (replacing those that already exist).

To write parameters to a file, use the PARSAV command (Utility Menu> Parameters> Save Parameters).

The parameters file is an ASClI file consisting largely of APDL *SET commands used to define the various para-
meters. The following example shows the format of this file.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Chapter 3: Using Parameters

/ NOPR

* SET, A , 10. 00000000000
*SET, B , 254.3948750000
*SET, C ,"string

*SET, _RETURN , 0. 0000000000000E+00
*SET, _STATUS , 1.000000000000
*SET, _ZX ' '

/ GO

To read parameters from a file use the PARRES command (Utility Menu> Parameters> Restore Parameters)

If you wish, you can write up to ten parameters or array parameters using FORTRAN real formats to a file. You
can use this feature to write your own output file for use in other programs, reports, etc. To do this, use the
*VWRITE command (Utility Menu> Parameters> Array Parameters> Write to File). The *VWRITE command
is discussed in Section 3.11.7: Operations Among Array Parameters.

3.11. Array Parameters

In addition to scalar (single valued) parameters, you can define array (multiple valued) parameters. ANSYS arrays
can be

a single column)

rows and columns)

1-D (
2-D(
+ 3-D (rows, columns, and planes)
4-D (rows, columns, planes, and books)
5-D(

rows, columns, planes, books, and shelves)
ANSYS provides three types of arrays:

ARRAY
This type is similar to FORTRAN 77 arrays and is the default array type when dimensioning arrays. As with
FORTRAN arrays, the indices for rows, columns, and planes are sequential integer numbers beginning with
one. Array elements can be either integers or real numbers.

CHAR
This is a character array, with each element consisting of an alphanumeric value not exceeding eight characters.
The indices for rows, columns, and planes are sequential integer numbers beginning with one.

TABLE
This is a special type of numeric array which allows ANSYS to calculate (through linear interpolation) values
between these array elements explicitly defined in the array. Moreover, you can define the array indices for
each row, column, and plane and these indices are real (not integer) numbers. Array elements can be either
integers or real numbers. As we'll see in the later discussion on TABLE arrays, this capability provides a
powerful method for describing mathematical functions.

STRING

You can use the *DIM, STRING capability to enter character strings into your arrays. Index numbers for
columns and planes are sequential values beginning with 1. Row indices are determined by the character
position in the string. See the *DIM command for more information.

All three types of arrays cannot exceed 2*31-1 bytes. For a double precision array, each data item is 8 bytes, so
the limit on number of entries is (2**31-1)/8.

3-14 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

3.11.1. Array Parameter Basics

Consider a 2-D array (either ARRAY or CHAR) as shown below. It is mrows long and n columns wide; that is, its
dimensions are mtimes n. Each row is identified by a row index number i , which varies from 1 to m and each
column is identified by a column index number j , which varies from 1 to n. The quantities that make up the array
are array elements. Each array element isidentifiedas (i , j) ,wherei isits row index numberandj isitscolumn
index number.

Figure 3.1 A Graphical Representation of a 2-D Array

Column index numbers

=t 23 4 5 . »

i=1 - Array element (3,5)
5 T -
Row 3
index 4
numbers
]
777

We can extend these definitions to a 3-D array parameter, which may be mrows long, n columns wide, and p
planes deep. The plane index number is k, which varies from 1 to p. Each array element is identified as (i , j , k,).
The following figure shows a 3-D array.

Figure 3.2 A Graphical Representation of a 3-D Array

Column

Row

Plane 3

Plane 2

Flane 1

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-15

Chapter 3: Using Parameters

Figure 3.3 A Graphical Representation of a 5-D Array

RN
Column [T T TTTT HH
Row T
[Plane 3
[Plane 2
Plane 1
RN
Coumn [T T T T T T H-
Row T
4-D T
Book 1 T L] Plane 3
L1 I'Plane 2
Plane 1
[T
Coumn [T T TTTT HH
Row il
-] Plane 3
L L | Plane 2
5-D Shelf 1 e ENREE
Column [T T[T T T+
Row el
4-D Amim
Book 2 T I Plane 3
L1 I'Plane 2
Plane 1

3.11.2. Array Parameter Examples

Type ARRAY parameters consist of discrete numbers that are simply arranged in a tabular fashion for convenience.
Consider the following examples.

3-16 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

0.025
- - 0.01
-47.6

0.265
=3.2

1.00
23.0

0.832

NTEMF = [86.5 EVOLIUM =

0.52
107.9

1.032
168.7 0.002
225.0
- - 0.697

0.01

12152 814 -386 202 -82 -1108]
14848 1057 -704 117 -101 -555
15490 1033 -713 15 -76 235
13899 786 -348 -103 -45 848
10813 420 -66 -211 -17 1065
7151 108 111 -272 11 1052

COMPSTRS =

The parameter NTEMP could be an array of temperatures at selected nodes; NTEMP(1) =-47.6 could be the
temperature at node 27, NTEMP(2) = -5.2 could be the temperature at node 43, and so on. Similarly, EVOLUM
could be an array of element volumes, and COMPSTRS could be an array of nodal component stresses, with each
column representing a particular direction (X, Y, Z, XY, YZ, XZ, for example).

A type CHAR array parameter is structured similarly to an ARRAY parameter, with the tabular values being alpha-
numeric character strings (up to eight characters). Two examples of character array parameters are:

JOB1] LOG
JOB2 ERR
FILNAM = [JOB3 EXTENS = |DB
JOB4 LIB
JOBS MAC

3.11.3. TABLE Type Array Parameters

A type TABLE array parameter consists of numbers (alphanumeric values are not valid) arranged in a tabular
fashion, much like the ARRAY type. However, there are three important differences

« ANSYS can calculate (through linear interpolation) any values that fall between the explicitly declared
array element values.

+ Atable array contains a 0 row and 0 column used for data-access index values, and unlike standard arrays,
these index values can be real numbers. The only restriction is that the index values must be numerically

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-17

Chapter 3: Using Parameters

increasing (never decreasing) numbers. You must explicitly declare a data access index value for each row
and column; otherwise the default value assigned is the "tiny number" (7.888609052E-31).

You can more conveniently define the index starting point and index values via the *TAXIS command.

« Aplane index value resides in the 0,0 location for each plane.

The following figure shows a TABLE array with data-access index values. Note that the indexes are specified as
the "0" row and column values.

Figure 3.4 A Graphical Representation of a Table Array

E
=]
-
L%]
[45]

45 6 ~Plane Index Value
' ' ° 4 -
B i=0/ 811, 113 |7 "'
2 Vb1 23456 |
2)= 7
3)é-—i=ﬂ 61 1 3 i
12 ;
4|5 29._]=Q,_1»'23456
5|8 3 4-I=D2-5,1 A1 T701 13 |7
6[11] 4 112
] o2 3
Plane 3 8|3 4
P> Column Index Numbers (used 1, 5 .
for *SET). Schematic
Plane 3 5 g representation of
> Column Index Mumbers (used to 6 11 three-plane table array
access data from array).
v Row Index Mumbers (used for
*SET). Plane 1
Row Index Mumbers (used to
access data from array). Plane Index Value
[lo Heb
Full Page =
0 [0.1

"WEDIT dialog box showing planet
of the table array

As shown in the above example, when configuring a table array you must set

+ The plane index value as the 0,0 element value for each plane.

+ The data-access column index values in the elements in the 0 row in plane 1. These values are used only
when accessing data from the array. When setting the array element values, you use the traditional row
and column index numbers.

3-18 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

The data-access row index values in the elements in the 0 column in plane 1. Again, these values are used
only when accessing data from the array. When setting the array element values, you use the traditional
row and column index numbers.

3.11.4. Defining and Listing Array Parameters

To define an array parameter, you must first declare its type and dimensions using the *DIM command (Utility
Menu> Parameters> Array Parameters> Define/Edit).

This following examples illustrate the *DIM command used to dimension various types of arrays:

*DIM AA, , 4 !
*DI M XYZ, ARRAY, 12

*DI M FORCE, TABLE, 5
*DIMT2,,4,3

*DI M CPARRL, CHAR, 5

Type ARRAY is default, dinmension 4[x1x1]
Type ARRAY array, dinmension 12[x1x1]
Type TABLE array, dinension 5[x1x1]

Di mensi ons are 4x3[x1]

Type CHAR array, dinmension 5[x1x1]

Note — Array elements for ARRAY and TABLE are initialized to 0 (except for the 0 row and column for
TABLE, which is initialized to the tiny value). Array elements for CHAR are initialized to a blank value.

The next example shows how to fill a 5-D array with data. Use 1-D tables to load a 5-D table. Use the *TAXIS to
define the table index values. See the full example at Section 2.6.14.6: Example Analysis Using 5-D Table Array.

*di m xval , array, X1

*di myval , array, Y1
yval (1) =0, 20

*di m zval , array, 10

zval (1) =10, 20, 30, 40, 50, 60
*dimtval,array, 5

tval (1)=1, .90, .80,.70,.60
*dimtevl,array, 5

70, 80, 90, 100

tevl (1)=1,1.20,1.30,1.60,1.80

*di m ccc, tab5s, X1, Y1, Z1, D4

D5, X, Y, Z, TI ME, TEMP

*taxis,ccc(1,1,1,1,1),1,0,wd 11 X-Dim
*taxis,ccc(1,1,1,1,1),2,0,hth 111 Y-Dim
*taxis,ccc(1,1,1,1,1),3,1,2,3,4,5,6,7,8,9,10 11 Z-Dim
*taxis,ccc(1,1,1,1,1), 4,0, 10, 20, 30, 40 e Tine
*taxis,ccc(1,1,1,1,1), 5,0, 50, 100, 150, 200 I Tenp
*do,ii, 1,2
*do,jj,1,2
*do, kk, 1, 10
*do,Il1,1,5
*do,mMm 1,5
ccc(ii,jj,kk, I'l,mm=(xval (ii)+yval (jj)+zval (kk))*tval (Il)*tevl (nmm
*enddo
*enddo
*enddo
*enddo
*enddo

3.11.5. Specifying Array Element Values

You can specify array element values by

Setting individual array element values through the *SET command or "=" shortcut.

Filling individual vectors (columns) in the array with either specified or calculated values (the *VFILL

command, for example).

Interactively specifying values for the elements through the *VEDIT dialog box.
Reading the values from an ASClII file (*VREAD or *TREAD commands).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-19

Chapter 3: Using Parameters

Note — You cannot create or edit 4- or 5-D arrays interactively. *VEDIT, *VREAD, and *TREAD are not
applicable to 4- or 5-D arrays.

3.11.5.1. Specifying Individual Array Values

You can use either the *SET command or the "=" shortcut. Usage is the same as for scalar parameters, except

that you now define a column of data (up to ten array element values per "=" command). For example, to define
the parameter XYZ dimensioned above as a 12x1 array you will need two "="commands. In the following example
the first command defines the first eight array elements and the second command defines the next four array
elements:

XYZ(1) =59.5, 42.494,-9.01,-8.98,-8.98,9.01, -30.6,51
XYZ(9)=-51.9, 14. 88,10. 8,-10. 8

59.5]
42.494
-9.01
-8.98
-8.98
9.01
-30.6
51
-51.9
14.88
10.8
-10.8

XYL =

Notice that the starting location of the array element is indicated by the row index number of the parameter (1
in the first command, 9 in the second command).

The following example shows how to define the element values for the 4x3 array parameter T2, dimensioned
earlier in the *DIM examples:

T2(1,1)=.6,2,-1.8,4 ! defines (1,1),(2, 1),(3,1),(4, 1)
T2(1,2)=7,5,9.1,62.5 ! defines (1,2),(2, 2),(3, 2),(4, 2)
T2(1,3)=2E-4,-3.5,22,.01 ! defines (1,3),(2 3),(3, 3),(4, 3)

(0.6 7.0 0.0002]
20 30 =35
-18 91 220
40 625 001

The following example defines element values for the TABLE array parameter FORCE discussed earlier.

FORCE(1) =0, 560, 560, 238. 5, 0
FORCE(1, 0) =1E-6,.8,7.2,8.5,9.3

The first “=" command defines the five array elements of the TABLE array FORCE. The second and third “="
commands redefine the index numbers in the j=0 and i=0 row.

3-20 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

0
1E-6[] 0.0]
0.8 |560.0
FORCE= 7.2 |560.0
8.5 |2385
93 | 0.0 |

Character array parameters can also be defined using the "=" command. Assigned values can be up to eight
characters each and must be enclosed in single quotes. For example:

*DI M RESULT, CHAR, 3 I Character array paranmeter with di mensions (3,1,1)
RESULT(1)="SX',"'SY','SZ" !Assigns values to paranmeter RESULT

Notice that, as when defining a numerical array parameter, the starting location of the array element must be
specified (in this case, the row index number 1 is indicated).

Note — CHAR cannot be used as a character parameter name because it will create a conflict with the
CHAR label on the *DIM command. ANSYS will substitute the character string value assigned to parameter
CHAR when CHAR is input on the third field of the *DIM command (Type field).

3.11.5.2. Filling Array Vectors

You can use the *VFILL command (Utility Menu> Parameters> Array Parameters> Fill) to "fill" an ARRAY or
TABLE vector (column).

See the *VFILL command reference information in the ANSYS Commands Reference for more detail about the
command syntax. The following example illustrates the capabilities of the *VFILL command.

*DI M DTAB, ARRAY, 4, 3
*VFI LL, DTAB(1, 1), DATA, -3, 8, -12, 57

dinension 4 x 3 nuneric array
four data values loaded into vector 1

*VFI LL, DTAB(1, 2), RAMP, 2. 54, 2. 54 fill vector 2 with values starting at
*VFI LL, DTAB(1, 3), RAND, 1. 5, 10 fill vector 3 with random nunbers between

1.5 and 10. Results will vary due to

!
!
!
! 2.54 and increnmenting by 2.54
!
!
! random nunber generati on.

-3 254 2799801284
& 508 611292418

-12 762 6.70205516

|57 1016 4.11487684 |

DTAE=

3.11.5.3. Interactively Editing Arrays

The *VEDIT command (Utility Menu> Parameters> Array Parameters> Define/Edit), which is available only
in interactive mode, launches a data entry dialog box you can use to edit an ARRAY or TABLE (not CHAR) array.
The dialog box provides a number of convenient features:
« Aspreadsheet-style editor for array element values.
Navigational controls for scrolling through large arrays.

An initialize function to set any row or column to a specified value (ARRAY type only).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-21

Chapter 3: Using Parameters

Delete, copy, and insert functions for moving rows or columns of data (ARRAY type only).
Complete instructions for using the dialog box are available from the box's Help button.

Note — You cannot edit a 4- or 5-D ARRAY or TABLE interactively.

Figure 3.5 An Example *VEDIT Dialog Box for an ARRAY

File Edit Help
Page Tncrament Full Pae ViewPlane Z=1 v A]
Thitializatian Cnstant 0.C <4 [»
e = ¥ A
1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

& |10 0 0

Figure 3.6 An Example *VEDIT Dialog Box for a TABLE

File Help
Page Increment Fill Page A
- >
Plave 5 a59.51 | 7.669%51 v
Cohmmn

7.86931 7.869=31 7.869=31

7.88931 0] 0 0

7.86931 © 0 0
Boxr

7.50%31 0 0 0

7.569%31 0 0 0

3-22 APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc.

Section 3.11: Array Parameters

3.11.5.4. Filling an Array From a Data File Using *VREAD

You canfillan array from a data file using the *VREAD command (Utility Menu> Parameters> Array Parameters>
Read from File). The command reads information from an ASCII data file and begins writing it into the array,
starting with the index location that you specify. You can control the format of the information read from the
file through data descriptors. The data descriptors must be enclosed in parenthesis and placed on the line fol-
lowing the *VREAD command. See Section 3.11.7.1: Vector Operations for more information about data
descriptors. The data descriptors control the number of fields to be read from each record, the width of the data
fields, and the position of the decimal point in the field.

For example, given the following data file named dataval:

and an array called EXAMPLE that has been dimensioned as 2 x 3, the following commands (provided as either
a part or a macro or input listing)

*DI M EXAMPLE, , 2, 3
*VREAD, EXAMPLE(1, 1), dat aval ,,, JIK, 3,2

(3F6. 1)
resultin
1.5 7.8 12.3
EXAMPLE = 15.6 -45.6 42.5

The *VREAD command cannot be issued directly from the command input window. However, the Utility Menu>
Parameters> Array Parameters> Read from File dialog box offers a way to specify the data descriptors and
issue the command in interactive mode.

Note — You cannot fill a 4- or 5-D array using *VREAD.

3.11.5.5. Filling a TABLE Array From a Data File Using *TREAD

Once configured, you have two options for specifying values for the TABLE array elements: you can add values
as you would for any other type of array, or you can read in a table of data from an external file.

To read in a table of data from an external file, you still define the TABLE array first, specifying the number of
rows, columns, and planes, and the labels for each. You can then read an ASClII file containing the table of data
using the *TREAD command (Utility Menu> Parameters> Array Parameters> Read from File). At this time,
you also specify the number of lines to skip (NSKIP) between the top of the file and the first line of the table.

When reading data from an external file, remember:

« The file containing the table of data can be created in a text editor or an external application (such as
Microsoft Excel), but it must be in ASCIl form, tab-delimited, to be read into ANSYS.

* You must first define the array in ANSYS, remembering to allow for the index values (0,0).

* The values are read straight across the rows until all columns on each row of the array are filled; ANSYS
then wraps from one row to the next and begins to fill those columns, and so on. Be sure that the dimen-
sions of the array you defined are correct. If you mistakenly define fewer columns in the ANSYS array than
required, ANSYS will start filling in the next row of the array using the values remaining in the first row of
the data table being read. Similarly, if you define more columns in the ANSYS array than required, ANSYS
will fill all columns of the array using values from the next row of the data table being read, and only then
wrap and begin filling the next row.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-23

Chapter 3: Using Parameters

You can create 1-D, 2-D, and 3-D tables by reading data from an external file. Examples of how you create each
of these follows.

Note — You cannot fill a 4- or 5-D TABLE using *TREAD.
Example 1: 1-D Table
First, create the 1-D table using the application of your choice (such as a spreadsheet application, a text editor,

etc.) and then save the file as a text file in tab-delimited format. In this example, the table is named "Tdata" and
contains data for time vs. temperature. In its ASCIl form, the table would look like this:

Time Temperature Table
Time Temp
0 20
1 30
2 70
4 75

In ANSYS, you define a TABLE parameter "Tt" using the *DIM command (Utility Menu> Parameters> Array
Parameters> Define/Edit). Specify 4 rows and 1 column, row label of Time, and column label of Temp. Note
that the data table you created has four rows and one column of data, plus the row and column index values
(the first column - TIME - is the row index values) Then read in the file as described earlier, specifying 2 skipped
lines. The TABLE array in ANSYS would look like this:

Figure 3.7 A Sample 1-D TABLE Array Dialog Box

This same example, done via command input, would look like the following:

*DIM Tt, table, 4,1, 1, TI ME, TEMP
*TREAD, Tt , tdata, txt,, 2

3-24 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SASIP, Inc.

Section 3.11: Array Parameters

Example 2: 2-D Table

For this example, create (in a spreadsheet application, a text editor, etc.) a 2-D table named "T2data" containing
temperature data as a function of time and x-coordinate and read it into a TABLE array parameter called "Ttx."
The table, in its ASCIl form, would look like this:

Temp (time-X-coord) Table

Time X-Coordinate
0 0 3 5 7 9
0 10 15 20 25 30
1 15 20 25 35 40
20 25 35 55 60
4 30 40 70 920 100

In ANSYS, you define a TABLE parameter "Ttx" using the *DIM command (Utility Menu> Parameters> Array
Parameters> Define/Edit). Specify 4 rows, 5 columns, 1 plane, row label of TIME, and column label of X-COORD.
Note that the data table you created has four rows and five columns of data, plus the row and column index
values. Then read in the file as described earlier, specifying 2 skipped lines. The TABLE array in ANSYS would look

like this:

Figure 3.8 A Sample 2-D TABLE Array Dialog Box

File

Pacp Incramant Full Pacp

L= A =]

8| 8| 7| 8|8

¥

[

B R B|&

=

This same example, done via command input, would look like the following:

*DIM Ttx, table, 4,5,,tine, X- COORD
*TREAD, Tt x, t 2dat a, t xt,, 2

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

3-25

Chapter 3: Using Parameters

Example 3: 3-D Table

For this example, create a 3-D table named "T3data" containing temperature data as a function of time, x-coordin-
ate, and y-coordinate and read it into a TABLE array parameter called "Ttxy." The table, in its ASCII form, would
look like this:

Temp (time-X-coord) Table

Time X-Coordinate
0 0 3 5 7 9
0 10 15 20 25 30
1 15 20 25 35 40

20 25 35 55 60

4 30 40 70 90 100

1.5 0 3 5 7 9
0 20 25 30 35 40
1 25 30 35 45 50
30 35 45 65 70
4 40 50 80 100 120

In the example above, the bold values (in the (0,0,Z) positions) indicate the separate planes. Each plane of data,
along with the row and column index values, is repeated for the separate planes. Only the plane index value and
the actual data values are different. The shaded area above shows the values that change from plane to plane.

In ANSYS, you define a TABLE parameter "Ttxy" using the *DIM command (Utility Menu> Parameters> Array
Parameters> Define/Edit). In the case of a 3-D table, the table is dimensioned according to the number of rows,
columns, and planes of data. The first column (TIME) is the row index values and the first row is the column index
values. Specify 4 rows, 5 columns, 2 planes, row label of TIME, column label of X-COORD, and plane label of Y-
COORD. Note that the data table you created has four rows and five columns of data in two planes, plus the row
and column index values. Then read in the file as described earlier, specifying 2 skipped lines. The TABLE array
in ANSYS would look like this for the second plane of data (Y=1.5):

3-26 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

Figure 3.9 A Sample 3-D TABLE Array Dialog Box

This same example, done via command input, would look like the following:

*DIM Tt xy, tabl e, 4,5, 2, TI ME, X- COORD, Y- COORD
*TREAD, Tt xy, t 3data, txt,, 2

3.11.5.6. Interpolating Values

When accessing information from the array, ANSYS will interpolate values between those explicitly set.

As examples of how ANSYS interpolates values in TABLE arrays, consider the following:

1.0 2.0

10 1.0[28 42]

101120 20(-96 -123
A=20|280 Pq=30 50 o7
30[14e.4 40(-45 20

Given that A is a TABLE array parameter, the ANSYS program can calculate any value between A(1) and A(2), for
example

+ A(1.5) evaluates to 20.0 (halfway between 12.0 and 28.0)
* A(1.75) evaluates to 24.0
* A(1.9) evaluates to 26.4

Similarly, if PQ is a TABLE array parameter

+ PQ(1.5,1) evaluates to -3.4 (halfway between 2.8 and -9.6)
+ PQ(1,1.5) evaluates to 3.5 (halfway between 2.8 and 4.2)

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SASIP, Inc. 3-27

Chapter 3: Using Parameters

« PQ(3.5,1.3) evaluates to 14.88

This feature allows you to describe a function, such as y=f(x), using a TABLE array parameter. You would use the
j=0 column for values of the independent variable x and the "regular" j=1 column for values of y. Consider, for
example, a time-history forcing function described by five points as shown below.

Figure 3.10 Time-History Forcing Function

Time Force

oo 00

0.8 580.0

7.2 580.0

el 85 2385

450 93, 0.c
420
350
Force 280
210
140
70
0

o 2 4 & 8
Time
You can specify this function as a TABLE array parameter whose array elements are the force values, and whose

row index numbers 1 through 5 are time values 0.0 through 9.3. Schematically, the parameter will then look like
this:

0
1E-6[] 0.0 |
0.8 |560.0
FORCE= 7.2 |560.0
8.5 |238.5
93 | 00

ANSYS can calculate (through linear interpolation) force values at times not specified in the FORCE parameter.
For the above example, ANSYS will calculate a value of 89.4375 for FORCE(9). If a parameter location beyond the
dimensions of the array is used, no extrapolation is done and the end value is used. For example, ANSYS will
provide a value of 560.0 for FORCE(5,2) or 0.0 for FORCE(12)

You can see from these examples that TABLE array parameters can be very powerful tools in your analysis. Typ-
ical applications are time-history loading functions, response spectrum curves, stress-strain curves, material-
versus- temperature curves, B-H curves for magnetic materials, and so forth. Be aware that TABLE array parameters
require more computer time to process than the ARRAY type.

3-28 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

3.11.5.7. Retrieving Values into or Restoring Array Parameter Values

You can use the *VGET command (Utility Menu> Parameters> Get Array Data), which is similar to *GET, to
retrieve ANSYS supplied values and store them in an array.

You must define a starting array location number for the array parameter the *VGET command creates. Looping
continues over successive entity numbers for the KLOOP default. For example, *VGET,A(1),ELEM,5,CENT, X returns
the centroid x-location of element 5 and stores the result in the first location of A. Retrieving continues with
elements 6, 7, and so on until successive array locations are filled. In this example, if KLOOP is 4, then the centroid
of x, y, and z are returned.

To restore array parameter values, use the *VPUT command (Utility Menu> Parameters> Array Operations>
Put Array Data).

The *VPUT command uses the same arguments as the *VGET command (described above), but does the opposite
of the *VGET operation. For a list of valid labels for *VPUT items, see the command's description in the ANSYS
Commands Reference.

The ANSYS program "puts” vector items directly, without any coordinate system transformation. *VPUT can replace
existing array items, but can't create new items. Degree of freedom results that are changed in the database are
available for all subsequent operations. Other results change temporarily, and are available mainly forimmediately
following print and display operations.

Note — Use this command with extreme caution, as it can alter entire sections of the database. The
*VPUT command doesn't support all items on the *VGET item list because putting values into some
locations could make the ANSYS database inconsistent.

3.11.5.8. Listing Array Parameters

As with scalar parameters, you can use the *STATUS command to list array parameters. The following examples
illustrate the *STATUS command in use:

*STATUS
ABBREVI ATI ON STATUS-

ABBREV STRI NG
SAVE_DB SAVE

RESUM DB RESUME

QT Fnc_/EXIT
POARGRPH Fnc_/ GRAPHI CS
ANSYSWEB Fnc_HonePage

PARAMETER STATUS- (5 PARAMETERS DEFI NED)
(1 NCLUDI NG 2 | NTERNAL PARAMETERS)
NAME VALUE TYPE DI MENSI ONS
MYCHAR hi CHARACTER
MYPAR ARRAY 4 6 1
MYPARL . 987350000 SCALAR
*STATUS, XYZ(1),5,9 I Lists rows 5 through 9 of XYZ
PARAMETER STATUS- XYZ (4 PARAMETERS DEFI NED)
LOCATI ON VALUE
5 1 1 -8.98000000
6 1 1 9. 01000000
7 1 1 -30.6000000
8 1 1 51. 0000000
9 1 1 -51.9000000
* STATUS, FORCE(1),,,0 ! Lists paraneter FORCE, includes j=0 colum

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-29

Chapter 3: Using Parameters

PARAMETER STATUS- FORCE (4 PARAMETERS DEFI NED)

LOCATI ON VALUE

1 0 1 0.000000000E+00

2 0 1 0.800000000

3 0 1 7.20000000

4 0 1 8. 50000000

5 0 1 9. 30000000

1 1 1 0.000000000E+00

2 1 1 560. 000000

3 1 1 560. 000000

4 1 1 238. 500000

5 1 1 0.000000000E+00
*STATUS, T2(1, 1) | Lists paraneter T2
PARAMETER STATUS- T2 (4 PARAMETERS DEFI NED)

LOCATI ON VALUE

1 1 1 0.600000000

2 1 1 2.00000000

3 1 1 -1.80000000

4 1 1 4.00000000

1 2 1 7.00000000

2 2 1 5. 00000000

3 2 1 9. 10000000

4 2 1 62. 5000000

1 3 1 2.000000000E- 04

2 3 1 -3.50000000

3 3 1 22. 0000000

4 3 1 1.000000000E-02

*STATUS, RESULT(1) ! Li sts paraneter RESULT

PARAVETER STATUS- RESULT (4 PARAVETERS DEFI NED)
LOCATI ON VALUE

1 1 1 SX(CHAR)

2 1 1 SY(CHAR)

3 1 1 SZ(CHAR)

3.11.6. Writing Data Files

You can write formatted data files (tabular formatting) from data held in arrays through the *VWRITE command.
The command takes up to 10 array vectors as arguments and writes the data contained in those vectors to the
currently open file ¥*CFOPEN command). The format for each vector is specified with FORTRAN 77 data descriptors
on the line following the *VWRITE command (therefore you can't issue the *VWRITE command from the ANSYS
input window.)

An array vector, specified with a starting element location (such as MYARRAY(1,2,1)). You can also use an expres-
sion, which is evaluated as a constant value for that field in each row of the data file. The keyword SEQU evaluates
to a sequential column of integers, starting from one.

The format of each row in the data file is determined by the data descriptor line. You must include one descriptor
for each argument to the command. Do not include the word FORMAT in the descriptor line. You can use any
real format or character format descriptor; however, you may not use either integer or list directed descriptors.

3.11.6.1. Format Data Descriptors

If you aren't familiar with FORTRAN data descriptors, this section will get you started with formatting your data
file. For more information, consult the documentation for the FORTRAN 77 compiler for your particular platform.

You must provide a data descriptor for each data item you specify as an argument to the *VWRITE command.
In general, you can use the F descriptor (floating point) for any numeric values. The F descriptor takes the syntax

3-30 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

Fw.d
where

w
Is the width of the data field in characters.

Is the number of digits to the right of the decimal point.

Thus, for a field that is 10 characters wide and has eight characters after the decimal point, you would use the
following data descriptor:

F10. 8
For character fields, you can use the A descriptor. The A descriptor has the syntax
Aw

where

w
Is the width of the data field in characters.

Thus, for a character field that is eight characters wide, the descriptor is

A8
The following examples illustrate the *VWRITE command and data descriptors in use.

Given that the MYDATA array has been dimensioned and filled with the following values:

MYDATA =

[2.15215183
2.30485343
201051819
2.36833012
2.84819512

222795343

3.89075020
4.44486730
3.39152436
3.32711472
4.76350638
3.48214546

5.28636971
5.40919563
5.93663807
5.63220341
5.97802354
5.54685145

7.15706483
7.68192625
7.38584253
7.22482004
7.29258882
7.90325139

13.7859423
15.5483820
18.4635868
18.7977889
14.8096356
14.0708891

87.4970443]
86.5677915
45.7263566
39.7902425
62.0843906
37.6009897

The following short macro first defines the scalar parameter X as having a value of 25 and then opens the file
vector (*CFOPEN command). The *VWRITE command then defines the data to be written to thefile. In this case,
the first vector written uses the SEQU keyword to provide row numbers. Note that in some cases that constants,
scalar parameters, and operations that include array element values are written to the file. Note the data file
contents for these items.

x=25

*cf open, vect or

*vwite, SEQU, nydata(1, 1, 1), nydata(1, 2,1), nydata(1,3,1), 10. 2, x, nydata(1, 1, 1) +3

(F3.0," ',F8.4," ',F8.1,' 'F8.6,' ',F4.1,' 'F4.0,' 'F8.1)
*cfclos

The macro creates the following data file:

1. 2.1522 3.9 5.286370 10.2 25. 5.2
2. 2.3049 4.0 5.409196 10.2 25. 5.2
3. 2. 0105 3.4 5.936638 10.2 25. 5.2
4. 2.3683 3.3 5.632203 10.2 25. 5.2

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-31

Chapter 3: Using Parameters

978024 10.2 25.

5. 2.8491 4
3 546851 10.2 25.

.8 5. 5.2
6. 2.2280 .5 5. 5.2

The second example uses the following previously dimensioned and filled array:

10 50
MYDATA=|20 70
30 80

Note the use of descriptors in the following example *VWRITE command:

*vwite, SEQU, nydata(1, 1), nydata(1, 2), (nmydatal(1, 1)+nmydatal(1l, 2))
(" Row ,F3.0,' contains ',2F7.3,". Is their sum', F7.3,"' ?")

The resulting data file is

Row 1. contains 10.000 50. 000. Is their sum 60.000 ?
Row 2. contains 20.000 60.000. Is their sum 60.000 ?
Row 3. contains 30.000 70.000. Is their sum 60.000 ?

3.11.7. Operations Among Array Parameters

Just as parametric expressions and functions allow operations among scalar parameters, a series of commands
is available to perform operations among array parameters. There are classes of operations: operations on columns
(vectors), known as vector operations and operations on entire matrices (arrays), known as matrix operations. All
operations are affected by a set of specification commands, which are discussed in Section 3.11.7.3: Specification
Commands for Vector and Matrix Operations.

3.11.7.1. Vector Operations

Vector operations are simply a set of operations - addition, subtraction, sine, cosine, dot product, cross product,
etc. - repeated over a sequence of array elements. Do-loops (discussed in Section 4.5.5: Looping: Do-Loops) can
be employed for this purpose, but a more convenient and much faster way is to use the vector operation com-
mands - *VOPER, *VFUN, *VSCFUN, *VITRP, *VFILL, *VREAD, and *VGET. Of these listed vector operation
commands, only *VREAD and *VWRITE are valid for character array parameters. Other vector operation commands
apply only to array parameters dimensioned (*DIM) as ARRAY type or TABLE type.

The *VFILL, *VREAD, *VGET, *VWRITE, and *DIM commands were introduced earlier in this chapter. Other
commands that are discussed in this section include

*VOPER or Utility Menu> Parameters> Array Operations> Vector Operations
Performs an operation on two input array vectors and produces a single output array vector.

*VFUN or Utility Menu> Parameters> Array Operations> Vector Functions
Performs a function on a single input array vector and produces a single output array vector.

*¥VSCFUN or Utility Menu> Parameters> Array Operations> Vector-Scalar Func
Determines the properties of a single input array vector and places the result in a specified scalar parameter.

*VITRP or Utility Menu> Parameters> Array Operations> Vectorinterpolate
Forms an array parameter (type ARRAY) by interpolating an array parameter (type TABLE) at specified table
index locations.

The examples below illustrate the use of some of these commands. Refer to the ANSYS Commands Reference for
syntactical information about these commands. For all of the following examples, the array parameters (of type
ARRAY) X, Y, and THETA have been dimensioned and defined.

3-32 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

-2 6 8 0 3 2 5 -6
wo|1 0 2 12| _|5-7 10
4 -3 17 8 0 0 11
-8 1 10 -5 1 4 9 16

o

15

30

THETA =45

60

75

.gu.

In the following example, the result array is first dimensioned (Z1). The *VOPER command then adds column 2
of X to column 1 of Y, both starting at row 1, and then places the result into Z1. Notice that the starting location
(the row and column index numbers) must be specified for all array parameters. The operation then progresses
sequentially down the specified vector.

*DI M Z1, ARRAY, 4
*VOPER, Z1(1), X(1, 2), ADD, Y(1, 1)

9
-9
3
2

Z1=

In the following example, again the result array (Z2) is dimensioned first. The *VOPER command then multiplies
the first column of X (starting at row 2) with the fourth column of Y (starting at row 1) and writes the results to
Z2 (starting at row 1).

*DI M Z2, ARRAY, 3
*VOPER, Z2(1), X(2, 1), MULT, Y(1, 4)
-6
Z2=| 0
-88

In this example, again the results array (Z4) is dimensioned first. The *VOPER command then performs the cross
product of four pairs of vectors, one pair for each row of X and Y. The j, j, and k components of these vectors are
columns 1, 2, and 3 respectively of X and columns 2, 3, and 4 of Y. The results are written to Z4, whose j, j, and k
components are vectors 1, 2, and 3 respectively.

*DI M Z4, ARRAY, 4, 3
*VOPER, Z4(1, 1), X(1, 1), CRCSS, Y(1, 2)

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-33

Chapter 3: Using Parameters

-76 4

-2 214 1
Z4=

-33 -44 0

-74 168 -76

-22]

In the following example, the results array (A3) is dimensioned first. The *VFUN command then raises each element
in vector 2 of X to the power of 2 and writes the results to A3.

*DI M A3, ARRAY, 4
*VFUN, A3(1), PR X(1,2),2

36

0
9
1

In this example, the results array (A4) is dimensioned. The two *VFUN commands then calculate the cosine and
sine of array elements in THETA and place the results in the first and second columns, respectively, of A4. Notice
that A4 now represents a circular arc spanning 90°, described by seven points (whose x, y, and z global Cartesian
coordinates are the three vectors). The arc has a radius of 1.0 and lies parallel to the x-y plane at z = 2.0.

*DIM A4, ARRAY, 7, 3

* AFUN, DEG

*VFUN, A4(1, 1), CCS, THETA(1)
*VFUN, A4(1, 2), SI N, THETA(1)

AA(1,3)=2,2,2,2,2,2,2

1.0 0.0
0966 0.259
0866 05
A4=10.707 0.707
05 0.866
0.259 0.966

0.0 1.0

2.0
20
20
20
20
2.0

20

In this example, the results array (A5) is first dimensioned. Then, the *VFUN command calculates the tangent
vector at each point on the curve represented by A4, normalizes it to 1.0, and places the results in A5.

*DI M A5, ARRAY, 7, 3
*VFUN, A5(1, 1), TANG, A4(1, 1)

3-34

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

-0.131 0991 O
-0.259 0965 0O
-05 0866 0
A5=1-0.707 0.707 0
-0866 05 0O
-0966 0259 0
-0991 0131 O

Two additional *VOPER operations, gather (GATH) and scatter (SCAT), are used to copy values from one vector
to another based on numbers contained in a "position" vector. The following example demonstrates the gather
operation. Note that, as always, the results array must be dimensioned first. In the example, the gather operation
copies the value of B1 to B3 (using the index positions specified in B2). Note that the last elementin B3 is 0 as
this is its initialized value.

*DIM BL, , 4

*DIM B2, , 3

*DIM B3, , 4

B1(1) =10, 20, 30, 40

B2(1)=2, 4,1

*VOPER, B3(1), B1(1), GATH, B2(1)

o1
40

10
0

3.11.7.2. Matrix Operations

Matrix operations are mathematical operations between numerical array parameter matrices, such as matrix
multiplication, calculating the transpose, and solving simultaneous equations.

Commands discussed in this section include

*MOPER or Utility Menu> Parameters> Array Operations> Matrix Operations
Performs matrix operations on two input array parameter matrices and produces one output array parameter
matrix. Matrix operations include:
+ Matrix multiplication
+ Solution of simultaneous equations
+ Sorting (in ascending order) on a specified vector in a matrix
+ Covariance between two vectors
+ Correlation between two vectors
*MFUN or Utility Menu> Parameters> Array Operations> Matrix Functions
Copies or transposes an array parameter matrix (accepts one input matrix and produces one output matrix).

*MFOURI or Utility Menu> Parameters> Array Operations> Matrix Fourier
Calculates the coefficients for or evaluates a Fourier series.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-35

Chapter 3: Using Parameters

The examples below illustrate the use of some of these commands. Refer to the ANSYS Commands Reference for
syntactical information about these commands.

This example shows the sorting capabilities of the *MOPER command. For this example, assume that the array
(SORTDATA) has been dimensioned and its element values have been defined as follows:

3 10 11]
3 -4 12
SORTDATA =|8 -9 13
2 7 14
6 1 15

First, the OLDORDER array is dimensioned. The *MOPER command will place the original order of the rows into
OLDORDER. The *MOPER command then sorts the rows in SORTDATA so that the 1,1 vector is now in ascending
order.

*di m ol dorder,,5
*nmoper, ol dorder (1), sortdata(l, 1), sort,sortdata(l, 1)

The following array values result from the *MOPER command:

2 7 14] 4
3 10 1 1
SORTDATA =|5 -4 12 OLDORDER = |2
6 1 15 5
8 -9 13 3

To put the SORTDATA array back into its original order, you could then issue the following command:

*noper, ol dorder (1), sortdata(1, 1), sort, ol dorder (1, 1)

In the following example, the *MOPER command solves a set of simultaneous equations. The following two arrays
have been dimensioned and their values assigned:

2 4 3 2] 2
36 5 2 2
ﬁ_zaz-s B_a
4 5 14 14 11

The *MOPER command can solve a set of simultaneous equations for a square matrix. The equations take the
form

an1X1 + an2X2 + Jesey + annxn = bn
In the case of the above arrays, the *MOPER command will solve the following set of simultaneous equations:

3X, + 6X, + 5X;5 + 2X, = 2

3-36 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

To solve the equations, first the results array (C) is dimensioned. Then the *MOPER command solves the equations,

using A as the matrix of a coefficients and B as a vector of b values.

*DIM G, , 4
*MOPER, C(1), A(1, 1), SOLV, B(1)

The C array now contains the following solutions.
66
26

6
4

The following example shows the *MFUN command used to transpose data in an array. For this example, assume
that the array (DATA) was dimensioned and filled with the following values:

34 25
DATA =(22 68
-7 12

As always, the results array (DATATRAN) is dimensioned first, then the *MFUN command transposes the values
and writes them to DATATRAN.

*DI M DATATRAN, |, 2, 3
* MFUN, DATATRAN(1, 1) , TRAN, DATA(1, 1)

The following shows the results in the DATATRAN array:

34 22 -
DATATRHN—’ES 68 1;]

3.11.7.3. Specification Commands for Vector and Matrix Operations

All the vector and matrix operation commands are affected by the setting of the following specification commands:
*VCUM, *VABS, *VFACT, *VLEN, *VCOL, and*VMASK. (Of all specification commands, only *VLEN and *VMASK,
in conjunction with *VREAD or *VWRITE, are valid for character array parameters.) You can check the status of
these commands with the *VSTAT command. Most of these commands (and their corresponding GUI paths)
were introduced earlier in this chapter. The others are explained in the following.

With the exception of the *VSTAT command, which you cannot access directly in the GUI, all of the specification
commands described below are available via menu path Utility Menu> Parameters> Array Operations> Op-
eration Settings.

Important: All specification commands are reset to their default settings after each vector or matrix operation.

The following lists the available array specification commands:

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-37

Chapter 3: Using Parameters

*VCUM
Specifies whether results will be cumulative or noncumulative (overwriting previous results). ParR, the result
of a vector operation, is either added to an existing parameter of the same name or overwritten. The default
is noncumulative results, that is, ParR overwrites an existing parameter of the same name.

*VABS
Applies an absolute value to any or all of the parameters involved in a vector operation. The default is to use
the real (algebraic) value.

*VFACT
Applies a scale factor to any or all of the parameters involved in a vector operation. The default scale factor
is 1.0 (full value).

*VCOL
Specifies the number of columns in matrix operations. The default is to fill all locations of the result array
from the specified starting location.

*VSTAT
Lists the current specifications for the array parameters.

*VLEN or Utility Menu> Parameters> Array Operations> Operation Settings
Specifies the number of rows to be used in array parameter operations.

*VMASK or Utility Menu> Parameters> Array Operations> Operation Settings
Specifies an array parameter as a masking vector.

The following table lists the various specification commands and the vector and matrix array commands that
they affect.

*VABS *VFACT *VCUM *\VCOL *VLENNROW,NINC | *VMASK
*MFOURI No No No No No No No
*MFUN Yes Yes Yes No Yes No Yes
*MOPER Yes Yes Yes No Yes No Yes
*VFILL Yes Yes Yes N/A Yes Yes Yes
*VFUN Yes Yes Yes N/A Yes Yes Yes
*VGET Yes Yes Yes N/A Yes Yes Yes
*VITRP Yes Yes Yes N/A Yes Yes Yes
*VOPER Yes Yes Yes N/A Yes Yes Yes
VPLOT No No N/A N/A Yes Yes Yes
*VPUT Yes Yes No N/A Yes Yes Yes
*VREAD Yes Yes Yes N/A Yes Yes Yes
*VSCFUN Yes Yes Yes N/A Yes Yes Yes
*VWRITE No No N/A N/A Yes Yes Yes

The examples below illustrate the use of some of the specification commands. Refer to the ANSYS Commands
Reference for syntactical information about these commands.

In the following, the results array (CMPR) is dimensioned. The two *VFUN commands, in conjunction with the
preceding *VMASK and *VLEN commands, then compress selected data and write them to specified locations
in CMPR. The complement to the COMP operation is the EXPA operation on the *VFUN command.

*DI M VPR, ARRAY, 4, 4

*VLEN, 4, 2! Do next *V---- operation on four rows,
! ski ppi ng every second row

3-38 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

*VFUN, CMPR(1, 2) , COVP, Y(1, 1)

*VMASK, X(1, 3)!Use colum 3 of X as a mask for next *V----
| operation

*VFUN, CMPR(1, 3), COVP, Y(1, 2)

03 2 0
08 -7 0
CMPR = 00 4 0
00 0 O

This example uses the *VFACT command to round the values in an array vector to the number of decimal places
specified by the NUMDP scalar parameter (set to 2 in the example). The NUMDATA array has been dimensioned
and filled with the following values:

[2.526]
2.524
NUMDATA = _6.526
-6.524
nunmdp=2

*vfact, 10** numdp

*vfun, nundat a(1), copy, nundat a(1)
*vfun, nundat a(1), ni nt, nundata(1)
*vfact, 10** (- nundp)

*vfun, nundat a(1), copy, nundat a(1)

or, you can use a slightly shorter version
nundp=2
*vfact, 10** nundp
*vfun, nundat a(1), copy, nundat a(1)

*vfact, 10** (- nundp)
*vfun, nundata(1), ni nt, nundat a(1)

The resultant NUMDATA array is then:

[2.53]
2.52
-653
—6.52]

NUMDATA =

This example uses the *VLEN and *VMASK commands to find the set of prime numbers less than 100. An array,
MASKVECT, is created using 1.0 to indicate that the row value is a prime number and 0.0 to indicate that the
value isn't prime. The algorithm used to create the mask vector is to initialize all rows whose value is greater than
1 to 1.0 and then loop through the range of possible factors, eliminating all multiples of the factor. The *VLEN
command sets the row increment for performing operations to FACTOR. When the *VFILL command is processed,
the row number is incremented by this value. Because the starting row is FACTOR x 2, the rows are processed
by each loop in the following manner: FACTOR x 2, FACTOR x 3, FACTOR x 4, etc.

*di m maskvect,, 100

*vfiill, maskvect(2),ranp, 1

*do, factor, 2,10,1

*vl en,, factor

*vfill, maskvect(factor*2),ranp, 0

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-39

Chapter 3: Using Parameters

*enddo

*vmask, maskvect (1)

*di m nunbers, , 100

*vfill, nunbers(1l),ranp, 1,1
*stat us, numbers(1), 1, 10

The resultant output from the *STATUS command, showing the first 10 elements in NUMBERS is:

PARAMETER STATUS- NUMBERS (5 PARAMETERS DEFI NED)
(1 NCLUDI NG 2 | NTERNAL PARAMETERS)

OCATI ON VALUE

. 000000000E+00
. 00000000

. 00000000

. 000000000E+00
. 00000000

. 000000000E+00
. 00000000

. 000000000E+00
. 000000000E+00
. 000000000E+00

COWONOUAWNRC
RPRRPRRPRRRRRRR
RPRRPRRPRRRRRRR
COO~NOUIOWNO

[Eny

3.11.8. Plotting Array Parameter Vectors

You can graphically display array vector values using the *VPLOT command.

The following demonstrates some of the capabilities of the *VPLOT command. For this example, two TABLE arrays
(TABLEVAL and TABLE) and one numeric array have been dimensioned and filled with the following values:

03 9 0 40

416 12 19 (70

TABLEVAL =7 |8 6 TABLEZ =88 |80

1510 3 9995
6 12
ARRAYVAL=|8 6
10 3

The following are example *VPLOT commands and their resulting plots. Note that since ARRAY data is unordered
it is plotted as a histogram; TABLE data is ordered and is therefore plotted as a curve.

The plot (below) resulted from the following command.

*vplot,,arrayval (1,1),2

3-40 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

Figure 3.11 Sample Plot

r ,
= AMSYS Graphics ==
: NANSYS

137
12
11 7
! coL 1
L i
) El
—
=
= 2
.
E-1
.
E oL, . £
3
= VT hs T T ks E T ke
T 1.29 1.73 2.29 2.79 F.27 3.75
ROW

The plot (below) resulted from the following command.

*vplot,,tableval (1,1),2

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 3-41

Chapter 3: Using Parameters

Figure 3.12 Sample Plot

]
= ==

1
ANSYS
137
12
11
1 coL 1
Lul]
] El
—
<L
= =
-4
=
=
47 coL 2
E
T T T St T e
1.2 1.8 2 2.4 2.8 3.2 £
ROW

The plot (below) resulted from the following command.

*vpl ot, tabl e2(1), tableval (1,1),2

3-42 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

Figure 3.13 Sample Plot

VAL LUE

ANSYS

coL 1

coL 2

* L T L T e T e 1
Te 2=
T2 Ta =0 =4 =8

tableZ(1)

The plot (below) resulted from the following command.

*vpl ot, tabl eval (1, 0), tableval (1,1), 2

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

3-43

Chapter 3: Using Parameters

Figure 3.14 Sample Plot

= 3 215}

coL 1

VAL LUE

47 coL 2

=] T T 11 13 1= 17

tablewval (1,0}

3.11.9. Modifying Curve Labels

When you use *VPLOT to create your curves, default labels are assigned. Normally, the label for curve 1 is “COL
1", the label for curve 2 is “COL 2" and so on; the column number is the field containing the dependent variables
for that particular curve. You can use the /GCOLUMN command to apply your own labels to the curves (any
string of up to eight characters).

The example below uses the /GCOLUMN command at the beginning of the program input to apply the labels
“string01” and “string02” to the array curve.

/gcol, 1, string01l
/gcol, 2, string02

*di m xxx, array, 10
*di myyy, array, 10, 2

xxx(1,1) =1le6
xxx(2,1) = 1le6 + leb
xxx(3,1) = 1le6 + 2e5
xxx(4,1) = 1le6 + 3e5
xxx(5,1) = 1e6 + 4e5
xxx(6,1) = 1le6 + 5e5
xxx(7,1) = 1le6 + 6e5
xxx(8,1) = 1le6 + 7e5
xxx(9,1) = 1le6 + 8e5
xxx(10,1) = 1e6 + 9e5
yyy(1,1) =1
yyy(2,1) =4
yyy(3,1) =9
yyy(4,1) =16
yyy(5,1) =25

3-44 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 3.11: Array Parameters

*vpl o, xxx(1,

1)
1)
1)
1)
1)

2)
2)
2)
2)
2)
2)
2)
2)
2)
2)

P OoOO~NOOA~WNER

36
64

81
100

0

1), yyy(1,1) ,2

Figure 3.15 Sample Plot With User-specified Labels

VATUE

100

an

20

70

31

40

20

20

10

|—|_

a0o iono iz00 1400 ie00 ian0o 2000
300 iioo0 iz00 1500 1700 1300

zrzx(l,1)

AN

string0l

stringl2
frl0% 3y

2100

The labels can be returned to the default value (COL 1 and COL 2) by issuing the /GCOLUMN command with no
string specified.

/gcol , 1
/gcol , 2

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

3-45

3-46

Chapter 4: APDL as a Macro Language

4.1. What is an APDL Macro?

You can record a frequently used sequence of ANSYS commands in a macro file (these are sometimes called
command files). Creating a macro enables you to, in effect, create your own custom ANSYS command. For example,
calculating power loss due to eddy currents in a magnetic analysis would require a series of ANSYS commands
in the postprocessor. By recording this set of commands in a macro, you have a new, single command that executes
all of the commands required for that calculation. In addition to executing a series of ANSYS commands, a macro
can call GUI functions or pass values into arguments.

You can also nest macros. That is, one macro can call a second macro, the second macro can call a third macro,
and so on. You can use up to 20 nesting levels, including any file switches caused by the ANSYS /INPUT command.
After each nested macro executes, the ANSYS program returns control to the previous macro level.

The following is a very simple example macro file. In this example, the macro creates a block with dimensions 4,
3,and, 2 and a sphere with a radius of 1. It then subtracts the sphere from one corner of the block.

/ prep7

/view,,-1,-2,-3

bl ock, , 4,,3,,2

sphere, 1

vsbv, 1, 2

finish
If this macro were called mymacro.mac, you could execute this sequence of commands with the following single
ANSYS command

*use, mymacr o

or (because the extension is .mac)

nymacr o
Although this is not a realistic macro, it does illustrate the principle.

This chapter provides information on the various ways you can create, store, and execute macros. It also discusses
the basic information you need to use APDL as a scripting language in creating macros.

4.2. Creating a Macro

You can create macros either within ANSYS itself or using your text editor of choice (such as emacs, vi, or wordpad).
If your macro is fairly simple and short, creating it in ANSYS can be very convenient. If you are creating a longer,
more complex macro or editing an existing macro then you will need a text editor. Also, using a text editor allows
you to use a similar macro or ANSYS log file as the source for your macro.

For any long, complex macro you should always consider either using a similar macro as a starting point or running
the task interactively in ANSYS and using the resulting log file as the basis of your macro. Either method can
greatly reduce the time and effort required to create a suitable macro.

4.2.1. Macro File Naming Conventions

Macros are a sequence of ANSYS commands stored in a file. Macros should not have the same name as an existing
ANSYS command, or start with the first four characters of an ANSYS command, because ANSYS will execute the
internal command instead of the macro. The following naming restrictions apply to macro files:

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Chapter 4: APDL as a Macro Language

* The file name cannot exceed 32 characters.
+ The file name cannot begin with a numeral.

+ Thefile extension cannot contain more than eight characters (if you are executing the macro as if it were
an ANSYS command it should have the extension .mac.)

+ The file name or extension cannot contain spaces.
The file name or extension cannot contain any characters prohibited by your file system and for portability
should not contain any characters prohibited by either UNIX or Windows file systems.

To ensure that you are not using the name of an ANSYS command, before creating a macro try running the file
name that you wish to use as an ANSYS command. If ANSYS returns the message shown below, you will know
that the command is not used in the current processor. You should check the macro file name in each processor
in which you plan to use the macro. (You could also check if the macro file name matches any command listed
in the online documentation; however, this method cannot locate the names of undocumented commands.)

Figure 4.1 ANSYS Message Box for Unknown Command

= Tarning |

¥XCVB is not a recognized PREP7 cowmand, abbreviation. or macro.
? this coemand will be Lgnored.

Using the .mac extension allows ANSYS to execute the macro as it would any internal command. You should
avoid using the extension .MAC because it is used for ANSYS internal macros.

4.2.2. Macro Search Path

By default, ANSYS searches for a user macro file (.mac extension) in the following locations:

1. The /ansys_inc/v81/ansys/apdl directory.

2. Thedirectory (or directories) designated by the ANSYS_MACROLIB environment variable (if defined)
or the login (home) directory. This environment variable is documented in The ANSYS Environment
chapter of the ANSYS Operations Guide.

The directory designated by the SHOME environment variable.
4. The working directory.

You can place macros for your personal use in your home directory. Macros that should be available across your
site should be placed in the /ansys_inc/v81/ansys/apdl directory or some commonly accessible directory that
everyone can reference through the ANSYS_MACROLIB environment variable.

For Windows users: The "current directory" is the default directory (usually a network resource) set by adminis-
trators and you should ask your network administrator for its location. You can use environment variables to
create a local "home directory." The local home directory is checked after the default directory designated in
your domain profile.

4-2 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.2: Creating a Macro

4.2.3. Creating a Macro Within ANSYS

You can create a macro by four methods from within ANSYS:

* Issue the *CREATE command in the input window. Parameter values are not resolved and parameter
names are written to the file.

* Use the *CFOPEN, *CFWRITE, and *CFCLOS commands. Parameter names are resolved to their current
values and those values are written to the macro file.

* Issue the /TEE command in the input window. This command writes a list of commands to a file at the
same time that the commands are being executed. As the commands are executed in the current ANSYS
session, parameter names are resolved to their current values. However, in the file that is created, para-
meter values are not resolved and parameter names are written instead.

* Choose the Utility Menu> Macro> Create Macro menu item. This method opens a dialog box that can
be used as a simple, multiline editor for creating macros. Parameter values are not resolved and parameter
names are written to the file.

The following sections detail each of these methods.
4.2.3.1.Using *CREATE

Issuing *CREATE redirects ANSYS commands entered in the command input window to the file designated by
the command. All commands are redirected until you issue the *END command. If an existing file has the same
name as the macro file name you specify, the ANSYS program overwrites the existing file.

For example, suppose that you want to create a macro called matprop.mac, which automatically defines a set
of material properties. The set of commands entered into the input window for this macro might look like this:
* CREATE, nat pr op, mac, macr os
MP, EX, 1, 2. 07EL1
MP, NUXY, 1, . 27
MP, DENS, 1, 7835

MP, KXX, 1, 42
*END

The *CREATE command takes arguments of the file name, the file extension, and the directory path (in this case,
the macros directory is specified).

When using *CREATE, all parameters used in commands are written to the file (the currently assigned values
for the parameter are not substituted).

You cannot use *CREATE within a DO loop.
4.2.3.2. Using *CFWRITE

If you wish to create a macro file in which current values are substituted for parameters you can use *CFWRITE.
Unlike *CREATE, the *CFWRITE command cannot specify a macro name; you must first specify the macro file
with the *CFOPEN command. Only those ANSYS commands that are explicitly prefaced with a *CFWRITE com-
mand are then written to the designated file; all other commands entered in the command input window are
executed. As with the *CREATE command, *CFOPEN can specify a file name, a file extension, and a path. The
following example writes a BLOCK command to the currently open macro file.

*cfwite, block,,a,,b,,c

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 4-3

Chapter 4: APDL as a Macro Language

Note that parameters were used for arguments to the BLOCK command. The current value of those parameters
(and not the parameter names) are written to the file. So, for this example, the line written to the macro file might
be

*cfwite, block,,4,,2.5,,2

To close the macro file, issue the *CFCLOS command.

Note — While it is possible to create a macro through this method, these commands are most useful as
a method for writing ANSYS commands to a file during macro execution.

4.2.3.3. Using /TEE

Issuing /TEE,NEW or /TEE,APPEND redirects ANSYS commands entered in the command input window to the
file designated by the command at the same time that the commands are being executed. All commands are executed
and redirected until you issue the /TEE,END command. If an existing file has the same name as the macro file
name you specify with /TEE,NEW, the ANSYS program overwrites the existing file. To avoid this, use /TEE,APPEND
instead.

In addition to the Label argument (which can have a value of NEW, APPEND, or END), the /TEE command takes
arguments of the file name, the file extension, and the directory path.

As the commands are executed in the current ANSYS session, all parameter names are resolved to their current
values. However, in the file that is created, parameter names are written (the currently assigned values for the
parameter are not substituted). If your current parameter values are important, you can save the parameters to
a file using the PARSAV command.

For an example, see the description of the /TEE command in the ANSYS Commands Reference.
4.2.3.4. Using Utility Menu> Macro> Create Macro
Choosing this menu item opens an ANSYS dialog box that you can use as a simple editor for creating macros.

You cannot open and edit an existing macro with this facility; if you use the name of an existing macro as the
arguments for the *CREATE field, the existing file will be overwritten.

4-4 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.2: Creating a Macro

Figure 4.2 The Create Menu Dialog Box
T et |

As with the *CREATE command, parameters are not evaluated but are written verbatim into the macro file. Note
that you do not make the last line a *END command.

4.2.4. Creating Macros with a Text Editor

You can use your favorite text editor to create or edit macro files. Any ASCII editor will work. Moreover, ANSYS
macros can have their lines terminated by either UNIX or Windows line ending conventions (carriage-return,
line-feed pairs or simply line-feeds) so you can create a macro on one platform and use it on several platforms.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SASIP, Inc. 4-5

Chapter 4: APDL as a Macro Language

If you use this method to create macros, do not include the *CREATE and ¥*¥END commands.

Figure 4.3 A Macro Created in a Text Editor

emacsldusery, ansys., com
Butfers F1le Eclit Help

Sprep?

Aview, ,-1,-2,-3

block, ,argl,,arg2,,arg3
sphere,arz4

vebwv,1,2

t1inish

—=—#¥=Emacs: mymacro.mac (Indented Text Filll——Top--

4.2.5. Using Macro Library Files

As a convenience, ANSYS allows you to place a set of macros in a single file, called a macro library file. You can
create these either through the *CREATE command or through a text editor. Given that macro libraries tend to
be longer than single macros, using a text editor normally provides the best approach.

Macros libraries have no explicit file extension and follow the same file naming conventions as macro files. A
macro library file has the following structure:

MACRONAMEL

| ECF
MACRONAME2

| ECF
MACRONAME3

.| EOF

For example, the following macro file contains two simple macros:

mybl oc
/ prep7
/view,,-1,-2,-3
bl ock, , 4,,3,,2
finish

4-6 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.3: Executing Macros and Macro Libraries

| EOF

nmyspher e

/ prep7
/view,,-1,-2,-3
sphere, 1

finish

| EOF

Note that each macro is prefaced with a macro name (sometimes referred to as a data block name) and ends
with a /JEOF command.

A macro library file can reside anywhere on your system, although for convenience you should place it within
the macro search path. Unlike macro files, a macro library file can have any extension up to eight characters.

4.3. Executing Macros and Macro Libraries
You can execute any macro file by issuing the *USE command. For example, to execute the macro called
MYMACRO (no extension) residing somewhere in the macro search path, you would issue

*use, mymacr o
In this case, the macro takes no arguments. If instead the macro was called MYMACRO.MACRO and resided in
/myaccount/macros, you could call it with

*use, / myaccount / macr os/ mymacr 0. macr o

Note that the *USE command allows you to enter the path and extension along with the file name and that
these are not entered as separate arguments.

If a macro has a .mac file extension and resides in the search path, you can execute it as if it were an ANSYS
command by simply entering it in the command input window. For example, to call mymacro.mac you could
simply enter

nmymacr o

You can also execute macros with a .mac extension through the Utility Menu> Macro> Execute Macro menu
item.

If the same macro takes arguments (see Section 4.4.1: Passing Arguments to a Macro for more information about
passing arguments to macros), then these can be entered on the command line as follows

mymacro, 4,3,2,1.5

or

*use, mynacro. mac, 4, 3,2,1.5
The Utility Menu> Macro> Execute Macro menu item dialog provides fields for arguments.

Executing macros contained in macro libraries is similar. You must first specify the library file using the *ULIB
command. For example, to specify that macros are in the mymacros.mlib file, which resides in the /myac-
count/macros directory, you would issue the following command:

*ul'i b, mymacros, m i b, / nyaccount/ macr os/
After selecting a macro library, you can execute any macro contained in the library by specifying it through the

*USE command. As with macros contained in individual files, you can specify arguments as parameters in the
*USE command.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 4-7

Chapter 4: APDL as a Macro Language

Note — You cannot use the *USE command to access macros not contained in the specified macro library
file after issuing the *ULIB command.

4.4, Local Variables

APDL provides two sets of specially named scalar parameters which are available for use as local variables. These
consist of

« Asetof scalar parameters that provide a way of passing command line arguments to the macro.

« Aset of scalar parameters that can be used within the macro. These provide a set of local variables that

can be used to define values only within that macro.

The following sections discuss both of these variable types in detail.

4.4.1. Passing Arguments to a Macro

There are 19 scalar parameters that you can use to pass arguments from the macro execution command line to
the macro. These scalar parameters can be reused with multiple macros; that is, their values are local to each
macro. The parameters are named ARG1 through AR19 and they can be used for any of the following items:

+ Numbers
+ Alphanumeric character strings (up to eight characters enclosed in single quotes)
» Numeric or character parameters
* Parametric expressions
Note — You can pass only the values of parameters ARG1 through AR18 to a macro as arguments with
the *USE command. If you create a macro that can be used as an ANSYS command (the macro files has
a .mac extension), you can pass the values of parameters ARG1 through AR19 to the macro.
For example, the following simple macro requires four arguments, ARGL, AR, ARG3, and ARA:
| prep7
/view,,-1,-2,-3
bl ock, ,argl,,arg2,,arg3
sphere, arg4
vsbv, 1, 2
finish
To execute this macro, a user might enter

nmymacro, 4,3,2.2,1

4.4.2. Local Variables Within Macros

Each macro can have up to 79 scalar parameters used as local variables (AR20 through AR99). These parameters
are completely local to the macro, and multiple macros can each have their own unique values assigned to these
parameters. These parameters are not passed to macros called from macros (nested macros). They are passed
to any files processed through a /INPUT command or a "do loop" processed within the macro.

4.4.3. Local Variables Outside of Macros

ANSYS also has a similar set of ARG1 through AR99 scalar parameters that are local to an input file, and are not
passed to any macros called by that input file. Thus, once a macro finishes and execution returns to an input file,
the values of ARG1 through ARG99 revert to whatever values were defined within the input file.

4-8 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.5: Controlling Program Flow in APDL

4.5, Controlling Program Flow in APDL

When executing an input file, ANSYS is normally restricted to linear program flow; that is, each statement is ex-
ecuted in the order that it is encountered in the listing. However, APDL provides a rich set of commands that
you can use to control program flow.

+ (Call subroutines (nested macros).
Branch unconditionally to a specified location with a macro.
Branch based upon a condition to a specified location within a macro.
Repeat the execution of a single command, incrementing one or more command parameters.
Loop through a section of a macro a specified number of times.

The following sections detail each of these program control capabilities. For the exact syntax of the commands,
refer to the ANSYS Commands Reference.

4.5.1. Nested Macros: Calling Subroutines Within a Macro

APDL allows you to nest macros up to 20 levels deep, providing functionally similar capability to a FORTRAN 77
CALL statement or to a function call. You can pass up to 19 arguments to the macro and, at the conclusion of
each nested macro, execution returns to the level that called the macro. For example, the following simply macro
library file shows the MYSTART macro, which calls the MYSPHERE macro to create the sphere.

nystart

/ prep7

/view,,-1,-2,-3

nmysphere, 1.2

finish

|/ eof

nmyspher e

sphere, argl

|/ eof

4.5.2. Unconditional Branching: Goto

The simplest branching command, *GO, instructs the program to go to a specified label without executing any
commands in between. Program flow continues from the specified label. For example

* 0, : BRANCHL
- ! This bl ock of comuands is skipped (not executed)

: BRANCHL
The label specified by the *GO command must start with a colon (:) and must not contain more than eight

characters, including the colon. The label can reside anywhere within the same file.

Note — The use of *GO is now considered obsolete and is discouraged. See the other branching commands
for better methods of controlling program flow.

4.5.3. Conditional Branching: The *IF Command

APDL allows you to execute one of a set of alternative blocks based on the evaluation of a condition. The conditions
are evaluated by comparing two numerical values (or parameters that evaluate to numerical values).

The *IF command has the following syntax

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 4-9

Chapter 4: APDL as a Macro Language

*IF, VAL1, Oper, VAL2, Base
Where

« VAL1 is the first numerical value (or numerical parameter) in the comparison.
* Qper isthe comparison operator.
* VAL2 is the second numerical value (or numerical parameter) in the comparison.

+ Base is the action that occurs if the comparison evaluates as true.

APDL offers eight comparison operators, which are discussed in detail in the *IF command reference. Briefly
these are:

EQ
Equal (for VAL1 = VAL2).

NE
Not equal (for VAL1 = VAL2).

LT
Less than (for VAL1 < VAL?2).

GT
Greater than (for VAL1 > VAL2).

LE

Less than or equal (for VAL1 < VAL2).
GE

Greater than or equal (for VAL1 2 VAL2).

ABLT
Absolute values of VAL1 and VAL2 before < operation.

ABGT
Absolute values of VAL1 and VAL2 before > operation.

By giving the Base argument a value of THEN, the *IF command becomes the beginning of an if-then-else con-
struct (similar to the FORTRAN equivalent). The construct consists of

* An *IF command, followed by

* One or more optional *ELSEIF commands

* An optional ¥*ELSE command

* Arequired *ENDIF command, marking the end of the construct.
In its simplest form, the *IF command evaluates the comparison and, if true, branches to a label specified in the
Base argument. This is similar to the "computed goto" in FORTRAN 77. (In combination, a set of such *IF commands
could function similarly to the CASE statements in other programming languages.) Take care not to branch to a
label within an if-then-else construct or do-loop. If a batch input stream hits an end-of-file during a false *IF

condition, the ANSYS run will not terminate normally. You will need to terminate it externally (use either the
UNIX “kill” function or the Windows task manager).

By setting the Base argument to a value of STOP, you can exit from ANSYS based on a particular condition.

An if-then-else construct simply evaluates a condition and executes the following block or jumps to the next
statement following the *ENDIF command (shown with the "Continue" comment).

4-10 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.5: Controlling Program Flow in APDL

*|F, A EQ 1, THEN
I Blockl

*ENDI F
I Continue

The following example shows a more complex structure. Note that only one block can be executed. If no com-
parison evaluates to true, the block following the *ELSE command is executed.

Figure 4.4 A Sample If-Then-Else Construct

-
.
-,

*TF,A,EQ, 1, THEN ’fknﬁ=1?x:f/jr'ﬁ" Block1 —®

I Blockl ‘;

M
*ELSEIF, A, EQ, O < w07 T moe

| Block?

}Nn
*ELSEIF, A, EQ, -1 < a=17 Y5 Blocks [—

| Block3 e
‘ELSE Blockd

I Blockd

+ENDIF Continue 4—

| Continus

Note — You can issue a /JCLEAR command within an if-then-else construct. The /CLEAR command does
not clear the *IF stack and the number of *IF levels is retained. An *ENDIF is necessary to close any
branching logic. Also, keep in mind that the /CLEAR command deletes all parameters, including any that
are used in your branching commands. You can avoid any problems that might arise from the deletion
of parameters by issuing a PARSAV command before the /CLEAR command, and then following the
/CLEAR command with a PARRES command.

4.5.4. Repeating a Command

The simplest looping capability, the *REPEAT command, allows you to execute the directly preceding command
a specified number of times, incrementing any field in that command by a constant value. In the example

E 12
* REPEAT, 5,0, 1

the Ecommand generates one element between nodes 1 and 2 and the following *REPEAT command specifies
that E executes a total of five times (including the original E command), incrementing the second node number
by one for each additional execution. The result is five total elements with node connectivities 1-2, 1-3, 1-4, 1-5,
and 1-6.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 4-11

Chapter 4: APDL as a Macro Language

Note — Most commands that begin with a slash (/) or an asterisk (*), as well as macros executed as "un-
known commands,” cannot be repeated. However, graphics commands that begin with a slash can be
repeated. Also, avoid using the *REPEAT command with interactive commands, such as those that require
picking or those that require a user response.

4.5.5. Looping: Do-Loops

A do-loop allows you to loop through a series of commands a specified number of times. The *DO and *ENDDO
commands mark the beginning and ending points for the loop. ¥*DO command has the following syntax:

The following example do-loop edits five load step files (numbered 1 through 5) and makes the same changes
in each file.

*DO1,1,5 ! For | =1to 5:

LSREAD, | ! Read load step file |
QUTPR, ALL, NONE | Change output controls
ERESX, NO

LSWRI TE, | ! Rewite load step file |
* ENDDO

You can add your own loop controls by using the *IF, *EXIT, or *CYCLE commands.
Keep the following guidelines in mind when constructing do-loops.

* Do not branch out of a do-loop with a :Label on the *IF or *GO commands.
+ Avoid using a:Label to branch to a different line within a do-loop. Use if-then-else-endif instead.

* Output from commands within a do-loop is automatically suppressed after the first loop. Use /GOPR or
/GO (no response line) within the do-loop if you need to see output for all loops.

Take care if you include a /CLEAR command within a do-loop. The /CLEAR command does not clear the
do-loop stack, but it does clear all parameters including the loop parameter in the *DO statement itself.
You can avoid the problem of having an undefined looping value by issuing a PARSAV command before
the /CLEAR command, and then following the /CLEAR command with a PARRES command.

4.5.6. Implied (colon) Do Loops
You can also use the implied (colon) convention for do loops. Using this convention is typically faster because
the looping is done in memory. The correct syntax is:
(x:y:z)
with z defaulting to 1 if not specified. For example:
n, (1:6), (2:12: 2)

will perform the same steps as:

555
wbhPE
o AN

n, 6,12

When using the implied (colon) do loops, be aware that the shortest expression controls execution. For example,
n,(1:7),(2:12: 2)

would behave identically to the example above.

4-12 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.6: Control Functions Quick Reference

Additional numeric fields that do not have the colon (;) will be taken as a constant value.

Also, non-integer numbers will function normally. However, if non-integer numbers are applied to a command
that requires integers, then the non-integer will be rounded off following normal mathematical conventions.

This looping convention can be used only for fields requiring a numeric entry. A text entry field will process (x:y:z)
as a literal value.

4.5.7. Additional Looping: Do-While

You can also perform looping functions that will repeat indefinitely until an external parameter changes. The
*DOWHILE command has the following syntax:

*DOWHILE,Par m

The loop repeats as long as the parameter Par mis TRUE. If Par mbecomes false (less than or equal to 0.0), the
loop terminates. The *CYCLE and *EXIT commands can be used within a *DOWHILE loop.

4.6. Control Functions Quick Reference

The table below describes APDL commands that perform control functions within macros.

Most of the important information about these commands appears here, but you may want to look at the complete
command descriptions in the ANSYS Commands Reference.

APDL Com- |Action It Takes Usage Tips
mand
*DO Defines the start of a * You also can control looping via the *IF command.

"do" loop. The com-
mands following the
*DO command execute
(up to the *ENDDO
command) repeatedly
until some loop control * *DO,*ENDDO, *CYCLE, and *EXIT commands in a “do” loop
is satisfied. must all read from the same file or the keyboard.

+ ANSYS allows up to 20 levels of nested “do” loops, although
“do” loops that include /INPUT, *USE, or an “unknown”
command macro support fewer nesting levels because they
do internal file switching.

+ Do notinclude picking operations in a “do” loop.

*+ Be careful if you include a /CLEAR command within a do-
loop. The /CLEAR command does not clear the do-loop stack,
butitdoes clear all parameters including the loop parameter
in the *DO statement itself. You can avoid the problem of
having an undefined looping value by issuing a PARSAV
command before the /CLEAR command, and then following
the /CLEAR command with a PARRES command.

*ENDDO Endsa"do"loopand |You must use one *ENDDO command for each nested "do" loop.
starts the looping ac- |The *ENDDO and *DO commands for a loop must be on the same
tion. file.

*CYCLE When executing a "do" | You can use the cycle option conditionally (via the *IF command).

loop, ANSYS bypasses |The *CYCLE command must appear on the same file as the *DO
all commands between |command and must appear before the *ENDDO command.

the *CYCLE and *EN-

DDO commands, then
(if applicable) initiates
the next loop.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 4-13

Chapter 4: APDL as a Macro Language

APDL Com-
mand

Action It Takes

Usage Tips

*EXIT

Exits from a "do" loop.

The command following the *ENDDO command executes next. The
*EXIT and *DO commands for a loop must be on the same file. You
can use the exit option conditionally (via the *IF command).

*IF

Causes commands to
be read conditionally.

You can have up to 10 nested levels of *IF blocks.

You cannot jump into, out of, or within a "do" loop or an if-
then-else construct to a :label line, and jumping to a :label
line is not allowed with keyboard entry.

You can issue a /CLEAR command within an if-then-else
construct. The /CLEAR command does not clear the *IF stack
and the number of *IF levels is retained. An *ENDIF is neces-
sary to close any branching logic.

The /CLEAR command deletes all parameters, including any
that are used in your branching commands. You can avoid
any problems that might arise from the deletion of paramet-
ers by issuing a PARSAV command before the /CLEAR com-
mand, and then following the /CLEAR command with a
PARRES command.

*ENDIF

Terminates an if-then-
else construct. (See the
*IF discussion for de-
tails.)

The *IF and *ENDIF commands must appear in the same file.

*ELSE

Creates a final, optional
block separator within
an if-then-else con-
struct. (See the *IF dis-
cussion for details.)

The *ELSE and *IF commands must appear in the same file.

*ELSEIF

Creates an optional, in-
termediate block separ-
ator within an if-then-
else construct.

If Oper = EQ or NE, VAL1 and VAL2 can also be character strings
(enclosed in quotes) or parameters. The *IF and *ELSEIF commands
must be on the same file.

4.7.Using the _STATUS and _RETURN Parameters in Macros

The ANSYS program generates two parameters, _STATUS and _RETURN, that you can also use in your macros.
For example, you might use the _STATUS or _RETURN value in an "if-then-else" construct to have the macro take

some action based on the outcome of executing an ANSYS command or function.

Solid modeling functions generate the _RETURN parameter, which contains the result of executing the function.

The following table defines the _RETURN values for the various solid modeling functions:

Table 4.1 RETURN Values

Command Function _RETURN Value
Keypoints

K Defines a keypoint keypoint number
KL Keypoint on a line Keypoint number
KNODE Keypoint at node Keypoint number
KBETW Keypoint between two keypoints KP number

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.7: Using the _STATUS and _RETURN Parameters in Macros

Command Function _RETURN Value
KCENTER Keypoint at center KP number

Lines

BSPLIN Generate spline Line number

CIRCLE Generate circular arc lines First line number

L Line between two keypoints Line number

L2ANG Line at angle with two lines Line number

LANG Line tangent to two lines Line number

LARC Defines a circular arc Line number

LAREA Line between two keypoints Line number
LCOMB Combine two lines into one Line number

LDIV Divide line into two or more lines First keypoint number
LDRAG Line by keypoint sweep First line number
LFILLT Fillet line between two liens Fillet line number
LROTAT Arc by keypoint rotation First line number
LSTR Straight line Line number

LTAN Line at end and tangent Line number

SPLINE Segmented spline First line number
Areas

A Area connecting keypoints Area number
ACCAT Concatenate two or more areas Area number
ADRAG Drag lines along path First area number
AFILLT Fillet at intersection of two areas Fillet area number
AL Area bounded by lines Area number
ALPFILL All loops Area number
AOFFST Area offset from given area Area number
AROTAT Rotate lines around axis First area number
ASKIN Skin surface through guiding lines First area number
ASUB Area using shape of existing area Area number
Volumes

Vv Volume through keypoints Volume number

VA Volume bounded through areas Volume number
VDRAG Drag area pattern to create volume First volume number
VEXT Volume by extruding areas First volume number
VOFFST Volume offset from given area Volume number
VROTAT Volume by rotating areas First volume number

Executing an ANSYS command, whether in a macro or elsewhere, generates the parameter _STATUS. This para-
meter reflects the error status of that command:

« Oforno error

« 1foranote

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 4-15

Chapter 4: APDL as a Macro Language

« 2 forawarning

« 3foran error

4.8. Using Macros with Components and Assemblies

To make large models easier to manage, you may want to divide a model into discrete components based on
different types of entities: nodes, elements, keypoints, lines, areas, or volumes. Each component can contain
only one type of entity. Doing this enables you to perform tasks such as applying loads or producing graphics
displays conveniently and separately on different portions of the model.

You can also create assemblies, which are groups that combine two or more components or even multiple as-
sembilies. You can nestassemblies up to five levels deep. For example, you could build an assembly named motor
from components called STATOR, PERMMAG, ROTOR, and WINDINGS.

The table below describes some of the commands you can issue to build components and assemblies. For more
detailed discussions of these commands, see the ANSYS Commands Reference. For further information on com-
ponents and assemblies, see Selecting and Components in the ANSYS Basic Analysis Guide.

m Groups geometry items into a component

CMDELE Deletes a component or assembly.

CMEDIT Edits an existing component or assembly. ANSYS updates assemblies automatically to
reflect deletions of lower-level or assemblies.

CMGRP Groups components and assemblies into one assembly. Once defined, an assembly can
be listed, deleted, selected, or unselected using the same commands as for components.

CMLIST Lists the entities contained in a component or assembly.

CMSEL Selects a subset of components and assemblies.

4.9. Reviewing Example Macros

Following are two example macros. The example macro below, called offset.mac, offsets selected nodes in the
PREP7 preprocessor. This macro is for demonstration purposes only because the NGEN command provides a
more convenient method.

! Macro to of fset sel ected nodes in PREP7
! The below file is saved as: offset.mac (nust be | owercase)
! Usage: offset, dx,dy, dz

/ nop | suppress printout for this nacro
*get, nnode, node, , num max ! get nunber of nodes
*di m x, , nnode | set up arrays for node |ocations

*di my,, nnode
*di m z, , nnode

*di m sel ,, nnode | set up array for select vector
*vget, x(1), node, 1,1 0c, x ! get coordinates
*vget,y(1),node, 1,10c,y

*vget, z(1),node, 1,1 0c, z

*vget, sel (1), node, 1, nsel ! get selected set

*voper, x(1),x(1),add,argl ! offset locations
*voper,y(1),y(1), add, arg2

*voper, z(1), z(1), add, arg3

! *do, i, 1, nnode ! store new positions
I *if,sel(i),gt,0,then ! this formtakes 98 sec for 100,000 nodes

4-16 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 4.9: Reviewing Example Macros

! niLx(i),y(i),z(i)
I *endif
I *enddo

*vmask, sel (1) | takes 3 seconds for 100,000 nodes
n, (1: NNODE) , x(1: NNODE) , y(1: NNODE) , z(1: NNODE)

x(1)
y(1)
z(1)
sel (1) =
i=

nnode=

| del ete paraneters (cleanup)

/ go ! resune printout

The following example macro, called bilinear.mac, evaluates two bilinear materials. This is a useful macro that
can be run after solving a static analysis. Material 1 is the tension properties, and Material 2 is the compression
properties. ARG1 is the number of iterations (default is 2).

/ nop
_niter = argl
*if, niter,It,2,then

_Niter =2
*endi f
*do,iter, 1, niter
/ post 1
set,1,1

ar11, =el m qr (0, 14)
*dim_s1,,arll

*dim _s3,,arll

et abl e, sigmax, s, 1
etable,signin,s,3

*vget, _s1(1), elem1, etab, si gnax
*vget, _s3(1),elem 1, etab,signin
*di m _mask, , ar11

*voper, _mask(1),_s1(1),I1t,0
*vecum 1

*vabs, 0, 1

*voper, _mask(1),_s3(1),gt,_s1(1)
finish

/ prep7
mat, 1
enod, al

*vput, _mask(1),elem1l, ese
mat , 2
enod, al

cal
finish

_s1(1)=
_s3(1)=
_mask(1)=

/ sol ve
sol ve
finish

*enddo
_niter=

_iter=
/' gop

set nunber of iterations

| oop on nunber of iterations

call elmgr function to get no. of elenents
array for element sl

array for element s3

sl is in elenment table sigmax

s3 is in element table sigmn
get element maxi numstress in sl
get element mninumstress in s3
array for mask vector

true if nax. stress &t; O
accunul at e conpression el ements
absol ute val ue of s3

true if abs(minstr) > maxstr

go to prep7 for element material nods
set all materials to tension properties

sel ect conpression el enents
change sel ected el ements to conpression

el enent s

sel ect al

clean up all vectors (set to zero)

rerun the anal ysis

end of iterations

clean up iteration counters

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

4-17

Chapter 5: Interfacing with the GUI

Within an ANSYS macro, you have several ways to access components of the ANSYS graphical user interface
(GUI):

* Youcan modify and update the ANSYS toolbar (this is discussed in detail in Section 2.1: Adding Commands
to the Toolbar).

* You can issue the *ASK command to prompt a user to enter a single parameter value.

* You can create a dialog box to prompt a user to enter multiple parameter values.

* You canissue the *MSG command to have the macro write an output message.

* You can have the macro update or remove a status bar.

* You can allow the user to select entities through graphical picking from within a macro.

* You can call any dialog box.

5.1. Prompting Users for a Single Parameter Value

By including the *ASK command within a macro, you can have the macro prompt a user to type in a parameter
value.

The format for the *ASK command is
*ASK,Par ,Quer y,DVAL
Where

« Par is an alphanumeric name that identifies the scalar parameter used to store the user input.

* Query isthetextstring that ANSYS displays to prompt the user. This string can contain up to 54 characters.
Don't use characters that have special meanings, such as "S" or "!".

+ DVAL is the default value given the parameter if a user issues a blank response. This value can be either a
one-to-eight character string (enclosed in single quotes) or a number. If you assign no default, a blank
user response deletes the parameter.

The *ASK command prints the Quer y text on the screen and waits for a response. It reads the response from the
keyboard except when ANSYS runs in batch mode. (In that case, the response or responses must be the next-
read input line or lines.) The response can be a number, a one-to-eight character string enclosed in single quotes,
a numeric or character parameter, or an expression that evaluates to a number. ANSYS then sets the value of
Par to the read-in response. The following example displays the dialog box shown below, then sets the parameter
PARMT1 to the value the user enters.

*ask, parni, ' usernanme (encl ose the usernane in single quotes)’

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Chapter 5: Interfacing with the GUI

Figure 5.1 An Example *ASK Dialog Box

Prompt

ENTER username {(emclose the unsernmame in single guotes) —: parml =

I

When you issue *ASK within a macro, ANSYS writes the user's response to File.LOG on the line following the
macro name.

5.2. Prompting Users With a Dialog Box

The MULTIPRO command constructs a simple, multiple-prompt dialog box that can contain up to 10 parameter
prompts. The command allows you to use a set of UIDL *CSET commands to create the prompts as well as specify
a default value for each prompt. Be aware that macros using MULTIPRO cannot be called from UIDL. You cannot
use MULTIPRO within a DO loop.

The MULTIPRO command must be used in conjunction with:

* Between one and ten *CSET command prompts

+ Up to two special *CSET commands that provide a two line area for user instructions.

The command has the following syntax:

MULTI PRO, " start', Pronpt _Num
*CSET, Strt_Loc, End_Loc, Param Nane, ' Pronpt _String', Def _Val ue
MJLTI PRO, ' end’

Where

'start’
Aliteral string that, when encountered as the first argument, marks the beginning of the MULTIPRO construct.
The literal must be enclosed in single quotes.

Pronpt _Num
Required only if Def _Val ue is omitted from at least one *CSET command or if Def _Val ue issetto0.The
Pr onpt _Numvalue is an integer equal to the number of following *CSET prompts.

Strt_Loc,End_Loc
The initial value for St rt _Loc for the first *CSET command is 1, and the value for End_Loc isStrt _Loc+2
(3 for the first *CSET command). The value of each subsequent St rt _Loc is the previous End_Loc+1.

Par am_Nane
The name of the parameter that will hold either the value specified by the user or, if the user supplies no
value, the value of Def _Val ue .

"Prompt_String''
A string, which can contain up to 32 characters, which can be used to describe the parameter. This string
must be enclosed in single quotes.

5-2 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 5.2: Prompting Users With a Dialog Box

Def Val ue
Default value used if no value specified by user. Default value can be a numeric expression including APDL
numeric parameters. Character expressions are not allowed.

'end'
A literal string, used as the first argument for the closing MULTIPRO command.

The following is a typical example of the MULTIPRO command.

mul tipro,'start',3
*cset, 1, 3, beanWV' Enter the overall beamw dth',12.5
*cset, 4, 6, beanH, ' Enter the beam hei ght', 23. 345
*cset, 7,9, beanL, ' Enter the beam|ength', 50.0

mul tipro,'end

Up to two optional *CSET commands can be added to the construct that can provide two 64 character strings.
You can use these to provide instructions to the user. The syntax for these specialized *CSET commands is

*CSET,61,62, Hel p_String', Hel p_String' *CSET,63,64,'Help_String'; Hel p_String'
Where

"Hel p_String'
A string which can contain up to 32 characters. If you need more than 32 characters, you can use a second
Hel p_Stri ng argument.

The following is an example of a MULTIPRO construct using the optional help lines. Note thattwo Hel p_St ri ng
arguments are used to overcome the 32 character limit.

mul tipro,'start',3
*cset, 1,3,dx,"' Enter DX Value',0.0
*cset, 4,6,dy, ' Enter DY Value',0.0
*cset, 7,9,dz,' Enter DZ Value',0.0
*cset, 61, 62,' The MYOFSET macro of fsets the',' selected nodes al ong each
*cset, 63,64,' of the three axes. Fill inthe '," fields accordingly.
mul tipro,'end

The above construct creates the following multiple-prompt dialog box.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 5-3

Chapter 5: Interfacing with the GUI

Figure 5.2 A Typical Multiple-Prompt Dialog Box

You can check the status of the buttons by testing the value of the _BUTTON parameter. The following lists the
button status values:

+ _BUTTON = 0 indicates that the OK button was pressed.
+ _BUTTON =1 indicates that the Cancel button was pressed.

At present, the Help button is not functional.

5.3. Using Macros to Display Your Own Messages

By issuing the *MSG command within a macro, you can display custom output messages via the ANSYS message
subroutine. The command has the following format:

*MSG, Lab, VAL1, VAL2, VAL3, VAL4, VALS5, VAL6, VAL7, VALS8

Where Lab is one of the following labels for output and termination control:

INFO Writes the message with no heading (default).

NOTE Writes the message with a "NOTE" heading.

WARN Writes the message with a "WARNING" heading, and also writes it to the errors file, Jobname.ERR.

ERROR Writes the message with an "ERROR" heading and also writes it to the errors file, Jobname.ERR.
If this is an ANSYS batch run, this label also terminates the run at the earliest "clean exit" point.

FATAL Writes the message with a "FATAL ERROR" heading and also writes it to the errors file, Jobname.ERR.

This label also terminates the ANSYS run immediately.

Ul Writes the message with a "NOTE" heading and displays it in the message dialog box.

VAL1 through VALS8 are numeric or alphanumeric character values to be included in the message. Values can be
the results of evaluating parameters. All numeric values are assumed to be double precision.

5-4 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 5.4: Creating and Maintaining a Status Bar from a Macro

You must specify the message format immediately after the ¥MSG command. The message format can contain
up to 80 characters, consisting of text strings and predefined "data descriptors" between the strings where nu-
meric or alphanumeric character data are to be inserted. These data descriptors are:

* %i, for integer data. The FORTRAN nearest integer (NINT) function is used to form integers for the %l
specifier.’

* %g, for double precision data
* %c, for alphanumeric character data

« 9%/, foraline break

The corresponding FORTRAN data descriptors for the first three descriptors are 19, TPG16.9, and A8 respectively.
A blank must precede each descriptor. You also must supply one data descriptor for each specified value (eight
maximum), in the order of the specified values.

Don't begin *MSG format lines with *IF, *ENDIF, *ELSE, or *ELSEIF. If the last non-blank character of the message
format is an ampersand (&), the ANSYS program reads a second line as a continuation of the format. You can use
up to 10 lines (including the first) to specify the format information.

Consecutive blanks are condensed into one blank upon output, and a period is appended. The output produced
can be up to 10 lines of 72 characters each (using the $/ descriptor).

The example below shows you an example of using *MSG that prints a message with two integer values and
one real value:

*MSG | NFO 4lnner4d4 ,25,1.2,148
Radius (%) = %, Thick = %5 Length = %

The resulting output message is as follows:

Radi us (lnner) = 25, Thick = 1.2, Length = 148
Here is an example illustrating multiline displays in GUI message windows:

*MSG, Ul , Vcoi | ris, THTAv, | coi | rns, THTAI , Pappr nt, Pel ec, PF, i ndct nc

Coil RMS voltage, RMS current, apparent pw, actual pw, pw factor: % &
Vcoil = % V (electrical angle %5 DEG % &

lcoil = % A (electrical angle %5 DEG % &

APPARENT PONER = %G W % &

ACTUAL PONER = %5 W % &

Power factor: %G % &

I nduct ance = % % &

VALUES ARE FOR ENTIRE CO L (NOT JUST THE MODELED SECTOR)

Note — The command /UIS,MSGPOP controls which messages a message dialog box displays when the
GUl is active. See the ANSYS Commands Reference for more information about this command.

5.4. Creating and Maintaining a Status Bar from a Macro

Within macros, you can insert commands to define an ANSYS dialog box containing a status bar displaying the
progress of an operation, a STOP button you can click on to stop the operation, or both.

To define a status dialog box, issue the following command:

*ABSET, Titl e40, [tem

+ Title40 is the text string that appears in the dialog box with the status bar. The string can contain a max-
imum of 40 characters.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 5-5

Chapter 5: Interfacing with the GUI

« | t emis one of the following values:

BAR Displays the status bar with no STOP button
KILL Displays a STOP button with no status bar
BOTH Displays both the status bar and STOP button

To update the status bar, issue the command *ABCHECK,Per cent ,NewTi t | e.

* Percent isaninteger between 0 and 100. It gives the position of the status bar.

* NewTi t | eisa40-character string that contains progress information. If you specify a string for NewTi t | e,
it replaces the string supplied in Title40.

If you specify KILL or BOTH, your macro should check the _RETURN parameter after each execution of *ABCHECK
to see if the user has pressed the STOP button, then take the appropriate action.

To remove the status bar from the ANSYS GUI, issue the *ABFINI command.

The following example macro illustrates the status bar (complete with bar and STOP button) in use. The status
dialog box that is produced is shown in the following figure. Note that the macro checks the status of the _RETURN
parameter and, if the STOP button is pressed, posts the "We are stopped......" message.

fini
/ cl ear, nost
/ prep7
n 1,1
n, 1000, 1000
fill
*abset,' This is a Status Bar', BOTH
myparam = 0
*do,i, 1, 20
j = 5*i
*abcheck, j
*if,_return,gt,0,then
nmyparam = 1
*endi f
*if, myparamgt, 0, exit
/ang, ,j
nplot, 1
*if,_return,gt,0,then
nmyparam =1
*endi f
*if, myparamgt, 0, exit
nlist,all
*if,_return,gt,0,then
nmyparam = 1
*endi f
*if, myparamgt, 0, exit
*enddo
*if, myparamgt, 0, t hen
*meg, ui
We are stopped.........
*endi f
*abfini sh
fini

5-6 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Section 5.6: Calling Dialog Boxes From a Macro

Note — Do not call *ABCHECK more than about 20 times in a loop.

Figure 5.3 A Typical Status Dialog Box

This is a Status Bar

STOP

5.5. Picking within Macros

If you're running the ANSYS program interactively, you can call a GUI picking menu from within a macro. To do
so, simply include a picking command in the macro. Many ANSYS commands (such as K,,P) accept the input "P"
to enable graphical picking. When ANSYS encounters such acommand, it displays the appropriate picking dialog
and then continues macro execution when the user clicks OK or Cancel.

Keep in mind that picking commands are not available in all ANSYS processors, and that you must first switch
to an appropriate processor before calling the command.

Note — If a macro includes GUI functions, the /PMACRO command should be the first command in that
macro. This command causes the macro contents to be written to the session log file. This is important,
because if you omit the /PMACRO command, ANSYS can't read the session log file to reproduce the
ANSYS session.

5.6. Calling Dialog Boxes From a Macro

When the ANSYS program encounters a dialog box UIDL function name (such as Fnc_UIMP_Iso), it displays the
appropriate dialog box. Thus, you can launch any ANSYS dialog box by making its function name a separate line
in the macro file. When you dismiss that dialog box, the program continues processing the macro starting with
the next line after the function call.

Keep in mind that many dialog boxes have a number of dependencies, including that the appropriate ANSYS
processor is active and that certain required preexisting conditions are met. For example, launching a dialog box
to select nodes first supposes that nodes exist, if no nodes exist the macro will fail when the user clicks OK or

Apply.

Note — If a macro includes GUI functions, the /PMACRO command should be the first command in that
macro. This command causes the macro contents to be written to the session log file. This is important,
because if you omit the /PMACRO command, ANSYS can't read the session log file to reproduce the
ANSYS session.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 5-7

5-8

Chapter 6: Encrypting Macros

ANSYS provides the ability to encrypt macro files so that the source is not "human-readable." Encrypted macros
require an encryption key to run. You can either place the encryption key explicitly (in readable ASCII) in the
macro or you can set it in ANSYS as a global encryption key.

6.1. Preparing a Macro for Encryption

Before encrypting a macro, you first create and debug the macro as usual. When you create an encrypted macro,
you are responsible for keeping the original source file. You cannot recreate the source file from an encrypted macro.
You then add an /ENCRYPT command as the first line and last of the macro. The JENCRYPT command for the
first line of the macro has the following syntax:

/ENCRYPT Encryption_key,Fi | e_nange,Fi |l e_ext,Directory_Path/
Where

* Encryption_key is an eight-character password.
Fi | e_name is the name of the encrypted macro filename.

Fi | e_ext isanoptionalfile extension for the encrypted macrofile. If you want users to execute the macro
as an "unknown" command, you should use the .mac extension.

Di rect ory_Pat h/ is the optional directory path that can contain up to 60 characters; you only need this
argument if you do not want to write the encrypted macro file to your "home" directory.

Note the placement of the [IENCRYPT commands at the top and bottom of the listing in the following example:

/ encrypt, nypasswd, nyenfil e, mac, macr os/

/ nopr

/ prep7

/view,,-1,-2,-3

bl ock, , argl,, arg2,, arg3

sphere, arg4

vsbv, 1, 2

/ gopr

finish

/ encrypt
The /ENCRYPT command at the top of the macro instructs ANSYS to encrypt the file and use the string "mypasswd"
as the encryption key. It will create an encrypted macro file called myenfile.mac and place it in the /macros
subdirectory of the home directory. The [IENCRYPT command at the bottom instructs ANSYS to stop the encryption
process and write the encrypted macro to the specified file.

Note — The encrypted macro uses a /NOPR command as its second line to turn off echoing of ANSYS
commands to the session log file. This is important if you wish to prevent users from reading the contents
of the macro from the session log. It's a good practice to reactivate the session log by issuing the /GOPR
command as the last command in the macro before the ending /ENCRYPT command.

6.2. Creating an Encrypted Macro

After putting the /JENCRYPT commands at the top and bottom of the macro, you can proceed to create the en-
crypted version of the macro. To do this, simply execute the macro through ANSYS. ANSYS will create the encrypted
version with the name and location you specified through the JENCRYPT command at the top of the macro.
The result should look something like this

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Chapter 6: Encrypting Macros

| DECRYPT, nmypasswd

013"Z, "%

02x"0Se| Lv(yT. 6>?

03J3] Q_LuXd3- 6=m+*f $k] ?eB
04: "VY7S#HS>c>

05daV; u(yY

06T] 3W Z

/ DECRYPT

Note that the individual commands within the macro are now encrypted, and that the encrypted material is
enclosed by /DECRYPT commands. The encryption key is the argument to the first/ DECRYPT command.

6.3. Running an Encrypted Macro

You can run an encrypted macro just as you would any other macro; place the encrypted macro within the macro
search path. If you would prefer to run the encrypted macro without having the encryption key resident in the
macro file, you can define the key as a "global encryption key" within ANSYS. To do this you must first replace
the encryption key argument in the /DECRYPT command with the parameter PASSWORD. Thus, the first line of
the encrypted macro becomes:

/ DECRYPT, PASSVWORD
Before executing the macro within ANSYS, issue the following command through the ANSYS Input command
line:

| DECRYPT, PASSWORD, Encrypti on_Key
Where Encr ypt i on_Key is the encryption key used to encrypt the file. You can now execute the encrypted
password. To delete the current global encryption key, issue the following ANSYS command:

/ DECRYPT, PASSWORD, OFF

6-2 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

APDL Commands Reference

*ABBR, Abbr, String
Defines an abbreviation.

APDL: Abbreviations
MP ME ST DY <> PREM <> FL PP ED

Abbr
The abbreviation (up to 8 alphanumeric characters) used to represent the string St r i ng. If Abbr is the same
as an existing ANSYS command, the abbreviation overrides. Avoid using an Abbr which is the same as an
ANSYS command.

String
String of characters (60 maximum) represented by Abbr . Cannot include a $ or any of the commands C**¥,
/COM, /GOPR, /NOPR, /QUIT, /U, or *END. Parameter names and commands of the *DO and Use the *IF
groups may not be abbreviated. If St ri ng is blank, the abbreviation is deleted. To abbreviate multiple
commands, create an "unknown command" macro or define St r i ng to execute a macro file [*USE] containing
the desired commands.

Notes

Once the abbreviation Abbr is defined, you can issue it at the beginning of a command line and follow it with a
blank (or with a comma and appended data), and the program will substitute the string St ri ng for Abbr as the
line is executed. Up to 100 abbreviations may exist at any time and are available throughout the program. Ab-
breviations may be redefined or deleted at any time.

Use *STATUS to display the current list of abbreviations. For abbreviations repeated with *REPEAT, substitution
occurs before the repeat increments are applied. There are a number of abbreviations that are predefined by
the program (these can be deleted by using the blank St ri ng option described above). Note that St ri ng will
be written to the File.LOG.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Edit Abbreviations
Utility Menu>MenuCtrls>Edit Toolbar

ABBRES, Lab, Fname, Ext, --

Reads abbreviations from a coded file.
APDL: Abbreviations
MP ME ST DY <> PR EM <> FL PP ED

Lab
Label that specifies the read operation:

NEW --
Replace current abbreviation set with these abbreviations (default).

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

ABBSAV

CHANGE --
Extend current abbreviation set with these abbreviations, replacing any of the same name that already
exist.

Fnanme
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext
Filename extension (8 character maximum).

The extension defaults to ABBR if Fnane is blank.

Unused field

Notes

The abbreviation file may have been written with the ABBSAV command. Do notissue ABBRES,NEW while inside
an executing abbreviation. Doing so will cause all data for the executing abbreviation to be deleted.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Restore Abbr
Utility Menu>MenuCtrls>Restore Toolbar

ABBSAV, Lab, Fname, Ext, --

Writes the current abbreviation set to a coded file.
APDL: Abbreviations
MP ME ST DY <> PREM <> FL PP ED

Lab
Label that specifies the write operation:

ALL --
Write all abbreviations (default).

Fname
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.
The file name defaults to Jobname.
Ext
Filename extension (8 character maximum).

The extension defaults to ABBR if Fnane is blank.

6-4 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*AFUN

Unused field

Notes

Existing abbreviations on this file, if any, will be overwritten. The abbreviation file may be read with the ABBRES
command.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Save Abbr
Utility Menu>MenuCtrls>Save Toolbar

*AFUN, Lab

Specifies units for angular functions in parameter expressions.
APDL: Parameters
MP ME ST DY <> PREM <> FL PP ED

Lab
Specifies the units to be used:

RAD --
Use radians for input and output of parameter angular functions (default).

DEG --
Use degrees for input and output of parameter angular functions.

STAT --
Show current setting (DEG or RAD) for this command.

Command Default

Use radians for input or output of parameter angular functions.

Notes

Only the SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, ANGLEK, and ANGLEN functions [*SET,*VFUN] are affected
by this command.

Menu Paths

Utility Menu>Parameters>Angular Units

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-5

*ASK

*ASK, Par, Query, DVAL
Prompts the user to input a parameter value.

APDL: Parameters
MP ME ST DY <> PREM <> FLPPED

Par
An alphanumeric name used to identify the scalar parameter. See *SET for name restrictions.

Query
Text string to be displayed on the next line as the query (32 characters maximum). Characters having special
meaning (such as $!,) should not be included.

DVAL
Default value assigned to the parameter if the user issues a blank response. May be a number or character
string (up to 8 characters enclosed in single quotes). If a default is not assigned, a blank response will delete
the parameter.

Notes

Intended primarily for use in macros, the command prints the query (after the word ENTER) on the next line and
waits for a response. The response is read from the keyboard, except in batch mode [/BATCH], when the re-
sponse(s) must be the next-read input line(s). The response may be a number, a character string (up to 8 characters
enclosed in single quotes), a parameter (numeric or character) or an expression that evaluates to a number. The
scalar parameteris then set to the response value. For example, *ASK,NN,PARAMETER NN will set NN to the value
entered on the next line (after the prompt ENTER PARAMETER NN).

The *ASK command is not written to File.LOG, but the responses are written there as follows: If *ASK is contained
in a macro, the response(s) (only) is written to File.LOG on the line(s) following the macro name. If not contained
in a macro, the response is written to File.LOG as a parameter assignment (i.e., Par = "user-response").

If used within a do-loop that is executed interactively, *ASK should be contained in a macro. If not contained in
a macro, *ASK will still query the user as intended, but the resulting log file will not reproduce the effects of the
original run.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*CFCLOS

Closes the "command" file.
APDL: Macro Files
MP ME ST DY <> PREM <> FL PP ED

Notes

This command is valid in any processor.

6-6 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*CFOPEN

Menu Paths

This command cannot be accessed from a menu.

*¥CFOPEN, Fname, Ext, -, Loc

Opens a "command" file.
APDL: Macro Files
MP ME ST DY <> PREM <> FL PP ED

Fnanme
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext
Filename extension (8 character maximum).

The extension defaults to CMD if Fnane is blank.

Unused field

Loc
Determines whether existing file will be overwritten or appended:

(blank) --
The existing file will be overwritten.

APPEND --
The file will be appended to the existing file.

Notes

Data processed with the *VWRITE command will also be written to this file if the file is open when the *VWRITE
command is issued.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-7

*CFWRITE

*CFWRITE, command

Writes an ANSYS command (or similar string) to a "command" file.
APDL: Macro Files
MP ME ST DY <> PREM <> FL PP ED

Command
Command or string to be written. The standard command form of a label followed by arguments separated
by commas is assumed. Commrand may be a parameter assignment (e.g., *CFWRITE, A = 5).

Notes

Writes an ANSYS command (or similar string) to the file opened with *CFOPEN. The Conmand string is not executed
(except that numeric and character parameter substitution and operations (with imbedded *, /, >, etc. characters)
are performed before writing). When used with *GET results and parameter substitution, an ANSYS command
can be created from results and then read back into the ANSYS program (or used elsewhere). For example, if the
command *CFWRITE,BF, NNUM,TEMP,TVAL is used in a do-loop, where TVAL is a parameter value returned from
the *GET operation and NNUM is a specified or returned parameter value, a series of BF commands, with numer-
ical values substituted for the two parameters, will be written. To create a file without parameter substitution,
use *CREATE.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*CREATE, Fname, Ext, -

Opens (creates) a macro file.
APDL: Macro Files
MP ME ST DY <> PR EM <> FL PP ED
Fnanme
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.
Do not use a directory path if file is to be read with the macro Nane option of the *USE command.
Ext

Filename extension (8 character maximum).

Ext should not be used if file is to be read with the macro Nane option of the *USE command.

Unused field

Notes

See the *USE command for a discussion of macros. All commands following the *CREATE command, up to the
*END command, are written to the specified file without being executed. An existing file of the same name, if
any, will be overwritten. Parameter values are not substituted for parameter names in the commands when the

6-8 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*DEL

commands are written to the file. Use *CFWRITE to create a file if this is desired. The resulting macro may be
executed with a *USE command (which also allows parameters to be passed into the macro) ora /INPUT command
(which does not allow parameters to be passed in). Several macros may be stacked into a library file [¥*ULIB]. You
cannot use *CREATE within a DO loop.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Create Macro

*CYCLE

Bypasses commands within a do-loop.
APDL: Process Controls
MP ME ST DY <> PREM <> FLPPED

Notes

Bypasses all commands between this command and the *ENDDO command within a do-loop. The next loop (if
applicable) is initiated. The cycle option may also be conditionally executed [Use the *IF]. The *CYCLE command
must appear on the same file as the ¥*DO command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*DEL, val1, val2
Deletes a parameter or parameters (GUI).

APDL: Parameters
MP ME ST DY <> PREM <> FLPPED

Val 1
Val 1 can be:

ALL --
Indicates that you want to delete all user-defined parameters, or both all user-defined and all system
parameters, as indicated by the Val 2 argument.

(blank) --
Indicates that you want to delete the parameter(s) indicated by Val 2.

Val 2
Val 2 can be:

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-9

/DFLAB

LOC --
When Val 1 is (blank), use Val 2 to specify the location of the parameter within the Array Parameters
dialog box. The location number is based on an alphabetically ordered list of all parameters in the database.
Not valid when Val 1 is ALL.

_PRM --
When Val 1is ALL, specifying _PRM for Val 2 deletes all parameters, including those named with an initial
underbar (_) (except _STATUS and _RETURN). When Val 1 is (blank), specifying _PRM for Val 2 deletes
only those parameters named with an initial underbar (_) (except _STATUS and _RETURN).

PRM_ --
When Val 1 is (blank), specifying PRM_ for Val 2 deletes only those parameters named with a trailing
underbar (_). Not valid when Val 1 is ALL.

(blank) --
When Val 1 is ALL, specifying (blank) for Val 2 causes all user-defined parameters to be deleted.

Notes

This is a command generally created by the Graphical User Interface (GUI). It will appear in the log file (Job-
name.LOG) if an array parameter is deleted from within the Array Parameters dialog box.

To delete all user-defined parameters, issue the command *DEL,ALL. To delete only those user-defined parameters
named with a trailing underbar, issue the command *DEL, PRM_. To delete all user-defined and all system
parameters (except for _STATUS and _RETURN), issue the command *DEL,ALL,_PRM. To delete a parameter by
specifying its location within the Array Parameters dialog box, issue the command *DEL,,LOC.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Define Inertia
Main Menu>Solution>Define Loads>Delete>Structural>Section

/DFLAB, DOF, DispLab, ForceLab
Changes DOF labels for user custom elements.

APDL: Macro Files
MP ME ST DY <> PREM EH FL PP ED

DOF
Number indicating which DOF is to have its labels changed. For example:
1 =UX,FX
2=UY,FY
3=UXFZ
4 =ROTX,MX
etc.
Di spLab

New label (4 character maximum) for the displacement label. The old label is no longer valid.

6-10 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*DIM

For celLab
New label (4 character maximum) for the force label for this degree-of-freedom. The old label is no longer
valid.

Notes

The /DFLAB command is rarely used. It is designed for users who are writing custom elements for ANSYS and
want to use degrees-of-freedom that are not part of the standard ANSYS set.

Menu Paths

This command cannot be accessed from a menu.

*DIM, Par, Type, IMAX, IMAX, KMAX, Var1, Var2, Var3, CSYSID
Defines an array parameter and its dimensions.

APDL: Parameters
MP ME ST DY <> PREM <> FLPPED

Par
Name of parameter to be dimensioned. See *SET for name restrictions.
Type
Array type:
ARRAY --
Arrays are similar to standard FORTRAN arrays (indices are integers) (default). Index numbers for the
rows, columns, and planes are sequential values beginning with one. Used for 1-, 2-, or 3-D arrays.
ARR4 --
Same as ARRAY, but used to specify 4-D arrays.
ARR5 --
Same as ARRAY, but used to specify 5-D arrays.
CHAR --

Array entries are character strings (up to 8 characters each). Index numbers for rows, columns, and planes
are sequential values beginning with one.

TABLE --
Array indices are real (non-integer) numbers which must be defined when filling the table. Index numbers
for the rows and columns are stored in the zero column and row "array elements" and are initially assigned
a near-zero value. Index numbers must be in ascending order and are used only for retrieving an array
element. When retrieving an array element with a real index that does not match a specified index, linear
interpolation is done among the nearest indices and the corresponding array element values [*SET].
Used for 1-, 2-, or 3-D tables.

TAB4 --
Same as TABLE, but used to specify 4-D tables.

TAB5 --
Same as TABLE, but used to specify 5-D tables.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-11

*DIM

STRING --
Array entries are character strings (up to IMAX each). Index numbers for columns and planes are sequential
values beginning with 1. Row index is character position in string.

I MAX

Extent of first dimension (row) (Limit 128 for strings). Defaults to 1.
JMAX

Extent of second dimension (column). Defaults to 1.
KIVAX

Extent of third dimension (plane). Defaults to 1.
Var 1

Variable name corresponding to the first dimension (row) for Type = TABLE. Defaults to Row.
Var 2

Variable name corresponding to the second dimension (column) for Type = TABLE. Defaults to Column.
Var 3

Variable name corresponding to the third dimension (plane) for Type = TABLE. Defaults to Plane.
CSYSI D

An integer corresponding to the coordinate system ID Number.

Notes

Up to three dimensions (row, column, and plane) may be defined using ARRAY and TABLE. Use ARR4, ARRS5,
TAB4, and TABS to define up to five dimensions (row, column, plane, book, and shelf). An index number is asso-
ciated with each row, column, and plane. For array and table type parameters, element values are initialized to
zero. For character and string parameters, element values are initialized to (blank). A defined parameter must
be deleted [*SET] before its dimensions can be changed. Scalar (single valued) parameters should not be dimen-
sioned. *DIM,A,,3 defines a vector array with elements A(1), A(2), and A(3). *DIM,B,,2,3 defines a 2x3 array with
elements B(1,1), B(2,1), B(1,2), B(2,2), B(1,3), and B(2,3). Use *STATUS,Par to display elements of array Par . You
can write formatted data files (tabular formatting) from data held in arrays through the *VWRITE command.

If you use table parameters to define boundary conditions, then Var 1, Var 2, and/or Var 3 can either specify a
primary variable (listed in *DIM - Primary Variables) or can be an independent parameter. If specifying an inde-
pendent parameter, then you must define an additional table for the independent parameter. The additional
table must have the same name as the independent parameter and may be a function of one or more primary
variables or another independent parameter. All independent parameters must relate to a primary variable.

Tabular load arrays can be defined in both global Cartesian (defalut) or local (see below) coordinate systems by
specifying CSYSI D, as defined in LOCAL. For batch operations, you must specify your coordinate system first.

The following constraints apply when you specify a local coordinate system for your tabular loads:

Only Cartesian, cylindrical and spherical coordinate systems are supported

Angle values for THETA in cylindrical coordinate system must be inputin degrees and must be positive values
between 0 and 360 degrees (0 < © = 360)

Angle values for THETA in spherical coordinate system must be input in degrees and must be positive values
between 0 and 360 degrees (0 < © = 360)

Angle values for @ in spherical coordinate system must be input in degrees and must be positive values
between -90 and +90 (-90 < & < 90)

6-12 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*DIM

If you are specifying a 4- or 5-D array or table, four additional fields (LMAX, MMAX, Var 4, and Var 5) are available.

Thus, for a 4-D table, the command syntax would be:

*DI M Par, Type, | MAX, IMAX, KMAX, LMAX, Var 1, Var 2, Var 3, Var 4, CSYSI| D

For a 5-D table, the command syntax would be:

*DI M Par, Type, | MAX; IMAX, KMAX, LMAX, MVAX, Var 1, Var 2, Var 3, Var 4, Var 5, CSYSI D

You cannot create or edit 4- or 5-D arrays or tables using the GUI.

See Section 3.11: Array Parameters for a detailed discussion on and examples for using array parameters.

*DIM - Primary Variables

Primary Variable Label forVvar1, Vvar2, Var3
Time TIME
X-coordinate location X
Y-coordinate location Y
Z-coordinate location z
Temperature TEMP
Velocity VELOCITY
Pressure PRESSURE
Cyclic sector number SECTOR

Note — The X, Y, and Z coordinate locations listed above are valid in gobal Cartesian, or local (Cartesian,
cylindrical and spherical) coordinate systems. The VELOCITY label is applicable only to the calculated
fluid velocity in element FLUID116.

If you use table parameters to define boundary conditions, the table names (Par) must not exceed 32
characters.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Settings>Replace vs Add>Smooth Data
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time - Time Step
Main Menu>Preprocessor>Loads>Load Step Opts>Time/Frequenc>Time and Substps
Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Define Inertia

Main Menu>Preprocessor>LS-DYNA Options>Loading Options>Smooth Data

Main Menu>Solution>Define Loads>Settings>Replace vs Add>Smooth Data

Main Menu>Solution>Load Step Opts>Time/Frequenc>Time - Time Step

Main Menu>Solution>Load Step Opts>Time/Frequenc>Time and Substps

Main Menu>Solution>Loading Options>Smooth Data

Main Menu>TimeHist Postpro>Smooth Data

Utility Menu>Parameters>Array Parameters>Define/Edit

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-13

/DIRECTORY

/IDIRECTORY, strArray, FileName, Ext, Dir

Put the file names in the current directory into a string parameter array.
APDL: Array Parameters
MP ME ST DY <> PREM EH FL PP ED

StrArray
Name of the “string array” parameter which will hold the returned values. String array parameters are similar
to character arrays, but each array element can be as long as 128 characters. If the string parameter does not
exist, it will be created. The array will be created as: *DIM,StrArray,STRING,64,2,numFileName

Fi | eName
File name (64 characters maximum). Only files matching this name will be returned. The Fi | eNamre ALL may
match any file name.

Ext
File name extension (8 characters maximum). Only files with an extension matching this name will be returned.
A blank or ALL will match any extension.

Directory
The directory in which the files reside. The default is the current working directory.

Notes

The /DIRECTORY command gets the file names in the current directory and puts them into a string parameter
array. Each file will be included in the array as a name-extension pair.

Menu Paths

This command cannot be accessed from a menu.

*DO, Par, IVAL, FVAL, INC
Defines the beginning of a do-loop.

APDL: Process Controls
MP ME ST DY <> PREM <> FL PP ED

Par
The name of the scalar parameter to be used as the loop index. See *SET for name restrictions. Any existing
parameter of the same name will be redefined. There is no character parameter substitution for the Par field.

I VAL, FVAL, | NC
Initially assign | VAL to Par . Increment | VAL by I NCfor each successive loop. If | VAL exceeds FVAL and | NC
is positive, the loop is not executed. | NCdefaults to 1. Negative increments and non-integer numbers are
allowed.

Notes

The block of commands following the *DO command (up to the *ENDDO command) is executed repeatedly
until some loop control is satisfied. Printout is automatically suppressed on all loops after the first (include a
/GOPR command to restore the printout). The command line loop control (Par ,| VAL,FVAL,I NC) must be input;

6-14 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*DOWHILE

however, a Use the *IF within the block can also be used to control looping [*EXIT, *CYCLE]. One level of internal
file switching is used for each nested ¥*DO. Twenty levels of nested do-loops are allowed.

Note — Do-loops that include /INPUT, *USE, or an "Unknown Command" macro, have less nesting
available because each of these operations also uses a level of file switching. The *DO, *ENDDO, and
any *CYCLE and *EXIT commands for a do-loop must all be read from the same file (or keyboard). You
cannot use the MULTIPRO or *CREATE commands within a ¥*DO-loop. Picking operations should also
not be used within a *DO-loop.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Prob Design>Prob Method>Response Surface
Main Menu>Solution>Define Loads>Delete>Structural>Section

*DOWHILE, Par
Loops repeatedly through the next *ENDDO command.

APDL: Process Controls
MP ME ST DY <> PREM <> FLPPED

Par
The name of the scalar parameter to be used as the loop index. There is no character parameter substitution
for the Par field.

Notes

*DOWHILE loops repeatedly through the next *ENDDO command as long as Par is greater than zero. The block
of commands following the *DOWHILE command (up to the *ENDDO command) is executed repeatedly until
some loop control is satisfied. Printout is automatically suppressed on all loops after the first (include a /GOPR
command to restore the printout). The command line loop control (Par) must be input; however, *IF within the
block can also be used to control looping [*EXIT, *CYCLE]. One level of internal file switching is used for each
nested *DOWHILE. Twenty levels of nested do-loops are allowed.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-15

*ELSE

*ELSE

Separates the final if-then-else block.
APDL: Process Controls
MP ME ST DY <> PREM <> FL PP ED

Notes

Optional final block separator within an if-then-else construct. See the *IF for details. If a batch input stream hits
an end-of-file during a false *IF condition, the ANSYS run will not terminate normally. You will need to terminate
it externally (use either the UNIX “kill” function or the Windows task manager). The *ELSE command must appear
on the same file as the *IF command, and all five characters must be input.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*ELSEIF, vAL1, Oper, VAL2
Separates an intermediate if-then-else block.

APDL: Process Controls
MP ME ST DY <> PREM <> FL PP ED

VAL1
First numerical value (or parameter which evaluates to numerical value) in the conditional comparison oper-
ation.

Oper 1

Operation label. A tolerance of 1.0E-10 is used for comparisons between real numbers:
EQ--
Equal (for VAL1 = VAL2).

NE --
Not equal (for VAL1 =VAL2).

LT --
Less than (for VAL1<VAL2).

GT --
Greater than (for VAL1>VAL2).

LE --
Less than or equal (for VAL1 <VAL2).

GE --
Greater than or equal (for VAL1 2 VAL2).

ABLT --
Absolute values of VAL1 and VAL2 before < operation.

ABGT --
Absolute values of VAL1 and VAL2 before > operation.

6-16 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*END

VAL?2
Second numerical value (or parameter which evaluates to numerical value) in the conditional comparison
operation.

Conj
(Optional) Connection between two logical clauses.

AND -
True if both clauses are true.

OR -
True if either clause is true.

XOR -
True if either (but not both) clause is true.
VAL3
(Optional) Third numerical value (or parameter which evaluates to numerical value).

Oper2
(Optional) Operation label. A tolerance of 1.0E-10 is used for comparisons between real numbers.

VAL4
(Optional) Fourth Numerical value (or parameter value which evaluates to a numerical value).

Notes

Optional intermediate block separator within an if-then-else construct. VAL1 and VAL2 can also be character
strings (enclosed in quotes) or parameters for Oper =EQ and NE only. All seven characters must be input. Similar
to Use the *IF except that the Base field is not used. The *ELSEIF command must appear on the same file as the
Use the *IF command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*END

Closes a macro file.
APDL: Macro Files
MP ME ST DY <> PREM <> FL PP ED

Notes

Closes a file opened with *CREATE. The *END command is an 8-character command (to differentiate it from
*ENDIF). If you add commented text on that same line but do not allow enough spaces between *END and the
"I'" that indicates the comment text, the *END will attempt to interpret the "!" as the 8th character and will fail.

This command is valid in any processor.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-17

*ENDDO

Menu Paths

This command cannot be accessed from a menu.

*ENDDO

Ends a do-loop and starts the looping action.
APDL: Process Controls
MP ME ST DY <> PR EM <> FL PP ED

Notes

One *ENDDO is required for each nested do-loop. The *ENDDO command must appear on the same file as the
*DO command, and all six characters must be input.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Prob Design>Prob Method>Response Surface
Main Menu>Solution>Define Loads>Delete>Structural>Section

*ENDIF

Ends an if-then-else.
APDL: Process Controls
MP ME ST DY <> PREM <> FL PP ED

Notes

Required terminator for the if-then-else construct. See the *IF for details. If a batch input stream hits an end-of-
file during a false *IF condition, the ANSYS run will not terminate normally. You will need to terminate it externally
(use either the UNIX “kill” function or the Windows task manager). The *ENDIF command must appear on the
same file as the *IF command, and all six characters must be input.

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Solution>Define Loads>Delete>Structural>Section

6-18 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*EXIT

Exits a do-loop.
APDL: Process Controls
MP ME ST DY <> PREM <> FLPPED

Notes

The command following the *ENDDO is executed next. The exit option may also be conditional [Use the *IF].
The *EXIT command must appear on the same file as the *DO command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*GET, Par, Entity, ENTNUM, Item 1, ITINUM, Item2, IT2NUM
Retrieves a value and stores it as a scalar parameter or part of an array parameter.

APDL: Parameters
MP ME ST DY <> <> EM <> FL PP ED

Par
The name of the resulting parameter. See *SET for name restrictions.

Entity
Entity keyword. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, PDS, etc., as shown for Entity =in
the tables below.

ENTNUM
The number or label for the entity (as shown for ENTNUM= in the tables below). In some cases, a zero (or
blank) ENTNUMrepresents all entities of the set.

Itenl
The name of a particular item for the given entity. Valid items are as shown in the | t enl columns of the
tables below.

| TLINUM
The number (or label) for the specified | t ent (if any). Valid | TINUMvalues are as shown in the | TLINUM
columns of the tables below. Some | t entl labels do not require an | TINUMvalue.

Iten?, | T2NUM
A second set of item labels and numbers to further qualify the item for which data are to be retrieved. Most
items do not require this level of information.

Notes

*GET retrieves a value for a specified item and stores the value as a scalar parameter, or as a value in a user-
named array parameter. An item is identified by various keyword, label, and number combinations. Usage is
similar to the *SET command except that the parameter values are retrieved from previously input or calculated
results. For example, , A, ELEM, 5, CENT, X returns the centroid x-location of element 5 and stores the result as

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-19

*GET

parameter A. *GET command operations, along with the associated Get functions return values in the active
coordinate system unless stated otherwise.

Both *GET and *VGET retrieve information from the active data stored in memory. The database is often the
source, and sometimes the information is retrieved from common memory blocks that ANSYS uses to manipulate
information. Although POST1 and POST26 operations use a *.rst file, *GET data is accessed from the database
or from the common blocks. Get operations do not access the *.rst file directly. For repeated gets of sequential
items, such as from a series of elements, see the *VGET command.

Most items are stored in the database after they are calculated and are available anytime thereafter. Items are
grouped according to where they are usually first defined or calculated. Most of the GENERAL items listed below
are available from all modules. Each of the sections for accessing *GET parameters are shown in the following
order:

+ *GET General Entity Items

* *GET Preprocessing Entity Items

+ *GET Solution Entity ltems

* *GET Postprocessing Entity Items

+ *GET Optimization and Probabilistic Design Entity ltems

The *GET command is valid in any processor.
General Items

*GET General Entity Items

* *GET General Items, Entity = ACTIVE
* *GET General Items, Entity = CMD

* *GET General Items, Entity = COMP
+ *GET General Items, Entity = GRAPH
* *GET General Items, Entity = PARM

*GET General Items, Entity = ACTIVE

Ent ity = ACTIVE, ENTNUM= 0 (or blank)
*GET, Par, ACTIVE, 0, Item1, ITTNUM, Item2, IT2NUM
Item1 ITINUM Description

INT Current interactive key: 0=off, 2=on.

IMME Current immediate key: 0=off, 1=on.

MENU Current menu key: 0=off, 1=on.

PRKEY Printout suppression status: 0=/NOPR, 1=/GOPR or /GO

UNITS Units specified by /JUNITS command: 0 = USER, 1 =SI,2 =CGS, 3=BFT,4=BIN,
6 = MPA.

ROUT Current routine: 0 = Begin level, 17 = PREP7, 21 = SOLUTION, 31 = POST1, 36
=POST26, 41 = OPT, 52 = AUX2, 62 = AUX12, 65 = AUX15, 71 = RUNSTAT.

6-20 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti ty = ACTIVE, ENTNUM= O (or blank)

*GET, Par, ACTIVE, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

TIME WALL,CPU Current wall clock or CPU time. Current wall clock will continue to accumulate
during an ANSYS run and is NOT reset to zero at midnight.

DBASE LDATE Date of first modification of any database quantity required for POST1 operation.
The parameter returned is Par = YEAR*10000 + MONTH*100 + DAY.

DBASE LTIME Time of last modification of any database quantity required for POST1 operation.
The parameter returned is Par = HOURS*10000 + MINUTES*100 + SECONDS.

REV ANSYS minor revision number (5.6, 5.7, 6.0 etc.). Letter notation (e.g., 5.0A) is
not included.

TITLE 0,1,2,3,4 Item2: START IT2NUM:N Current title string of the main title (I TINUM=0 or

blank) or subtitle 1, 2, 3, or 4 (I TLNUM=1,2,3, or 4). A character parameter of up
to 8 characters, starting at position N, is returned.

JOBNAM Item2: START IT2NUM:N Current Jobname. A character parameter of up to 8
characters, starting at position N, is returned. Use *DIM and *DO to get all 32
characters.

PLATFORM The current platform.

NPROC The maximum number of processors available.

*GET General Items, Entity = CMD

Enti t y = CMD, ENTNUM= 0 (or blank)

The following items are valid for all commands except star (*) commands and non-graphics slash (/) com-
mands.

*GET, Par , CMD, 0, Item1, ITINUM, Item2, IT2NUM.

Item1 ITINUM Description
STAT Status of previous command: 0=found, 1=not found (unknown).
NARGS Field number of last nonblank field on the previous command.
FIELD 2,3..N Numerical value of the Nth field on the previous command. Field 1 is the com-
mand name (not available)

*GET General Items, Entity = COMP

Ent ity =COMP, ENTNUM= O (or blank)

*GET, Par , COMP, 0, Item1, ITTNUM, Item2, IT”2NUM

Item1 ITINUM Description

NCOMP Total number of components and assemblies currently defined.

Entity = COMP, ENTNUM= n (nth component)

*GET, Par, COMP, n, Item1, ITTINUM, Item2, IT”2NUM

Item1 ITINUM Description

NAME Name of the Nth item (component or assembly) in the list of components and
assemblies. A character parameter is returned.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-21

*GET

Enti ty = COMP, ENTNUM= Cnane (component or assembly name)

*GET, Par , COMP, Cnane, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
TYPE Type of component Cnane: 1=Nodes, 2=Elements, 6=Keypoints, 7=Lines,
8=Areas, 9=Volumes, 11-15=Subcomponents (11=subcomponent at level 1,
12=subcomponent at level 2, etc.).
NSCOMP Number of subcomponents (for assemblies).
SNAME N Name of Nth subcomponent of assembly Cnane. A character parameter is re-

turned.

*GET General Items, Entity = GRAPH

Ent i t y =GRAPH, ENTNUM= N (window number)

*GET, Par , GRAPH, N, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
ACTIVE /WINDOW status: 0=off, 1=on.
ANGLE /ANGLETHETA angle.
CONTOUR Nanme /CONTOUR value for Name, where Nanme = VMIN, VINC, or NCONT.
DIST /DISTDVAL value.
DSCALE DMULT /DSCALE DMULT value.
EDGE /EDGEKEY value.
FOCUS XY, Z /FOCUSXF, YF, or ZF value.
GLINE /GLINESTYLE value.
MODE /USER or /AUTO setting: O=user, 1=auto.
NORMAL /NORMALKEY value.
RANGE XMIN, XMAX, |/WINDOWXM N, XMAX, YM N , or YMAX screen coordinates.
YMIN, YMAX
RATIO XY /RATIORATOX or RATOYvalue.
SSCALE SMULT /SSCALESMULT value.
TYPE ITYPEType value.
VCONE ANGLE /VCONEPH! angle.
VIEW XY, Z IVIEWXV, YV, or ZV value.
VSCALE VRATIO /VSCALEVRATI Ovalue.

Enti t y =GRAPH, ENTNUM= O (or

blank)

*GET, Par , GRAPH, 0, Item1, ITTNUM, Item2, IT2NUM

Item1 ITINUM Description
DISPLAY /SHOWVECT setting: O=raster, 1=vector.
ERASE /ERASE or /NOERASE setting: 0=no erase, 1=erase.
NDIST Largest nodal range for current model (DX, DY, or DZ of the model).
NUMBER /NUMBERNKEY value.
PLOPTS Nane /PLOPTS setting of Nane, where Name=LEG1, LEG2, LEG3, INFO, FRAM, TITL,

MINM, or VERS.

6-22

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti t y =GRAPH, ENTNUM= 0 (or blank)

*GET, Par, GRAPH, 0, Item1, ITTNUM, Item2, IT2NUM

Item1 ITINUM Description
SEG Segment capability of graphics driver: 0=no segments available, 1=erasable
segments available, 2=non-erasable segments available.
SHRINK /SHRINKRATI Ovalue.

*GET General Items, Entity = PARM

Enti ty,= PARMENTNUM= 0 (or blank)

*GET, Par , PARM, 0, Item1, ITTNUM, Item2, IT2NUM

Item1 ITINUM Description
MAX Total number of parameters currently defined.
BASIC Number of scalar parameters (excluding parameters beginning with an under-
score _, array parameters, and character parameters).
LOC Num Name of the parameter at the Numlocation in the parameter table. A character

parameter is returned.

Ent i t y = PARM, ENTNUM= Name (parameter name)

*GET, Par , PARM, Nane, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
TYPE Parameter type: O=scalar, 1=array, 2=table, 3=character scalar, 4=character
array, -1=undefined
DIM XY,Z Row (X), Column (Y), or Plane (Z) dimension of array parameter.

Preprocessing Items

*GET Preprocessing Entity Items

* *GET Preprocessing Items, Entity = ACTIVE

* *GET Preprocessing items, Entity = AREA

* *GET Preprocessing Items, Entity = CDSY

* *GET Preprocessing Items, Entity = CE

* *GET Preprocessing Items, Entity = CP

* *GET Preprocessing Items, Entity = EDCC

* *GET Preprocessing Items, Entity = ELEM

* *GET Preprocessing Items, Entity = ETYP

* *GET Preprocessing Items, Entity = FLDATA

* *GET Preprocessing Items, Entity = KP

+ *GET Preprocessing Items, Entity = LINE

* *GET Preprocessing Items, Entity = MPLAB

* *GET Preprocessing Items, Entity = MSCAP

* *GET Preprocessing Items, Entity = MSDATA

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-23

*GET

* *GET Preprocessing Items, Entity = MSMETH
* *GET Preprocessing Items, Entity = MSNOMF
* *GET Preprocessing Items, Entity = MSPROP
* *GET Preprocessing ltems, Entity = MSRELAX
* *GET Preprocessing Items, Entity = MSSOLU
* *GET Preprocessing Items, Entity = MSSPEC

* *GET Preprocessing Items, Entity = MSVARY

* *GET Preprocessing Items, Entity = NODE

* *GET Preprocessing Items, Entity = PART

* *GET Preprocessing Items, Entity = RCON

* *GET Preprocessing Items, Entity = SCTN

* *GET Preprocessing Items, Entity = SECP

* *GET Preprocessing Items, Entity = SHEL

+ *GET Preprocessing Items, Entity = TBFT

* *GET Preprocessing Items, Entity = TBLAB

* *GET Preprocessing Iltems, Entity = VOLU

* *GET Preprocessing Items, Entity = WELD

*GET Preprocessing Items, Entity = ACTIVE

Ent ity = ACTIVE, ENTNUM= 0 (or blank)

*GET, Par, ACTIVE, 0O, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

SEG Segment capability of graphics driver: 0=no segments available, 1=erasable
segments available, 2=non-erasable segments available.

CSYS Active coordinate system.

DSYS Active display coordinate system.

MAT Active material.

TYPE Active element type.

REAL Active real constant set.

ESYS Active element coordinate system.

SECT Active section.

Ccp Maximum coupled node set number in the model (includes merged and deleted
sets until compressed out).

CE Maximum constraint equation set number in the model (includes merged and
deleted sets until compressed out).

WFRONT MAX, RMS Current maximum or RMS wavefront. Zero if no reordering done.

6-24

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*GET Preprocessing items, Entity = AREA

Entity = AREA, ENTNUM= N (area number)

*GET, Par, AREA, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

ATTR Name Number assigned to the attribute, Nane, where Name=MAT, TYPE, REAL, ESYS,
SECN, NNOD, NELM, or ESIZ. (NNOD=number of nodes, NELM=number of ele-
ments, ESIZ=element size.)

ASEL Select status of area N: -1=unselected, O=undefined, 1=selected. Alternative
get function: ASEL(N).

NXTH Next higher area number above Nin selected set (or zero if none found).

NXTL Next lower area number below Nin selected set (or zero if none found).

AREA Area of area N. (ASUM or GSUM must have been performed sometime previ-
ously with at least this area Nselected).

LOOP 1,2,..1 I t en2: LINE, | T2NUM 1,2,...,p Line number of position p of loop |

Entity = AREA,

ENTNUM= 0 (or blank)

*GET, Par, AREA, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

NUM MAX, MIN Highest or lowest area number in the selected set.

NUM MAXD, MIND |Highest or lowest area number defined.

COUNT Number of areas in the selected set.

AREA Combined areas (from last ASUM or GSUM).

VOLU Combined volume of areas (from last ASUM or GSUM. For 3-D area elements,
thickness is determined from area attributes [AATT]. For 2-D elements, area
attributes are ignored and unit thickness is assumed.

CENT XY, Z Centroid X, Y, or Z location of areas (from last ASUM or GSUM).

IOR X.Y,Z,XY,YZ, |Moments of inertia about origin (from last ASUM or GSUM).

ZX
IMC X, Y, Z,XY,YZ, |Moments of inertia about mass centroid (from last ASUM or GSUM).
ZX

IPR XY,z Principal moments of inertia (from last ASUM or GSUM).

IXV XY,z Principal orientation X vector components (from last ASUM or GSUM).

YV XY,z Principal orientation Y vector components (from last ASUM or GSUM).

VAY XY, Z Principal orientation Z vector components (from last ASUM or GSUM).

*GET Preprocessing Items, Entity = CDSY

Enti ty = CDSY, ENTNUM= N (coordinate system number)

*GET, Par, CDSY, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITTINUM Description
LOC XY, Z X, Y, or Z origin location in global Cartesian system.
ANG XY, YZ, ZX THXY, THYZ, or THZX rotation angle (in degrees) relative to the global Cartesian
coordinate system.
ATTR Narre Number assigned to Nare, where Name=KCS, KTHET, KPHI, PAR1, or PAR2. The

value -1.0 is returned for KCS if the coordinate system is undefined.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-25

*GET

Enti t y = CDSY, ENTNUM= N (coordinate system number)

*GET, Par, CDSY, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

NUM MAX The maximum coordinate system number

*GET Preprocessing Items, Entity = CE

Enti t y = CE, ENTNUM= N (constraint equation set)

*GET, Par, CE, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ‘ ITINUM Description

If N=0, then

MAX Maximum constraint equation number

NUM Number of constraint equations

If N >0, then

NTERM Number of terms in this constraint equation

CONST Constant term for this constraint equation

TERM number Iltem2 = NODE: Gives the node for this position in the constraint equation.
Item2 = DOF: Gives the DOF number for this position in the constraint equation.
(1-UX, 2-UY, 3-UZ, 4-ROTX, etc.)
Item2 = COEF: Gives the coefficient for this position in the constraint equation.

*GET Preprocessing Items, Entity = CP

Enti ty = CP, ENTNUM= N (coupled node set)

*GET, Par, CP, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ‘ ITINUM Description
If N=0, then
MAX Maximum coupled set number
NUM Number of coupled sets
If N >0, then
DOF The degree of freedom for this set (1-UX, 2-UY, 3-UZ, 4-ROTX, etc.)
NTERM Number of nodes in this set.
TERM number Iltem2 = NODE: Gives the node for this position number in the coupled set.

*GET Preprocessing Items, Entity = EDCC

Enti t y = EDCC, ENTNUM= N (contact entity number, obtained by issuing the EDCLIST command)

*GET, Par, EDCC, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

COMP 1,2 Component name for the contact (1) or target (2) surface of contact entity N.
A character parameter is returned.

PART 1,2 PART number for contact (1) or target (2) surface of contact entity N.

6-26 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti ty = EDCC, ENTNUM= 0 (or blank)

*GET, Par, EDCC, 0, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

COUNT

Total number of contact definitions.

*GET Preprocessing Items, Entity = ELEM

Enti t y = ELEM, ENTNUM= N (element number)

*GET, Par, ELEM, N, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

NODE

1,2,..20

Node number at position 1,2,... or 20 of elementN. Alternative get function:
NELEM(n, npos), where npos is 1,2,...20.

CENT

XY,z

Centroid X, Y, or Z location (based on shape function) in the active coordinate
system. The original locations is used even if large deflections are active. Altern-
ative get functions: CENTRX(N), CENTRY(N), and CENTRZ(N) always retrieve the
element centroid in global Cartesian coordinates, and are determined from
the selected nodes on the elements.

ADJ

1,2,..6

Element number adjacent to face 1,2,...6. Alternative get function:
ELADJ(Nf ace). Only elements (of the same dimensionality) adjacent to lateral
faces are considered.

ATTR

Number assigned to the attribute Narme, where Nane = MAT, TYPE, REAL, ESYS,
PSTAT, LIVE, or SECN. Returns a zero if the element is unselected. If Name =
PSTAT (valid for p-elements only), returns a 1 if the element is selected and in-
cluded [PINCLUDE], and a -1 if the element is selected and excluded [PEX-
CLUDE]. If Nanme = LIVE, returns a 1 if the element is selected and active, and a
-1ifitis selected and inactive. Name = SECN returns the section number of the
selected beam element.

LENG

Length of line element (straight line between ends).

LPROJ

XY,z

Projected line element length (in the active coordinate system). X is x-projection
onto y-z plane, Y is y projection onto z-x plane, and Z is z-projection onto x-y
plane.

AREA

Area of area element.

APROJ

XY,z

Projected area of area element area (in the active coordinate system). X is x-
projection onto y-z plane, Y is y projection onto z-x plane, and Z is z-projection
onto x-y plane.

VOLU

Element volume. Based on unit thickness for 2-D plane elements (unless the
thickness option is used) and on the full 360 degrees for 2-D axisymmetric
elements.

Note — If results data are in the database, the volume returned is the
volume calculated during solution.

ESEL

Select status of element N: -1 = unselected, 0 = undefined, 1 = selected. Altern-
ative get function: ESEL(N).

NXTH

Next higher element number above Nin selected set (or zero if none found).
Alternative get function: ELNEXT(N)

NXTL

Next lower element number below Nin selected set (or zero if none found).

HGEN

Heat generation on selected element N.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-27

*GET

Enti t y = ELEM, ENTNUM= N (element number)

*GET, Par, ELEM, N, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

HCOE

face

Heat coefficient for selected element Non specified face. Returns the value at
the first node that forms the face.

TBULK

face

Bulk temperature for selected element N on specified face. Returns the value
at the first node that forms the face.

PRES

face

Pressure on selected element, Non specified face. Returns the value at the first
node that forms the face.

SHPAR

Test

Element shape test result for selected element N, where Test = ANGD (SHELL28
corner angle deviation), ASPE (aspect ratio), JACR (Jacobian ratio), MAXA
(maximum corner angle), PARA (deviation from parallelism of opposite edges),
or WARP (warping factor).

Ent i t y = ELEM, ENTNUM= 0O (or blank)

*GET, Par , ELEM, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
NUM MAX,MIN Highest or lowest element number in the selected set.
NUM MAXD, MIND Highest or lowest element number defined.
COUNT Number of elements in the selected set.

*GET Preprocessing Items, Entity = ETYP

Entity = ETYP, ENTNUM= N (element type number)

*GET, Par, ETYP, N, Item1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

ATTR

Nane

Number assigned to the attribute Nane, where Name=ENAM, KOP1, KOP2, ...,
KOP9, KO10, KO11, etc.

Entity =ETYP, ENTNUM= 0 (or blank)

*GET,Par ,ETYP,0, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

NUM

MAX

Maximum element type.

*GET Preprocessing Items, Entity = FLDATA

Enti ty = FLDATA, ENTNUM= Narre (Nane is a valid label on the Nane field of the FLDATA command.)

The value returned is the numerical value for numeric items, 0 or 1 for logical items (off/on or false/true),
and a character parameter for items that require a character string. For example, *GET,X,FLDATA,TERM,PRES
returns X=convergence monitor value for pressure [FLDATA3], *GET,X,FLDATA,SOLU,TURB returns X=1 if
the turbulence model is ON [FLDATA1], and *GET,X,FLDATA,PROT,DENS returns X="CONSTANT' if density
is specified as a constant property type [FLDATA7].

*GET, Par , FLDATA, Nane, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

Lab Value of Lab, where Lab is a valid label from the Label field of the FLDATA
command.

6-28 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*GET Preprocessing Items, Entity = KP

Enti ty = KP, ENTNUM= N (keypoint number)

*GET, Par, KP, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

LOC XY, Z X, Y, or Z location in the active coordinate system. Alternative get functions:
KX(N), KY(N), KZ(N). Inverse get function: KP(x, y, z) returns the number of the
selected keypoint nearest the x, y, z location (in the active coordinate system,
lowest number for coincident keypoints).

ATTR Name Number assigned to the attribute Narme, where Nane = MAT, TYPE, REAL, ESYS,
NODE, or ELEM.

KSEL Select status of keypoint N: -1 = unselected, 0 = undefined, 1 = selected. Altern-
ative get function: KSEL(N).

NXTH Next higher keypoint number above Nin selected set (or zero if none found).
Alternative get function: KPNEXT(N).

NXTL Next lower keypoint number below Nin selected set (or zero if none found).

DIV Divisions (element size setting) from KESIZE command.

Ent it y = KP, ENTNUM= 0 (or blank)

*GET, Par, KP, 0, Item1, ITINUM, Item2, IT2NUM
Item1 ITINUM Description
NUM MAX, MIN Highest or lowest keypoint number in the selected set.
NUM MAXD, MIND |Highest or lowest keypoint number defined
COUNT Number of keypoints in the selected set.
CENT XY, Z Centroid X, Y, or Z location of keypoints (from last KSUM or GSUM).
IOR X.Y,Z,XY,YZ, |[Moments of inertia about origin (from last KSUM or GSUM).
ZX
IMC X, Y, Z,XY,YZ, |Moments of inertia about mass centroid (from last KSUM or GSUM).
ZX
IPR XY,z Principal moments of inertia (from last KSUM or GSUM).
IXV XY,z Principal orientation X vector components (from last KSUM or GSUM).
YV XY,z Principal orientation Y vector components (from last KSUM or GSUM).
VAY XY, Z Principal orientation Z vector components (from last KSUM or GSUM).
MXLOC XY, Z Maximum X, Y, or Z keypoint coordinate in the selected set (in the active co-
ordinate system).
MNLOC XY, Z Minimum X, Y, or Z keypoint coordinate in the selected set (in the active co-
ordinate system).
NRELM m Keypoint number of meshed region nearest centroid of element m

*GET Preprocessing Items, Entity = LINE

Ent i t y = LINE, ENTNUM= N (line number)

*GET, Par, LINE, N, tem1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

KP

1,2

Keypoint number at position 1 or 2.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-29

*GET

Enti t y = LINE, ENTNUM= N (line number)

*GET, Par, LINE, N, tem1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

ATTR

Nane

Number assigned to the attribute, Nane, where Name=MAT, TYPE, REAL, ESYS,
NNOD, NELM, NDIV, NDNX, SPAC, SPNX, KYND, KYSP, LAY1, or LAY2.
(NNOD=number of nodes, returns --1 for meshed line with no internal nodes,
NELM=number of elements, NDIV=number of divisions in an existing mesh,
NDNX=number of divisions assigned for next mesh, SPAC=spacing ratio in an
existing mesh, SPNX=spacing ratio for next mesh, KYND=soft key for NDNX,
KYSP=soft key for SPNX, LAY1=LAYER1 setting, LAY2=LAYER?2 setting.)

LSEL

Select status of line N: -1=unselected, 0=undefined, 1=selected. Alternative get
function: LSEL(N).

NXTH

Next higher line number above Nin the selected set (or zero if none found).
Alternative get function: LSNEXT(N)

NXTL

Next lower line number below Nin selected set (or zero if none found).

LENG

Length. A get function LX(n, | f r ac) also exists to return the X coordinate loc-
ation of line Nat the length fraction | f r ac (0.0 to 1.0). Similar LY and LZ func-
tions exist.

Enti t y = LINE, ENTNUM= 0 (or blank)

*GET, Par, LINE, O, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

NUM MAX, MIN Highest or lowest line number in the selected set.

NUM MIND, MAXD Highest or lowest line number defined.

COUNT Number of lines in the selected set.

LENG Combined length of lines (from last LSUM or GSUM).

CENT XY, Z Centroid X, Y, or Z location of lines (from last LSUM or GSUM).

IOR X.Y,Z,XY,YZ, |Moments of inertia about origin (from last LSUM or GSUM).
ZX

IMC X, Y, Z,XY,YZ, |Moments of inertia about mass centroid (from last LSUM or GSUM).
ZX

IPR XY,z Principal moments of inertia (from last LSUM or GSUM).

IXV XY, Z Principal orientation X vector components (from last LSUM or GSUM).

YV XY,z Principal orientation Y vector components (from last LSUM or GSUM).

VAY, XY, Z Principal orientation Z vector components (from last LSUM or GSUM).

*GET Preprocessing Items, Entity = MPLAB

Enti t y = MPlab, ENTNUM=N (MP| ab = material property label from MP command; N= material number.)

*GET, Par, MPlab, N, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

TEMP

val

Material property value at temperature of val . For temperature dependant
materials, the program interpolates the property at temperature input forval .

6-30

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*GET Preprocessing Items, Entity = MSCAP

Entity = MSCAP, ENTNUM=n (species number)

*GET, Par , MSCAP, n, Item1, ITTNUM, Item2, IT2NUM

Item1

ITINUM Description
KEY Status of mass fraction capping for species n: 0=off, 1=on.
UPP Upper bound of mass fraction.
LOW

Lower bound of mass fraction.

*GET Preprocessing Items, Entity = MSDATA

Ent ity = MSDATA, ENTNUM= 0

*GET, Par , MSDATA, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM

Description

SPEC The algebraic species number.

UGAS

Value of the universal gas constant.

*GET Preprocessing Items, Entity = MSMETH

Entity = MSMETH, ENTNUM= n (species number)

*GET, Par , MSMETH, n, Item1, ITINUM, Item2, IT”2NUM

(Blank) (Blank) Solution method for species n: 0=no solution, 1=TDMA method, 2=conjugate

residual method, 3=preconditioned conjugate residual method.

*GET Preprocessing Items, Entity = MSNOMF

Ent ity = MSNOMF, ENTNUM= n (species number)

*GET, Par , MSNOMF, n, Item1, ITTINUM, Item2, IT2NUM

(Blank) ‘ (Blank) ‘ Initial mass fraction of species N.

*GET Preprocessing Items, Entity = MSPROP

Enti t y = MSPROP, ENTNUM= n (species number)

*GET, Par , MSPROP, n, Item1, ITINUM, Item2, IT2NUM

Item1 ITTINUM Description
Lab TYPE The type of fluid property variation being used for Lab, where Lab is a valid

property label as described on the MSPROP command (DENS, VISC, COND,
etc.). A character parameter is returned: CONSTANT, GAS, LIQUID, or a property
name from the floprp.ans file.

" NOMI Value of property Lab: nominal value fora CONSTANT fluid property, value at
temperature given by COF1 for other property types.

" COF1, COF2, Coefficients in the equation of state for property Lab.

COF3

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-31

*GET

*GET Preprocessing Items, Entity = MSRELAX

Ent ity = MSRELAX, ENTNUM= n (species number)
*QGET, Par , MSRELAX, n, Item1, ITINUM, Item2, IT”2NUM
Item1 ITINUM Description
CONC Mass fraction concentration relaxation factor.
MDIF Mass diffusion coefficient relaxation factor.
EMDI Effective mass diffusion coefficient relaxation factor.
STAB Transport equation inertial relaxation factor.

*GET Preprocessing Items, Entity = MSSOLU

Entity =MSSOLU, ENTNUM= n (species number)
*GET, Par , MSSOLU,n, Item1, ITINUM, Item2, IT2NUM
Item1 ITINUM Description
NSWE Number of TDMA sweeps.
MAXI Maximum number of iterations allowed for semi-direct methods.
NSRC Number of search vectors used for semi-direct methods.
CONV Convergence criterion for semi-direct methods.
DELT Maximum normalized rate of change which will permit the semi-direct solution
to continue.

*GET Preprocessing Items, Entity = MSSPEC

Entity = MSSPEC, ENTNUM= n (species number)

*GET, Par , MSSPEC, n, Item1, ITINUM, Item2, IT2NUM

NAME Name of species n. A character parameter is returned.
MOLW Molecular weight of species n.
SCHM Turbulent Schmidt number of species n.

*GET Preprocessing Items, Entity = MSVARY

Enti t y = MSVARY, ENTNUM= n (species number)

*GET, Par , MSVARY, n, Item1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

Lab

Variability status of property Lab (where Lab =DENS, VISC, COND, or MDIF):
0=off, 1=on.

6-32

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*GET Preprocessing Items, Entity = NODE

Enti t y = NODE, ENTNUM= N (node number)

*GET, Par , NODE, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

LOC XY, Z X, Y, Zlocation in the active coordinate system. Alternative get functions: NX(N),
NY(N), NZ(N). Inverse get function. NODE(x, y, z) returns the number of the
selected node nearest the x, y, z location (in the active coordinate system,
lowest number for coincident nodes).

ANG XY, YZ, ZX THXY, THYZ, THZX rotation angle.

NSEL Select status of node N: -1=unselected, 0=undefined, 1=selected. Alternative
get function: NSEL(N).

NXTH Next higher node number above Nin selected set (or zero if none found). Al-
ternative get function: NDNEXT(N).

NXTL Next lower node number below Nin selected set (or zero if none found).

F FX, MX, ... Applied force at selected node Nin direction | TLNUM(returns 0.0 if no force is
defined, if node is unselected, or if the DOF is inactive). If | TEM2 is IMAG, return
the imaginary part.

D UX, ROTX, ... Applied constraint force at selected node Nin direction | TINUM(returns a large
number, such as 2e100, if no constraint is specified, if the node is unselected,
or if the DOF is inactive). If | TEMR is IMAG, return the imaginary part.

HGEN Heat generation on selected node N(returns 0.0 if node is unselected, or if the
DOF is inactive).

NTEMP Temperature on selected node N (returns 0.0 if node is unselected)

CPS Lab Couple set number with direction Lab = any active DOF, which contains the

node N.

Enti t y = NODE, ENTNUM= 0 (or blank)

*GET, Par, NODE, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITTINUM Description
NUM MAX, MIN Highest or lowest node number in the selected set.
NUM MAXD, MIND Highest or lowest node number defined.
COUNT Number of nodes in the selected set.
MXLOC XY, Z Maximum X, Y, or Z node coordinate in the selected set (in the active coordinate
system).
MNLOC XY, Z Minimum X, Y, or Z node coordinate in the selected set (in the active coordinate

system).

Note: If internal nodes are created during solution by ANSYS, the internal nodes may also be included by the
command. You can select/unselect them by node numbers, but they can not be listed or plotted.

*GET Preprocessing Items, Entity = PART

Ent i t y = PART, ENTNUM= N (PART number)

*GET, Par, PART, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
TYPE Element type number assigned to PART N.
MAT Material number assigned to PART N.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-33

*GET

Ent i t y = PART, ENTNUM= N (PART number)

*GET, Par, PART, N, Item1, ITTNUM, Item2, IT2NUM

Item1

ITINUM

Description

REAL

Real constant number assigned to PART N.

Ent i t y = PART, ENTNUM= 0 (or blank)

*GET, Par, PART, 0, Item1, ITINUM, Item2, IT2NUM

NUMP \

‘Total number of parts in the model.

*GET Preprocessing Items, Entity = RCON

Ent i t y = RCON, ENTNUM= N (real constant set number)

*GET, Par, RCON, N, Item1, ITTNUM, Item2, IT”2NUM

CONST

1,2,..,m

Value of real constant number min set N.

NUM

MAX

The maximum real constant number

*GET Preprocessing Items, Entity = SCTN

Enti ty = SCTN, ENTNUM= N (pretension section ID number)

*GET, Par, SCTN, N, Item1, ITTNUM, Item2, IT2NUM

Item1 ITTINUM Description
1 Section ID number.
2 Section type (always 5 for pretension section).
3 Pretension node number.
4 Coordinate sys- |Section normal NX.
tem number.
5 Coordinate sys- |Section normal NY.
tem number.
6 Coordinate sys- |Section normal NZ.
tem number.
7o0r8 Eight character section name.
9 Initial action key. Returns 0 or 1 for lock, 2 for "free-to-slide," or 3 for tiny.
10 Force displacement key. Returns 0 or 1 for force, or 2 for displacement.
1 First preload value.
12 Load step in which first preload value is to be applied.
13 Load step in which first preload value is to be locked.
14... 14 through 17 is a repeat of 10 through 13, but for the second preload value;
18 through 21 is for the third preload value; and so forth.

*GET Preprocessing Items, Entity = SECP

Ent ity =SECP, ENTNUM= NUM

*GET, Par , SECP, NUM Item1, ITTNUM, Item2, IT2NUM

Item1

ITINUM

Description

COUNT

Number of defined sections

6-34

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Ent ity =SECP, ENTNUM= NUM

*GET, Par , SECP, NUM Item1, ITTNUM, Item2, IT2NUM

Item1

ITINUM

Description

MAX

Largest section number defined

Entity=SECP, ENTNUM=i d (beam section identification number)

*GET, Par, SECP, i d, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

TYPE Section type, for id - SECTYPE command. (always BEAM for beam sections)

SUBTYPE Section type for id - SECTYPE command

NAME Name defined for the given section id number

DATA nnn Where "nnn" is the location in the SECDATA command for the given section
id number

PROP AREA Area value

" IYY, IYZ, 1ZZ Moments of inertia

! WARP Warping constant

! TORS Torsion constant

! CGY, CGZ Y or Z coordinate center of gravity

! SHCY, SHCZ Y or Z coordinate shear center

" SCYY, SCYZ, Shear correction factors

SCzz
! OFFSET Offset location:

1 = Centroid

2 = Shear Center
3 =0Origin

0 = User Defined

*GET Preprocessing Items, Entity = SHEL

Entity =SHEL, ENTNUM = N (shell section identification number)

*GET, Par, SHEL, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
TYPE Section type, for id — SECTYPE command. (always SHEL for shell
sections)
NAME Name defined for a given id number.
PROP TTHK Total thickness.
" NLAY Number of layers.
" NSP Number of section integration points.
" POS Node position (as defined by SECOFFSET).
" " 0 = User Defined.
" " 1 = Middle.
" " 2=Top.
" " 3 = Bottom.
" OFFz User-defined section offset (POS = 0).

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-35

*GET

Entity =SHEL, ENTNUM = N (shell section identification number)

*GET, Par, SHEL, N, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
" TS11 Transverse shear stiffness factors.
" TS22 Transverse shear stiffness factors.
" TS12 Transverse shear stiffness factors.
" HORC Homogeneous or complete section flag.
" " 0 =Homogeneous.
" " 1 = Composite.
" FUNC Tabular function name for total thickness.
" uT11 User transverse shear stiffness 11.
" uT22 User transverse shear stiffness 22.
" UT12 User transverse shear stiffness 12.
" AMAS Added mass.
" MSCF Hourglass control membrane scale factor.
" BSCF Hourglass control bending scale factor.
" DSTF Drill stiffness scale factor.
" LDEN Laminate density.
LAYD LayerNumber, THIC Layer thickness.
" LayerNumber,MAT Layer material.
" LayerNumber, ANGL Layer orientation angle.
" LayerNumber,NINT Number of layer integration points.

*GET Preprocessing Items, Entity = TBFT

Enti ty = TBFT, ENTNUM= BLANK

*GET, Par, TBFT,, Item1, ITINUM, Item2, IT”2NUM

Item1 ITTINUM Description
nmat Number of defined material models.
matnum i ndex Material number in array (index varies for 1 to num materials).

Entity =TBFT, ENTNUM=nati d (

For getting names of constitutive function, matid = the material ID number)

*GET, Par, TBFT,

matid, nfun, ITTNUM, Item2, IT2NUM

Item1

ITINUM

Description

nfun

Number of constitutive functions for this material.

Entity =TBFT, ENTNUM=mat i d (To query constitutive function data, matid = the material ID number)

*GET, Par, TBFT, matid, func, fname, ltem2, IT2NUM

Item1 ITTINUM Description
func index if tem2 = fname, the name of the constitutive function is returned.
func function name |If tem2 =ncon, the number of constants is returned for the function specified

in ITTNUM by the constitutive function name.

If tem2 = cons, set [tem2num to index to return the value of the constant.

If ltem2 = fixe, set ltem2num to index to return the fix flag status.

6-36

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Ent ity = TBFT, ENTNUM= BLANK

*GET, Par, TBFT,, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

If ltem2 = type, returns the category of the constitutive model (moon, poly,
etc.)

If ltem2 = sord, returns the shear order of the prony visco model.

If tem2 = bord, returns the bulk order of the prony visco model.

If ltem2 = shif, returns the shift function name of the prony visco model.

Entity =TBFT, ENTNUM=mat i d (To query experimental data, mat i d = the material ID number))

*GET, Par, TBFT, matid, func, fname, ltem2, IT2NUM

Item1 ITTINUM Description
expe (blank) If Item2 = nexp, returns number of experiments in a material model.
“ expindex If ltem2 = type, returns index of experiment.

If tem2 = numrow, returns number of rows in the data.

If tem2 = numcol, returns the number of cols in a row (set Intem2num = Row
index)

If Item2 = data, returns the value of the data in row, col of exp expindex (set
item2Num = row index and item3 = column index. All indices vary from 1 to
the maximum value.

If ltem?2 = natt, returns the number of attributes.

If tem2 = attname, returns the attribute name (set ltem2Num = Attr index).

If tem2 = attvald, returns double value of attribute (set tem2Num = Attr index).

If tem2 = attvali, returns integer valud of attribute (set ltem2Num = Attr index).

If tem2 = attvals, returns the string value of the attribute (set tem2Num = Attr
index).

*GET Preprocessing Items, Entity = TBLAB

Enti t y = TBlab, ENTNUM= N..(TBI ab = data table label from the TB command; N= material number.)

*GET, Par, TBl ab, N, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

TEMP

T

Item2: CONST IT2NUM: NumValue of constant number Num in the datatable
at temperature T (see Data Tables - Implicit Analysis in the ANSYS Elements
Reference). For constants input a X,Y point, the constant numbers are consec-
utive with the X constants being the odd numbers, beginning with one.

*GET Preprocessing Items, Entity = VOLU

Ent ity =VOLU, ENTNUM= N (volume number)

*GET, Par, VOLU, N, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

ATTR Name Number assigned to the attribute Nanme, where Name=MAT, TYPE, REAL, ESYS,
NNOD, or NELM. (NNOD=number of nodes, NELM=number of elements.)

VSEL Select status of volume N: -1=unselected, 0=undefined, 1=selected. Alternative

get function: VSEL(N).

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-37

*GET

Ent ity =VOLU, ENTNUM= N (volume number)

*GET, Par, VOLU, N, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

NXTH Next higher volume number above Nin selected set (or zero if none found).
Alternative get function: VLNEXT(N).

NXTL Next lower volume number below Nin selected set (or zero if none found).

VOLU Volume of volume N. (VSUM or GSUM must have been performed sometime
previously with at least this volume N selected).

SHELL 1,2,..m Item2: AREA IT2NUM: 1,2,...p Line number of position p of shell m

Ent ity =VOLU, ENTNUM= 0 (or blank)

*GET, Par, VOLU, 0, Item1, ITINUM, Item2, IT2NUM

NUM MAX, MIN Highest or lowest volume number in the selected set.

NUM MAXD, MIND Highest or lowest volume number defined.

COUNT Number of volumes in the selected set.

VOLU Combined volumes (from last VSUM or GSUM).

CENT XY, Z Centroid X, Y, or Z location of volumes (from last VSUM or GSUM).

IOR X.Y,Z,XY,YZ, |Moments of inertia about origin (from last VSUM or GSUM).
ZX

IMC X, Y, Z,XY,YZ, |Moments of inertia about mass centroid (from last VSUM or GSUM).
ZX

IPR XY,z Principal moments of inertia (from last VSUM or GSUM).

IXV XY, Z Principal orientation X vector components (from last VSUM or GSUM).

YV XY,z Principal orientation Y vector components (from last VSUM or GSUM).

VAY XY, Z Principal orientation Z vector components (from last VSUM or GSUM).

*GET Preprocessing Items, Entity = WELD

Ent ity = WELD, ENTNUM= N (weld number)

*GET, Par, WELD, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITTINUM Description
NODE 1,2 First or second node number for spot weld N.
NXTH Next higher spotweld number above N (or 0 if none found).

Ent ity = WELD, ENTNUM= 0 (or blank)

*GET, Par , WELD, O, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
NUM MAX, MIN Highest or lowest spotweld number.
COUNT Total number of spotwelds in model.

Solution Items

*GET Solution Entity Items

* *GET Solution Items, Entity = ACTIVE

6-38

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*GET Solution Items, Entity = ELEM
*GET Solution Items, Entity = MODE
*GET Solution Items, Entity = RUNST

*GET Solution Items, Entity = ACTIVE

Enti ty = ACTIVE, ENTNUM= 0 (or blank)

*GET, Par, ACTIVE, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
ANTY Current analysis type.
SOLU DTIME Time step size.
" NCMLS Cumulative number of load steps.
" NCMSS Cumulative number of substeps. NOTE: Used only for static and transient ana-
lyses.
" EQIT Number of equilibrium iterations.
" NCMIT Cumulative number of iterations.
" CNVG Convergence indicator: 0=not converged, 1=converged.
" MXDVL Maximum degree of freedom value.
" RESFRQ Response frequency for 2nd order systems.
" RESEIG Response eigenvalue for 1st order systems.
" DSPRM Descent parameter.
" FOCV Force convergence value.
" MOCV Moment convergence value.
" HFCV Heat flow convergence value.
" MFCV Magnetic flux convergence value.
" cscv Current segment convergence value.
" cucv Current convergence value.
" FFCV Fluid flow convergence value.
" DICV Displacement convergence value.
" ROCV Rotation convergence value.
" TECV Temperature convergence value.
" VMCV Vector magnetic potential convergence value.
" SMCV Scalar magnetic potential convergence value.
" vocv Voltage convergence value.
" PRCV Pressure convergence value.
" VECV Velocity convergence value.
" CRPRAT Maximum creep ratio.
" PSINC Maximum plastic strain increment.
" CGITER Number of iterations in the PCG and symmetric JCG (non-complex version)

solvers.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-39

*GET

*GET Solution Items, Entity = ELEM

Enti t y = ELEM, ENTNUM= 0 (or blank) (Available only after inertia relief solution [IRLF,1] or pre-calculation

of masses [IRLF,-1])

*GET, Par , ELEM, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

MTOT XY, Z Total mass components.

MC XY, Z Mass centroid components.

IOR X, Y,Z XY,YZ, |Moment of inertia about origin.
ZX

IMC X, Y,Z,XY,YZ, |Moment of inertia about mass centroid.
zX

FMC XY, Z Force components at mass centroid.

MMOR XY, Z Moment components at origin.

MMMC XY, Z Moment components at mass centroid.

*GET Solution Items, Entity = MODE

Enti t y = MODE, ENTNUM= N (mode number)

*GET, Par , MODE, N, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

FREQ

(IMAG)

Frequency of mode N. This item returns only the first 600 frequency values. For
modal solutions that create complex frequencies (DAMP and QRDAMP), the
real part of the frequencies is returned unless ITINUM = IMAG.

PFACT

Participation factor of mode N. If retrieved after a modal analysis, this value re-
flects the participation factor for rotation about the global Z axis. If retrieved
after a spectrum analysis, this value represents the participation factor for the
last SED direction vector.

MCOEF

Mode coefficient of mode N Values are retrievable with this command following
a spectrum analysis.

Note — Note--Values for the MCOEF parameter are only valid after a
spectrum analysis has been solved.

DAMP

Effective damping ratio of mode N. Not a function of direction. Also retrievable
following a Harmonic Response Analysis or Transient Analysis with mode su-

perposition.

*GET Solution Items, Entity = RUNST

Enti t y = RUNST, ENTNUM= O (or blank) Generate data using the RSPEED command before retrieving the

following items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

RSPEED MIPS MIPS rating of computer.
" SMFLOP Scalar MFLOPS rating of computer.
" VMFLOP Vector MFLOPS rating of computer.

6-40

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti ty = RUNST, ENTNUM= O (or blank) Generate data using the RFILSZ command before retrieving these

items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
RFILSZ TOTAL Estimated total size of all files listed in the RFILSZ command description. All
file sizes are in megabytes.
" EMAT Estimated size of element matrices file (EMAT).
" EROT Rotated element matrices file (EROT).
" ESAV Element saved data file (.ESAV).
" FULL Assembled global stiffness and mass matrices file (.FULL).
" MODE Modal matrices file (MODE).
" RDSP Reduced displacements file (RDSP).
" REDM Reduced structure matrix file (REDM).
" RFRQ Reduced complex displacements file (.RFRQ).
" RGEOM Geometry data in results file (RST, .RTH, or .RMQG).
" RST Load data in results file (.RST, .RTH, or RMG).
" TRI Triangularized stiffness matrix file (.TRI).

Ent i t y =RUNST, ENTNUM= 0 (or blank) Generate data using the RTIMST command before retrieving the following

items:

*GET, Par, RUNST, O, Item1, [TINUM, Item2, IT2NUM

Iltem1 ITINUM Description
RTIMST TOTAL Estimated run time (seconds) for total solution.
" TFIRST Estimated run time (seconds) for first iteration.
" TITER Estimated run time (seconds) for subsequent iteration.
" EQPREP Estimated run time (seconds) for element preparation.
" SOLVE Estimated run time (seconds) for wavefront solution.
" BSUB Estimated run time (seconds) for back substitution.
" EIGEN Estimated run time (seconds) for eigenvalue calculation.
" ELFORM n Estimated run time (seconds) for element formulation of element type
number n.
" ELSTRS n Estimated run time (seconds) for computation of element results for element
type number n.
" NELM n Number of elements defined for element type n.

Ent i t y =RUNST, ENTNUM=0 (or blank) Generate data using the RMEMRY command before retrieving the following

items:

*GET, Par , RUNST, O, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

RMEMRY WSREQ Requested work space (Mb)
" WSAVAIL Work space obtained (Mb).
" DBPSIZE ANSYS database page size (Kb).
" DBPDISK Database pages on disk.
" DBSIZE ANSYS database space size (Mb).
" DBPMEM Database pages in memory.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-41

*GET

Enti ty = RUNST, ENTNUM= O (or blank) Generate data using the RFILSZ command before retrieving these

items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
" DBMEM Memory for database pages (Mb).
" SCRSIZE ANSYS scratch memory size (Mb).
" SCRAVAIL Available scratch memory (Mb).
" IOMEM Buffer scratch memory (Mb).
" I0PSIZ Binary 1/0O page size (Kb).
" IOBUF Buffers per solution file.
" SOLMEMORY | Maximum Solution Memory Space

Enti t y = RUNST, ENTNUM= 0 (or blank) Generate data using the RWFRNT command before retrieving these

items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT2NUM

Iltem1 ITINUM Description

RWFRNT MAX Estimated maximum wavefront.
" RMS Estimated R.M.S. wavefront.
" MEAN Estimated mean wavefront.

Enti t y = RUNST, ENTNUM= O (or blank) Generate data using the RTIMST command before retrieving the

following items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
RTIMST TOTAL Estimated run time (seconds) for total solution.
" TFIRST Estimated run time (seconds) for first iteration.
" TITER Estimated run time (seconds) for subsequent iteration.
" EQPREP Estimated run time (seconds) for element preparation.
" SOLVE Estimated run time (seconds) for wavefront solution.
" BSUB Estimated run time (seconds) for back substitution.
" EIGEN Estimated run time (seconds) for eigenvalue calculation.
" ELFORM n Estimated run time (seconds) for element formulation of element type
number n.
" ELSTRS n Estimated run time (seconds) for computation of element results for element
type number n.
" NELM n Number of elements defined for element type n.

Enti t y = RUNST, ENTNUM= O (or blank) Generate data using the RMEMRY command before retrieving the

following items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
RMEMRY WSREQ Requested work space (Mb)
" WSAVAIL Work space obtained (Mb).
" DBPSIZE ANSYS database page size (Kb).
" DBPDISK Database pages on disk.
" DBSIZE ANSYS database space size (Mb).

6-42

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti t y = RUNST, ENTNUM= O (or blank) Generate data using the RMEMRY command before retrieving the

following items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
" DBPMEM Database pages in memory.
" DBMEM Memory for database pages (Mb).
" SCRSIZE ANSYS scratch memory size (Mb).
" SCRAVAIL Available scratch memory (Mb).
" IOMEM Buffer scratch memory (Mb).
" I0PSIZ Binary 1/0O page size (Kb).
" IOBUF Buffers per solution file.
" SOLMEMORY |Maximum Solution Memory Space

Enti t y =RUNST, ENTNUM= 0 (or blank) Generate data using the RWFRNT command before retrieving these
items:

*GET, Par , RUNST, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

RWFRNT MAX Estimated maximum wavefront.
" RMS Estimated R.M.S. wavefront.
" MEAN Estimated mean wavefront.

Postprocessing Items

*GET Postprocessing Entity Items

*GET Postprocessing Items, Entity = ACTIVE
*GET Postprocessing Items, Entity = ELEM
*GET Postprocessing Items, Entity = ETAB
*GET Postprocessing Items, Entity = FSUM
*GET Postprocessing Items, Entity = INTSRF
*GET Postprocessing Items, Entity = KCALC
*GET Postprocessing Items, Entity = NODE
*GET Postprocessing Items, Entity = PATH
*GET Postprocessing Items, Entity = PLNSOL
*GET Postprocessing Items, Entity = PRERR
*GET Postprocessing Items, Entity = RAD
*GET Postprocessing Items, Entity = SECR
*GET Postprocessing Items, Entity = SECTION
*GET Postprocessing Items, Entity = SORT
*GET Postprocessing Items, Entity = SSUM
*GET Postprocessing Items, Entity = TREF

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-43

*GET

* *GET Postprocessing Items, Entity = VARI

*GET Postprocessing Items, Entity = ACTIVE

Enti ty = ACTIVE, ENTNUM= O (or blank)

*GET,Par , ACTIVE, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
SET LSTP Current load step number.
" SBST Current substep number.
" TIME Time associated with current results in the database.
" FREQ Frequency (for ANTYPE=MODAL, HARMIC, SPECTR; load factor for AN-
TYPE=BUCKLE).
" NSET If ltem?2 is blank, number of data sets on result file.
If ltem2 = FIRST, IT”2NUM = Loadstep, get set number of first iteration of Load-
Isftl?tzmz =LAST, IT2NUM = Loadstep, get set number of last iteration of Loadstep
RSYS Active results coordinate system.

*GET Postprocessing Items, Entity = ELEM

Enti t y = ELEM, ENTNUM= N (element number)

*GET,Par , ELEM, N, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

SERR Structural error energy.

SDSG Absolute value of the maximum variation of any nodal stress component.

TERR Thermal error energy.

TDSG Absolute value of the maximum variation of any nodal thermal gradient com-
ponent.

SENE "Stiffness" energy or thermal heat dissipation. Same as TENE.

TENE Thermal heat dissipation or "stiffness" energy. Same as SENE.

KENE Kinetic energy.

JHEAT Element Joule heat generation (coupled-field calculation).

JS XY, Z Source current density (coupled-field calculation) in the global Cartesian co-
ordinate system.

HS XY, Z Average element magnetic field intensity from current sources.

VOLU Element volume, as calculated during solution.

ETAB Lab Value of element table item Lab for element N (see ETABLE command).

SMISC Snum Value of element summable miscellaneous data at sequence number Snum(as
used on ETABLE command).

NMISC Snum Value of element non-summable miscellaneous data at sequence number Snum

(as used on ETABLE command).

6-44

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*GET Postprocessing Items, Entity = ETAB

Entity=ETAB, ENTNUM = N(column number)

*GET,Par , ETAB, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
LAB Label for column Nof the element table [ETABLE]. Returns a character paramet-
er.
ELEM E Value in ETABLE column Nfor element number E.

Ent ity = ETAB, ENTNUM= 0 (or blank)

*GET,Par ,ETAB,0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
NCOL MAX Total number of ETABLE columns.
NLENG MAX Largest element number defined.

*GET Postprocessing Items, Entity = FSUM

Ent i t y = FSUM, ENTNUM= 0O (or blank)

*GET, Par , FSUM, 0, Item1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

ITEM

Lab

Value of item Lab from last FSUM command. Valid labels are FX, FY, FZ, MX,
MY, MZ, FLOW, HEAT, FLUX, etc.

*GET Postprocessing Items, Entity = INTSRF

Ent i t y = INTSRF, ENTNUM= 0 (or blank)

*GET, Par, INTSRF, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
PRES Lab Value of item Lab from last INTSRF,PRES command. Valid labels are FX, FY, FZ,
MX, MY, and MZ.
TAUW Lab Value of item Lab from last INTSRF,TAUW command. Valid labels are FX, FY,

Fz, MX, MY, and MZ.

*GET Postprocessing Items, Entity = KCALC

Ent ity = KCALC, ENTNUM= 0 (or blank)

*GET, Par , KCALC, 0, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

1,2,3

Value of KI, KII, or KllI stress intensity factor from last KCALC command.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-45

*GET

*GET Postprocessing Items, Entity = NODE

Ent i t y = NOCDE, ENTNUM= N (node number) for nodal degree of freedom results:

*GET, Par , NODE, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

U X, Y,Z, SUM X, Y, or Zstructural displacement or vector sum. Alternative get functions: UX(N),
UY(N), UZ(N).

ROT X, Y, Z,SUM X,Y, or Z structural rotation or vector sum. Alternative get functions: ROTX(N),
ROTY(N), ROTZ(N).

TEMP Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3) =0 or
1, use TBOT, TE2, TE3, ..., TTOP instead of TEMP. Alternative get functions:
TEMP(N), TBOT(N), TE2(N), etc.

PRES Pressure. Alternative get function: PRES(N).

VOLT Electric potential. Alternative get function: VOLT(N).

MAG Magnetic scalar potential. Alternative get function: MAG(N).

Vv X, Y, Z,SUM X, Y, or Z fluid velocity or vector sum in a fluid analysis. X, Y, or Z nodal velocity
or vector sum in a structural transient analysis (LS-DYNA analysis or ANSYS
analysis with ANTYPE, TRANS). Alternative get functions: VX(N), VY(N), VZ(N).

A X, Y, Z, SUM X, Y, or Z magnetic vector potential or vector sum in an electromagnetic ana-
lysis. X, Y, or Znodal acceleration or vector sum in a structural transient analysis
(LS-DYNA analysis or ANSYS analysis with ANTYPE, TRANS). Alternative get
functions: AX(N), AY(N), AZ(N).

CURR Current.

EMF Electromotive force drop.

ENKE Turbulent kinetic energy (FLOTRAN). Alternative get function: ENKE(N).

ENDS Turbulent energy dissipation (FLOTRAN). Alternative get function: ENDS(N).

RF FX, FY,FZ, MX, |Nodal reaction forces in the nodal coordinate system.

MY, MZ

Note: This command should be used very carefully when N stands for an internal node, since the nodal degree
of freedoms may have different physical meanings.

Ent i t y = NOCDE, ENTNUM= N (node number) for element nodal results:

*GET, Par , NODE, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
S X, Y,Z,XY,YZ, |Component stress.
Xz
" 1,2,3 Principal stress.
" INT, EQV Stress intensity or equivalent stress.
" MAXF Maximum stress failure criterion.
" TWSI Tsai-Wu strength failure criterion.
" TWSR Inverse of Tsai-Wu strength ratio index failure criterion.
EPTO X, Y, Z,XY,YZ, |Component total strain (EPEL + EPPL + EPCR).
XZ,
" 1,2,3 Principal total strain.
" INT, EQV Total strain intensity or total equivalent strain.

6-46

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Ent i t y = NODE, ENTNUM= N (node number) for element nodal results:

*GET, Par , NODE, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
EPEL X, Y, Z XY, YZ, |Component elastic strain.
Xz
" 1,2,3 Principal elastic strain.
" INT, EQV Elastic strain intensity or elastic equivalent strain.
" MAXF Maximum strain failure criterion.
EPPL X, Y, Z XY, YZ, |Component plastic strain.
Xz
" 1,2,3 Principal plastic strain.
" INT, EQV Plastic strain intensity or plastic equivalent strain.
EPCR X, Y,Z,XY,YZ, |Component creep strain.
Xz
" 1,2,3 Principal creep strain.
" INT, EQV Creep strain intensity or creep equivalent strain.
GKS X, XY, XZ Gasket component stress.
GKD X, XY, XZ Gasket component total closure.
GKDI X, XY, XZ Gasket component total inelastic closure.
GKTH X, XY, XZ Gasket component thermal closure.
EPTH X, Y, Z,XY,YZ, |Component thermal strain.
) VA
" 1,2,3 Principal thermal strain.
" INT, EQV Thermal strain intensity or thermal equivalent strain.
EPSW Swelling strain.
NL SEPL Equivalent stress (from stress-strain curve).
" SRAT Stress state ratio.
" HPRES Hydrostatic pressure.
" EPEQ Accumulated equivalent plastic strain.
" PSV Plastic state variable or plastic work/volume.
" PLWK Plastic work/volume.
TG X,Y,Z, SUM Component thermal gradient and sum.
TF X, Y, Z, SUM Component thermal flux and sum.
PG X, Y, Z,SUM Component pressure gradient and sum.
EF X,Y,Z, SUM Component electric field and sum.
D X,Y,Z, SUM Component electric flux density and sum.
H X, Y, Z, SUM Component magnetic field intensity and sum.
B X, Y, Z,SUM Component magnetic flux density and sum.
FMAG X,Y,Z, SUM Component magnetic force and sum.
HS XY, Z Component magnetic field intensity from current sources (in the global
Cartesian coordinate system).
BFE TEMP Body temperatures (calculated from applied temperatures) as used in solution.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-47

*GET

Ent i t y = NODE, ENTNUM= N (node number) for FLOTRAN results:

*GET, Par , NODE, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
TTOT Total temperature.
HFLU Heat flux.
HFLM Heat transfer (film) coefficient.
COND Fluid laminar conductivity.
PCOE Pressure coefficient.
PTOT Total (stagnation) pressure.
MACH Mach number.
STRM Stream function (2-D applications only).
DENS Fluid density.
VISC Fluid laminar viscosity.
EVIS Fluid effective viscosity.
CMUV Turbulent viscosity coefficient.
ECON Fluid effective conductivity.
YPLU Y+, a turbulent law of the wall parameter.
TAUW Shear stress at the wall.

*GET Postprocessing Items, Entity = PATH

Entity = PATH, ENTNUM= 0 (or blank)

*GET, Par, PATH, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

MAX Lab Maximum value of path item Lab from last path operation. Valid labels are the
user-defined labels on the PDEF or PCALC command.

MAXPATH Returns the maximum path number defined.

MIN Lab Minimum value of path item Lab from last path operation. Valid labels are the
user-defined labels on the PDEF or PCALC command.

LAST Lab Last value of path item Lab from last path operation. Valid labels are the user-
defined labels on the PDEF or PCALC command.

NODE Value providing the number of nodes defining the path referenced in the last
path operation.

ITEM Lab I t en2 = PATHPT, | T2NUM= n The value of Lab at the nth data point from the
last path operation.

POINT n It enR =X,Y,Z or CSYS. Returns information about the nth point on the current
path.

NVAL The number of path data points (the length of the data table) from the last
path operation.

SET n I t en2 = NAME. Returns the name of the nth data set on the current path.

NUMPATH Returns the number of paths defined.

6-48

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti t y = PATH, ENTNUM= n (path number)

Item1

ITINUM

Description

NAME

Returns the name of the nth path.

Ent ity = PATH, ENTNUM= 0 (or blank)

*GET,Par ,KCALC,0,...

K

1,2,3

‘Value of KI, KlI, or KllI stress intensity factor from last KCALC command.

*GET Postprocessing Items, Entity = PLNSOL

Ent ity = PLNSOL, ENTNUM= 0 (or blank)

*GET, Par, PLNSOL, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
MAX Maximum value of item in last contour display [PLNSOL].
MIN Minimum value of item in last contour display [PLNSOL].
BMAX Maximum bound value of item in last contour display [PLNSOL].
BMIN Minimum bound value of item in last contour display [PLNSOL].

*GET Postprocessing Items, Entity = PRERR

Ent i t y = PRERR, ENTNUM= 0 (or blank)

*GET, Par, PRERR, 0, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
SEPC Structural percent error in energy norm [PRERR].
TEPC Thermal percent error in energy norm [PRERR].
SERSM Structural error energy summation [PRERR].
TERSM Thermal error energy summation [PRERR].
SENSM Structural energy summation [PRERR].

TENSM Thermal energy summation [PRERR].

*GET Postprocessing Items, Entity = RAD

Entity=RAD, ENTNUM = 0 (or blank)

*GET, Par, RAD, 0, Item1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

VFAVG

mand.

Value of the average view factor computed from the previous VFQUERY com-

Entity =RAD, ENTNUM = n (enclosure number)

*GET, Par,RAD, n
Item1 ITINUM Description
NETHF Value of the net heat rate lost by an enclosure.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-49

*GET

*GET Postprocessing Items, Entity = SECR

Entity =SECR, ENTNUM= n (element number) If the element number (n) is blank, or ALL, find the max or

min of all the elements.

*GET, Par, SECR, n, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description

S X, XZ, XY Item 2 = MAX, or Item2 =MIN Return highest or lowest component total stress.

EPTO X, XZ, XY Iltem 2 = MAX, or Item2 =MIN Return the highest or lowest component total
strain

EPTH X, XZ, XY Item 2 =MAX, or Iltem2 =MIN Return the highest or lowest component thermal
strain

EPPL X, XZ, XY Item 2 = MAX, or ltem2 =MIN Return the highest or lowest component plastic
strain

PLWK X, XZ, XY Item 2 = MAX, or tem2 =MIN Return the highest or lowest nonlinear item plastic
work

EPCR X, XZ, XY Iltem 2 = MAX, or Item2 =MIN Return the highest or lowest component creep
strain

*GET Postprocessing Items, Entity = SECTION

Entity =SECTION,ENTNUM= conponent (listed below).

Generate data for section stress results, using PRSECT or PLSECT, before retrieving these items. Valid labels
for ENTNUMare MEMBRANE, BENDING, SUM (Membrane+Bending), PEAK, and TOTAL. (The following items
are not stored in the database and the values returned reflect the last quantities generated by PRSECT or
PLSECT.) Only MEMBRANE, BENDING, and SUM data are available after a PLSECT command.

*GET, Par, SECTION, conponent, Item1, ITINUM, Iltem2, IT”2NUM

Item1 ITINUM Description
INSIDE SX, SY, SZ, SXY, |Stress component at beginning of path.
SYZ,SXZ
CENTER SX, SY, SZ, SXY, |Stress component at midpoint of path.
SYZ, SXZ
OUTSIDE SX, SY, SZ, SXY, |Stress component at end of path.
SYZ,SXZ

*GET Postprocessing Items, Entity = SORT

Ent i t y = SORT, ENTNUM= 0 (or blank)
*GET, Par, SORT, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
MAX Maximum value of last sorted item (NSORT or ESORT command).
MIN Minimum value of last sorted item (NSORT or ESORT command).
IMAX Node/Element number where maximum value occurs.
IMIN Node/Element number where minimum value occurs.

6-50 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

*GET Postprocessing Items, Entity = SSUM

Entity =SSUM, ENTNUM= 0 (or blank)

*GET, Par, SSUM, 0, Item1, ITINUM, Item2, IT”2NUM

Item1

ITINUM

Description

ITEM

Lab

Value of item Lab from last SSUM command. Valid labels are the user-defined

labels on the ETABLE command.

*GET Postprocessing Items, Entity = TREF

Ent i t y = TREF, ENTNUM= 0 (or blank)

*GET, Par, TREF, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

ENER Stored energy.

ENUM Trefftz element number.

CEMIN First (or minimum) constraint equation number associated with the Trefftz
domain.

CEMAX Last (or maximum) constraint equation number associated with the Trefftz
domain.

NTZN Number of Trefftz DOFs.

NSFN Number of nodes on exterior surface.

NSFE Number of faces on exterior element.

*GET Postprocessing Items, Entity = VARI

Enti t y = VARI, ENTNUM= N (variable number after POST26 data storage) (for complex values, only the real

portion is returned)

*GET,Par, VARI, N, Item1, ITINUM, Item2, IT”2NUM

Item1 ITINUM Description
EXTREM VMAX Maximum extreme value
" TMAX Time corresponding to VMAX.
" VMIN Minimum extreme value (after POST26 data storage).
" TMIN Time corresponding to VMIN.
" VLAST Last value (after POST26 data storage).
" TLAST Time corresponding to VLAST.
" CVAR Covariance
RTIME t Real value of variable Nat time=t .
ITIME t Imaginary value of variable Nat time=t .
RSET Snum Real value of variable Nat location Snum
ISET Snum Imaginary value of variable Nat location Snum
Enti t y = VARI, ENTNUM= 0O (or blank) (after POST26 data storage)
*GET,Par ,VARIO0, Item1, ITINUM, Item2, IT2NUM
Item1 ITINUM Description
NSETS Number of data sets stored (after POST26 data storage).

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-51

*GET

Optimization and Probabilistic Design

*GET Optimization and Probabilistic Design Entity Items

* *GET Optimization and Probabilistic Design Items, Entity = OPT

+ *GET Optimization and Probabilistic Design Items, Entity = TOPO

+ *GET Optimization and Probabilistic Design ltems, Entity = PDS (pre)

* *GET Optimization and Probabilistic Design Items, Entity = PDS (post)

*GET Optimization and Probabilistic Design Items, Entity = OPT

Ent ity = OPT, ENTNUM= O (or blank)

*GET, Par, OPT, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

TOTAL Total number of analysis loops that have been executed.

ITER Total number of iterations for the optimization method or tool (i.e., per OPEXE
command).

FEAS Feasibility of design set N: O=infeasible, 1=feasible.

TERM Termination condition. For first order [OPTYPE,FIRST] or subproblem approx-
imation [OPTYPE,SUBP] optimization: -1=not converged or not finished (still
looping), 0=converged, 1=not converged due to too many sequential infeasible
designs; 2=not converged due to too many iterations. For all other optimization
methods: -1=not finished (still looping), 3=optimization complete.

BEST Best design set. If design is feasible, best design is the one with the lowest value

of the objective function. If infeasible, the best design is the one that is closest
to being feasible.

*GET Optimization and Probabilistic Design Items, Entity = TOPO

Entity=TOPO, ENTNUM = 0 (or blank)

*GET, Par, TOPO, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

ACT Status of topological optimization: 0=off, 1=on

TOELEM Total number of elements used for topological optimization.

LOADS Number of load cases specified in the TOCOMP command.

ITER Current number of iterations performed. The iteration counter retrieved is al-
ways one greater than the actual iterations performed because the densities
are also one iteration ahead (more current than those you are seeing).

MXIT Maximum number of topological optimization iterations allowed.

CONV Termination/convergence indicator: 0=not converged, 1=converged.

DIM Dimensionality of the topological optimization problem: 0=2D, 1=3D, 2=Shell.

KAXI Axisymmetric option within 2-D topological optimization: 0=off, 1=on.

POWP Power of power law within axisymmetric option.

NEV Total number of eigenvalues considered in topological optimization.

TOAC Termination/convergence accuracy.

6-52

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Entity =TOPO, ENTNUM = 0 (or blank)

*GET, Par, TOPO, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
LOWD Lower bound for element densities.
NTOC Total number of constraints defined for topological optimization problem.
SFLAG Solution approach active: 0=0C, 1=SCP.
COMP Compliance value for current iteration.
PORV Porous volume value for current iteration.

Entity=TOPO, ENTNUM=n

*GET, Par, TOPO, n, Item1, ITTNUM, Item2, IT2NUM

Item1 ITINUM Description

DENS Element density used for topological optimization: low value (near 0)=material
to be removed, high value (near 1)=material to keep.n = element number

FRQI Individual frequencies for current topological optimization iteration. n =fre-
quency ID

TCBO FLAG Constraint bounds for topological optimization: FLAG=1 - Lower bound. FLAG=2
- Upper bound. n = constraint ID

TCBF Indicate whether bound should be treated as percentage of initial design or
as an absolute value: O=percentage, 1=absolute.n = constraint ID

TOHO Value of topological objective for specified iteration.n = iteration counter

TOHC CiD Value of topological constraint CID for specified iteration.n = iteration counter

*GET Optimization and Probabilistic Design Items, Entity = PDS (pre)

Entity=PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, ITTNUM, Item2, IT2NUM.

Item1

ITINUM

Description

ANLN

I t en? = START; | T2NUM= N; Name of the analysis file containing the determ-
inistic model. A character parameter of up to 8 characters, starting at position
N, is returned. Use *DIM and *DO to get all 32 characters.

ANLX

Extension of the analysis file containing the deterministic model. A character
parameter of up to 8 characters is returned.

ANLD

I t en2 =START; | T2NUM= N; Name of the directory of the analysis file containing
the deterministic model. A character parameter of up to 8 characters, starting
at position N, is returned. Use *DIM and *DO to get all 64 characters.

Current setting for Autostop option (0 = disabled, 1 = enabled).

Current Autostop mean value accuracy.

Current Autostop standard deviation accuracy.

Hlw(N

Current Autostop convergence checking frequency.

-

I t en? =0 or blank; | T2NUM= j; Correlation coefficient specified by the user
between the i-th and the j-th random input variable. If no correlation has been
specified between these two random variables a value of 0.0 is returned.

METH

Name of the current analysis method as specified in the PDMETH command
(MCS or RSM). A character parameter of up to 8 characters is returned.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-53

*GET

Entity=PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, ITINUM, Item2, IT2NUM.

Item1 ITINUM Description

NSIM Number of simulation loops requested, as specified in the PDMETH and
PDDMCS, PDLHS, PDDOEL, or PDUSER commands.

NTRP Current total number of defined random output parameters.

NTRV Current total number of defined random input variables

PAR1 First distribution parameter of the i-th defined random input variable.

PAR2 Second distribution parameter of the i-th defined random input variable.

PAR3 Third distribution parameter of the i-th defined random input variable.

PAR4 Fourth distribution parameter of the i-th defined random input variable.

RNAM I t en2 =START; | T2NUM=N; Name of the i-th defined random output paramet-
er. A character parameter of up to 8 characters, starting at position N, is returned.
Use *DIM and *DO to get all characters.

SAMP Name of the current sampling technique as specified in the PDMETH command
(LHS, DIR, USER for MCS, or CCD, BBM, USER for RSM). A character parameter
of up to 8 characters is returned.

VDIS Label of the distribution type of the i-th defined random input variable (BETA,
EXPO, ..., WEIB). A character parameter of up to 8 characters is returned.

VNAM I t en2 = START; | T2NUM= N; Name of the i-th defined random input variable.
A character parameter of up to 8 characters, starting at position N, is returned.
Use *DIM and *DO to get all characters.

CCDL Item2 = DEFA; IT2NUM = j; Default value for the probabilities of the j-th design-
of-experiment level for a central composite design as used in the by the
PDDOELcommand.

CCDL Item2 = VTYP; IT2NUM=0 (or blank); Type of the level values of the design-of-
experiment for a central composite design of the i-th defined random input
variable as specified by the PDDOELcommand (PROB, PHYS). A character
parameter of up to 8 characters is returned.

CCDL Item2 = LOPT; IT2NUM=0 (or blank); Type of the level definition of the design-
of-experiment for a central composite design of the i-th defined random input
variable as specified by the PDDOELcommand (BND, ALL). A character para-
meter of up to 8 characters is returned.

CCDL Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a central composite design of the i-th defined random input variable has
been defined with the PDDOELcommand. (0=NO, 1=YES).

CCDL Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for
a central composite design of the i-th defined random input variable as specified
by the PDDOELcommand. If the PDDOELcommand has not been used for the
i-th defined random input variable or if the user has not specified the j-th design-
of-experiment level, then the default probability level will be returned.

BBML Item2 = DEFA; IT2NUM = j; Default value for the probabilities of the j-th design-
of-experiment level for a Box-Behnken Matrix design as used in the by the
PDDOELcommand.

BBML Item2 = VTYP; IT2NUM=0 (or blank); Type of the level values of the design-of-

experiment level for a Box-Behnken Matrix design of the i-th defined random
input variable as specified by the PDDOELcommand. (PROB, PHYS). A character
parameter of up to 8 characters is returned.

6-54

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Entity=PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, ITINUM, Item2, IT2NUM.

Item1

ITINUM

Description

BBML

Item2 = LOPT; IT2NUM=0 (or blank); Type of the level definition of the design-
of-experiment level for a Box-Behnken Matrix design of the i-th defined random
input variable as specified by the PDDOELcommand (BND, ALL). A character

parameter of up to 8 characters is returned.

BBML

Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a Box-Behnken Matrix design of the i-th defined random input variable has
been defined with the PDDOELcommand. (0=NO, 1=YES).

BBML

Item2 = LVAL; IT2NUM-=j; Level value for the j-th design-of-experiment level for
a Box-Behnken Matrix design of the i-th defined random input variable as
specified by the PDDOELcommand. If the PDDOELcommand has not been
used for the i-th defined random input variable or if the user has not specified
the j-th design-of-experiment level, then the default probability level will be
returned.

*GET Optimization and Probabilistic Design Items, Entity = PDS (post)

Entity =PDS, ENTNUM = 0 (or blank)

*GET, Par, PDS, 0, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description
NRSS Number of response surface sets that are currently available.
NSOL Number of probabilistic solution sets that are currently available. This coincides
with the number of probabilistic analyses that are currently done.

Enti ty = PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets areindexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e.,, where 1 = n = NSOL) and some apply only to response surface sets (i.e., where NSOL+1
< n < NSOL+NRSS).

*GET,Par , PDS, n, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

METH Name of the analysis method used in the n-th solution set (MCS, RSM). A char-
acter parameter of up to 8 characters is returned. This applies only to solution
sets (i.e., "n" ranges from 1 to NSOL).

NSIM Number of simulation samples that are available for postprocessing in the n-th

result set. If the n-th result set is a solution set (i.e.,, 1 < n S NSOL) then this is
equal to the number of successful (no error occurred) finite element analysis
loops regardless of the probabilistic method used for the solution set. If n points
to aresponse surface set, then this is equal to the number of simulation samples
that were performed on the response surfaces included in this response surface
set.

SAMP Name of the sampling technique used in the n-th solution set (LHS, DIR, USER
for MCS or CCD, BBM, USER for RSM). A character parameter of up to 8 characters
is returned. This applies only to solution sets (i.e., n ranges from 1 to NSOL).

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-55

*GET

Enti ty =PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 = n < NSOL) and some apply only to response surface sets (i.e., where NSOL+1

<'n < NSOL+NRSS).

*GET,Par , PDS, n, Item1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

RLAB

I t em2 = START; | T2NUM= N; Name of the n-th defined result set. A character
parameter of up to 8 characters, starting at position N, is returned. Use *DIM
and *DO to get all characters.

MEAN

Item2=RV; IT2NUM=j; The mean value of the j-th defined random input variable
in the n-th result set.

MEAN

Item2 = RP; IT2NUM=j; The mean value of the j-th defined random output
parameter in the n-th result set.

STDV

Item2=RV; IT2NUM=j; The standard deviation of the j-th defined random input
variable in the n-th result set.

STDV

Item2=RP; IT2NUM=j; The standard deviation of the j-th defined random output
parameter in the n-th result set.

KURT

Item2 = RV; IT”2NUM=j; The coefficient of kurtosis of the j-th defined random
input variable in the n-th result set.

KURT

Item2 = RP; ITZ2NUM=j; The coefficient of kurtosis of the j-th defined random
output parameter in the n-th result set.

SKEW

Item2 = RV; IT2NUM=j; The coefficient of skewness of the j-th defined random
input variable in the n-th result set.

SKEW

Item2 = RP; IT2NUM=j; The coefficient of skewness of the j-th defined random
output parameter in the n-th result set.

MIN

Item2 = RV; IT2NUM=j; The minimum sampled value of the j-th defined random
input variable in the n-th result set.

MIN

Item2 =RP; IT2NUM=j; The minimum sampled value of the j-th defined random
output parameter in the n-th result set.

MAX

Item2 =RV; IT2NUM=j; The minimum sampled value of the j-th defined random
input variable in the n-th result set.

MAX

Item2 = RP; IT2NUM=j; The minimum sampled value of the j-th defined random
output parameter in the n-th result set.

CCDL i

Item2 =VTYP; Type of the level values of the design-of-experiment for a central
composite design of the i-th defined random input variable that has been used
during the execution of the n-th solution set (PROB, PHYS). A character para-
meter of up to 8 characters is returned. This applies only to solution sets (i.e.,
nranges from 1 to NSOL).

CCDL i

Item2 = LOPT; Type of the level definition of the design-of-experiment for a
central composite design of the i-th defined random input variable that has
been used during the execution of the n-th solution set (BND, ALL). A character
parameter of up to 8 characters is returned. This applies only to solution sets
(i.e., nranges from 1 to NSOL).

6-56

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti ty =PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 = n < NSOL) and some apply only to response surface sets (i.e., where NSOL+1

<'n < NSOL+NRSS).

*GET,Par , PDS, n, Item1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

CCDL i

Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a central composite design of the i-th defined random input variable has
been specified for the n-th solution set. (0=NO, 1=YES). This applies only to
solution sets (i.e., nranges from 1 to NSOL).

CCDL i

Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for
a central composite design of the i-th defined random input variable that has
been used during the execution of the n-th solution set. This applies only to
solution sets (i.e., nranges from 1 to NSOL).

BBML i

Item2 = VTYP; Type of the level values of the design-of-experiment level for a
Box-Behnken Matrix design of the i-th defined random input variable that has
been used during the execution of the n-th solution set. (PROB, PHYS). A char-
acter parameter of up to 8 characters is returned. This applies only to solution
sets (i.e., n ranges from 1 to NSOL).

BBML i

Item2 = LOPT,; Type of the level definition of the design-of-experiment level for
a Box-Behnken Matrix design of the i-th defined random input variable that
has been used during the execution of the n-th solution set (BND, ALL). A
character parameter of up to 8 characters is returned. This applies only to
solution sets (i.e., nranges from 1 to NSOL).

BBML i

Item2 = LDEF; IT2NUM=j; Flag indicating if the j-th design-of-experiment level
for a Box-Behnken Matrix design of the i-th defined random input variable
specified for the n-th solution set. (0=NO, 1=YES).

BBML i

Item2 = LVAL; IT2NUM=j; Level value for the j-th design-of-experiment level for
a Box-Behnken Matrix design of the i-th defined random input variable that
has been used during the execution of the n-th solution set. This applies only
to solution sets (i.e.,, nranges from 1 to NSOL).

RSST

Item2 = XSOL; Index of the solution set the response surface set identified by
the n-th result set is associated with. This applies only to response surface sets
(i.e., nranges from NSOL+1 to NSOL+NRSS).

RSST

Item2 = NFRP; Number of fitted random output parameters in the response
surface set identified by the n-th result set is associated with. This applies only
to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

RSUR i

Item2 = XFRP; Index of the random output parameter that has been fitted with
the RSFITcommand to fit the i-th response surface in the response surface set
identified by the n-th result set. ITINUM=i ranges from 1 to NFRP (see
Item1=RSST, Item2=NFRP). This applies only to response surface sets (i.e., n
ranges from NSOL+1 to NSOL+NRSS).

RSUR i

Item2 = RMOD; Label for the response surface model that has been used in the
RSFITcommand to fit the i-th response surface in the response surface set
identified by the n-th result set. ITINUM=i ranges from 1 to NFRP (see
Item1=RSST, ltem2=NFRP). A character parameter of up to 8 characters is re-
turned. This applies only to response surface sets (i.e., n ranges from NSOL+1
to NSOL+NRSS).

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-57

*GET

Enti ty =PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 = n < NSOL) and some apply only to response surface sets (i.e., where NSOL+1

<'n < NSOL+NRSS).

*GET,Par , PDS, n, Item1, ITINUM, Item2, IT2NUM

Item1

ITINUM

Description

RSUR i

Item2 = YTRT; Label of the type of transformation that has been used in the
RSFITcommand to fit the random output parameter of i-th response surface
in the response surface set identified by the n-th result set. ITINUM=/ ranges
from 1 to NFRP (see Item1=RSST, Item2=NFRP). A character parameter of up
to 8 characters is returned. This applies only to response surface sets (i.e., n
ranges from NSOL+1 to NSOL+NRSS).

RSUR i

Item2 = YTRV; Transformation value of the transformation that has been used
in the RSFITcommand to fit the random output parameter of i-th response
surface in the response surface set identified by the n-th result set. ITINUM=j
ranges from 1 to NFRP (see [tem1=RSST, Item2=NFRP). This applies only to re-
sponse surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

RSUR i

Item2 =FILT; Label of the filtering type of the regression terms that has been
used in the RSFITcommand to fit the random output parameter of i-th response
surface in the response surface set identified by the n-th result set. ITINUM=j
ranges from 1 to NFRP (see ltem1=RSST, tem2=NFRP). A character parameter
of up to 8 characters is returned. This applies only to response surface sets (i.e.,
nranges from NSOL+1 to NSOL+NRSS).

RSUR i

Item2 = CONF; Confidence level value of the regression term filtering that has
been used in the RSFITcommand to fit the random output parameter of i-th
response surface in the response surface set identified by the n-th result set.
ITINUM=iranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies
only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

RSEQ i

Item2 = YBOX; Box-Cox transformation value “lambda” of the response surface
equation for the i-th fitted random output parameter in the n-th result set.
ITINUM=iranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies
only to response surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

RSEQ i

Item2 = NTRM; Number of regression terms of the response surface equation
for the i-th fitted random output parameter in the n-th result set. ITINUM=ij
ranges from 1 to NFRP (see Item1=RSST, Item2=NFRP). This applies only to re-
sponse surface sets (i.e., n ranges from NSOL+1 to NSOL+NRSS).

6-58

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*GET

Enti ty =PDS, ENTNUM = n (n-th result set).

The numbering or ordering of the result sets is used as follows: If NSOL is the number of solution sets and
NRSS is the number response surface sets then the solution sets are indexed from 1 to NSOL and the response
surface sets are indexed from NSOL+1 to NSOL+NRSS. Note that some options listed below apply only to

solution sets (i.e., where 1 = n < NSOL) and some apply only to response surface sets (i.e., where NSOL+1
< n < NSOL+NRSS).

*GET,Par , PDS, n, Item1, ITINUM, Item2, IT2NUM

Item1 ITINUM Description

RSEQ

-

Item2=TTYP; IT2NUM=j; Type of the j-th regression term of the response surface
equation for the i-th fitted random output parameter in the n-th result set.
ITINUM=iranges from 1 to NFRP (see Item1=RSST, ltem2=NFRP). IT”2NUM=j
ranges from 1 to NTRM (see Item1=RSEQ, Item2=NTRM). This applies only to
response surface sets (i.e.,, nranges from NSOL+1 to NSOL+NRSS). Possible return
values are:

1 =term is a constant (this term does not involve any random input variables)
2 =termis a linear term (this term involves only one random input variable)

3 =term is a purely quadratic term involving only one random input variable
(this term involves only one random input variable)

4 =term is a mixed quadratic term involving two random input variables (this
term involves two random input variables)

RSEQ i Item2 = XRV1; IT2NUM=j; Index of the first random input variable involved in
the j-th regression term of the response surface equation for the i-th fitted
random output parameter in the n-th result set. ITINUM=j ranges from 1 to
NFRP (see ltem1=RSST, [tem2=NFRP). This applies only to response surface sets
(i.e., nranges from NSOL+1 to NSOL+NRSS). An error appears if the term does
not involve a random input variable, i.e. if the term is a constant.

RSEQ i Item2 = XRV2; ITZ2NUM-=j; Index of the second random input variable involved
in the j-th regression term of the response surface equation for the i-th fitted
random output parameter in the n-th result set. ITINUM=iranges from 1 to
NFRP (see ltem1=RSST, tem2=NFRP). This applies only to response surface sets
(i.e., nranges from NSOL+1 to NSOL+NRSS). An error appears if the term does
not involve a second random input variable, i.e. if the term is not a mixed
quadratic term.

RSEQ i Item2 = COEF; IT2NUM-=j; Regression coefficient of the j-th regression term of
the response surface equation for the i-th fitted random output parameter in
the n-th result set. ITINUM=i ranges from 1 to NFRP (see ltem1=RSST,
Item2=NFRP). This applies only to response surface sets (i.e., n ranges from
NSOL+1 to NSOL+NRSS).

RSEQ i Item2 = SLOP; IT2NUM=j; Scaling slope of the j-th random input variable of the
response surface equation for the i-th fitted random output parameter in the
n-th result set. ITINUM=jranges from 1 to NFRP (see tem1=RSST, [tem2=NFRP).
This applies only to response surface sets (i.e., n ranges from NSOL+1 to
NSOL+NRSS).

RSEQ i Item2 = ICPT; IT2NUM=j; Scaling intercept of the j-th random input variable of
the response surface equation for the i-th fitted random output parameter in
the n-th result set. ITINUM=i ranges from 1 to NFRP (see ltem1=RSST,
Item2=NFRP). This applies only to response surface sets (i.e., n ranges from
NSOL+1 to NSOL+NRSS).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-59

*GO

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Prob Design>Prob Method>Response Surface

Main Menu>Solution>Define Loads>Delete>Structural>Section

Utility Menu>Parameters>Get Scalar Data

*@QO, Base

Causes a specified line on the input file to be read next.
APDL: Process Controls
MP ME ST DY <> PREM <> FL PP ED

Base
"Go to" action:

I abel --
A user-defined label (beginning with a colon (:), 8 characters maximum). The command reader will skip
(and wrap to the beginning of thefile, if necessary) to the first line that begins with the matching :I abel .

Caution: This label option may not be mixed with do-loop or if-then-else constructs.

STOP --
This action will cause an exit from the ANSYS program at this line.

Command Default

Read lines sequentially.

Notes

Causes the next read to be from a specified line on the input file. Lines may be skipped or reread. The *GO
command will not be executed unless it is part of a macro, user file (processed by *USE), an alternate input file
(processed by /INPUT), or unless it is used in a batch-mode input stream. Jumping into, out of, or within a do-
loop or an if-then-else construct to a:l abel line is not allowed.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

6-60 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*IF

*IF, VAL1, Oper1, VAL2, Base1, VAL3, Oper2, VAL4, Base2
Conditionally causes commands to be read.

APDL: Process Controls
MP ME ST DY <> PREM <> FLPPED

VAL1
First numerical value (or parameter which evaluates to a numerical value) in the conditional comparison
operation. VAL1, VAL2, VAL3 and VAL4 can also be character strings (enclosed in quotes) or parameters for
Oper = EQ and NE only.

Oper 1l

Operation label. A tolerance of 1.0E-10 is used for comparisons between real numbers:

EQ--
Equal (for VAL1 = VAL2).

NE --
Not equal (for VAL1 = VAL2).

LT-
Less than (for VAL1 < VAL?2).

GT --
Greater than (for VAL1 > VAL2).

LE --
Less than or equal (for VAL1 < VAL2).

GE --
Greater than or equal (for VAL1 2 VAL2).

ABLT --
Absolute values of VAL1 and VAL2 before < operation.

ABGT --
Absolute values of VAL1 and VAL2 before > operation.

VAL?2
Second numerical value (or parameter which evaluates to a numerical value) in the conditional comparison
operation.

Basel
Action based on the logical expression (Oper 1) being true. If false, continue reading at the next line. This is
conditional, excepting the IF-THEN-ELSE constructs described below; any of the following constructs (through
Basel = THEN) cause all subsequent fields to be ignored:

I abel - -
A user-defined label (beginning with a colon (:), 8 characters maximum). The command reader will skip
(and wrap to the beginning of thefile, if necessary) to the first line that begins with the matching :l abel .

Caution: This label option may not be mixed with do-loop or if-then-else constructs.

STOP --
This action will cause an exit from the ANSYS program at this line, unless running in interactive mode.
In interactive mode, the program will not stop.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-61

*IF

EXIT --
Exit the current do-loop [*EXIT].

CYCLE --
Skip to the end of the current do-loop [*CYCLE].

THEN --

Make this *IF an if-then-else construct (see below).
The following optional values determine the connection between the two logical clauses Oper 1 and Qper 2
AND --

True if both clauses (Oper 1 and Qper 2) are true.

OR --
True if either clause is true.

XOR --
True if either (but not both) clause is true.

VAL3
Third numerical value (or parameter which evaluates to a numerical value).

Oper2
Operation label. This will have the same labels as Qper 1, except it uses Val 3 and Val 4.

VAL4
Fourth Numerical value (or parameter value which evaluates to a numerical value).

Base?2
Action based on the logical expression (Oper 1 and Oper 2) being true. They will be the same valuesas Basel,
except as noted.

Command Default

Read commands sequentially.

Notes

Conditionally causes commands to be read from a specific block or at a specific location. Twenty levels of nested
*IF blocks are allowed. Jumping to a:l abel lineis not allowed with keyboard entry. Jumping into, out of, or
within a do-loop or an if-then-else construct to a:l abel line is not allowed.

The following is an example of an if-then-else construct:
*IF,VAL1,Oper ,VAL2,THEN

*ELSEIF,VAL1,Oper VAL2

*ELSEIF,VAL1,0per VAL2

6-62 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

/INQUIRE

*ELSE

*ENDIF

where "----" represents a block of any number of commands. Any number of *ELSEIF clauses (or none) may be
included (in the location shown). One *ELSE clause (at most) may be included (in the location shown). The *IF
command is executed by evaluating its logical expression. If it is true, the block of commands following it is ex-
ecuted. The construct is considered to be complete and the command following the *ENDIF is executed next.
If the logical expression is false, the next *ELSEIF command (if any) following the block is executed. The execution
logic is the same as for *IF. The effect is that the logical expressions in the *IF and the *ELSEIF commands are
sequentially tested until one is found to be true. Then the block of commands immediately following the expression
is executed, which completes the execution of the if-then-else construct. If all *IF and *ELSEIF expressions are
false, the block following the *ELSE command is executed, if there is one. Only one block of commands (at most)
is executed within the if-then-else construct. If a batch input stream hits an end-of-file during a false *IF condition,
the ANSYS run will not terminate normally. You will need to terminate it externally (use either the UNIX “kill”
function or the Windows task manager). The *IF, *ELSEIF , *ELSE, and *ENDIF commands for each if-then-else
construct must all be read from the same file (or keyboard).

This command is valid in any processor.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Solution>Define Loads>Delete>Structural>Section

/INQUIRE, strArray, FUNC

Returns system information to a parameter.
APDL: Parameters
MP ME ST DY <> PREM <> FL PP ED

StrArray
Name of the "string array" parameter that will hold the returned values. String array parameters are similar
to character arrays, but each array element can be as long as 128 characters. If the string parameter does not
exist, it will be created.

FUNC
Specifies the type of system information returned:

LOGIN --
Returns the pathname of the login directory on UNIX systems or the pathname of the default directory
(including drive letter) on Windows systems.

DOCU --
Returns the pathname of the ANSYS docu directory.

APDL --
Returns the pathname of the ANSYS APDL directory.

PROG --
Returns the pathname of the ANSYS executable directory.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-63

/INQUIRE

AUTH --
Returns the pathname of the directory in which the license file resides.

USER --
Returns the name of the user currently logged-in.

DIRECTORY --
Returns the pathname of the current directory.

JOBNAME --
Returns the current Jobnane. The value of Jobnane can be up to 250 characters in length.

Returning the Value of an Environment Variable to a Parameter

If FUNC=ENV, the command format is /INQUIRE,St r Ar r ay,ENV,ENVNANE,Subst r i ng.Inthisinstance, ENV specifies
that the command should return the value of an environment variable. The following defines the remaining
fields:

ENVNAME
Specifies the name of the environment variable.

Substring
If Subst ri ng =1, thefirst substring (up to the first colon (;)) is returned. If Subst r i ng =2, the second substring
is returned, etc. For Windows platforms, the separating character is semicolon (;). If this argument is either
blank or 0, the entire value of the environment variable is returned.

Returning the Value of a Title to a Parameter

If FUNC = TITLE, the command format is /INQUIRE,St r Ar r ay, TITLE,Ti t | e_num In this context, the value of
Ti t | e_numcan be blank or 1 through 5. If the value is 1 or blank, the title is returned. If the value is 2 through
5, a corresponding subtitle is returned (2 denoting the first subtitle, and so on).

Returning Information About a File to a Parameter

The /INQUIRE command can also return information about specified files within the file system. For these cap-
abilities, the format is /INQUIRE,Par anet er ,FUNC Fnane, Ext , - - . The following defines the fields:

Par amet er
Name of the parameter that will hold the returned values.

FUNC
Specifies the type of file information returned:

EXIST --
Returns a 1 if the specified file exists, and 0 if it does not.

DATE --
Returns the date stamp of the specified file in the format yyyymmdd. hhnmss.

SIZE --
Returns the size of the specified file in MB.

WRITE --
Returns the status of the write attribute. A 0 denotes no write permission while a 1 denotes write permis-
sion.

6—64 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

/MAIL

READ --
Returns the status of the read attribute. A 0 denotes no read permission while a 1 denotes read permission.

EXEC --
Returns the status of the execute attribute (this has meaning only in UNIX). A 0 denotes no execute per-
mission while a 1 denotes execute permission.

LINES --
Returns the number of lines in an ASClI file.

Fnane
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext
Filename extension (8 character maximum).

Unused field

Notes

The /INQUIRE command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

IMAIL, -, Address, Fname, Ext
Mails file to the specifed address.

APDL: Macro Files
MP ME ST DY <> PREM EH FL PP ED

Unused field.

Addr ess
Email address (up to 64 characters) of the intended recipient of the file.

Fname
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext
Filename extension (8 character maximum).

Notes
Issue the /MAIL command to alert someone when a long-running job has completed, as shown in this example:

SOLVE
/ MAI'L, , your nane@ our donmai n. com j obdone, t xt

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-65

*MFOURI

Menu Paths

This command cannot be accessed from a menu.

*MFOURI, Oper, COEFF, MODE, ISYM, THETA, CURVE
Calculates the coefficients for, or evaluates, a Fourier series.

APDL: Array Parameters
MP ME ST DY <> PR EM <> FL PP ED

Qper

Type of Fourier operation:

FIT--
Calculate Fourier coefficients COEFF from MODE, | SYM THETA, and CURVE.

EVAL --
Evaluate the Fourier curve CURVE from COEFF, MODE, | SYMandTHETA

COEFF
Name of the array parameter vector containing the Fourier coefficients (calculated if Oper = FIT, required as
input if Oper = EVAL). See *SET for name restrictions.

MODE
Name of the array parameter vector containing the mode numbers of the desired Fourier terms.

| SYM
Name of the array parameter vector containing the symmetry key for the corresponding Fourier terms. The
vector should contain keys for each term as follows:

Oor1--
Symmetric (cosine) term

-1 --
Antisymmetric (sine) term.

THETA, CURVE
Names of the array parameter vectors containing the theta vs. curve description, respectively. Theta values
should be input in degrees. If Oper =FIT, one curve value should be supplied with each theta value. If Oper
= EVAL, one curve value will be calculated for each theta value.

Notes

Calculates the coefficients of a Fourier series for a given curve, or evaluates the Fourier curve from the given (or
previously calculated) coefficients. The lengths of the COEFF, MODE, and | SYM vectors must be the same--typically
two times the number of modes desired, since two terms (sine and cosine) are generally required for each mode.
The lengths of the CURVE and THETA vectors should be the same or the smaller of the two will be used. There
should be a sufficient number of points to adequately define the curve--at least two times the number of coeffi-
cients. A starting array element number (1) must be defined for each array parameter vector. The vector specific-
ations *VLEN, *VCOL, *VABS, *VFACT, and *VCUM do not apply to this command. Array elements should not
be skipped with the ¥*VMASK and the NI NCvalue of the *VLEN specifications. The vector being calculated (COEFF
if Oper is FIT, or CURVE if Oper is EVAL) must exist as a dimensioned array [*DIM].

6-66 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*MFUN

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Fourier

*MFUN, ParR, Func, Par1
Copies or transposes an array parameter matrix.

APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

Par R
The name of the resulting array parameter matrix. See *SET for name restrictions. The parameter must exist
as a dimensioned array [*DIM].

Func
Copy or transpose function:

COPY --
Par 1 is copied to Par R

TRAN --
Par 1 is transposed to Par R Rows (m) and columns (n) of Par 1 matrix are transposed to resulting Par R
matrix of shape (n,m).

Par 1
Array parameter matrix input to the operation.

Notes

Operates on one input array parameter matrix and produces one output array parameter matrix according to:
Par R=f(Par 1)
where the function (f) is either a copy or transpose, as described above.

Functions are based on the standard FORTRAN definitions where possible. Par Rmay be the same as Par 1.
Starting array element numbers must be defined for each array parameter matrix. For example,
*MFUN,A(1,5),COPY,B(2,3) copies matrix B (starting at element (2,3)) to matrix A (starting at element (1,5)). The
diagonal corner elements for each submatrix must be defined: the upper left corner by the array starting element
(on this command), the lower right corner by the current values from the *VCOL and *VLEN commands. The
default values are the (1,1) element and the last element in the matrix. No operations progress across matrix
planes (in the 3rd dimension). Absolute values and scale factors may be applied to all parameters [*VABS,
*VFACT]. Results may be cumulative [*VCUM]. Array elements should not be skipped with the *VMASK and the
NI NCvalue of the *VLEN specifications. The number of rows [*VLEN] applies to the Par 1 array. See the *VOPER
command for details.

This command is valid in any processor.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-67

*MOPER

Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Functions

*MOPER, ParR, Par1, Oper, Par2, Par3, kDim, -, kOut
Performs matrix operations on array parameter matrices.

APDL: Array Parameters
MP ME ST DY <> PR EM <> FL PP ED

Par R
The name of the resulting array parameter matrix. See *SET for name restrictions. The parameter must exist
as a dimensioned array [*DIM].

Par 1
First array parameter matrix input to the operation. For Qper = MAP, this is an N x 3 array of coordinate locations
at which to interpolate. Par Rwill then be an N(out) x M array containing the interpolated values.

Oper

Matrix operations:

INVERT --
(*MOPER,Par RPar 1,INVERT)

Square matrix invert: Inverts the n x n matrix in Par1 into ParR. The matrix must be well conditioned.

Warning: Non-independent or ill-conditioned equations can cause erroneous results.

MULT --
(*MOPER,Par RPar 1,MULT,Par 2)

Matrix multiply: Multiplies Par 1 by Par 2. The number of rows of Par 2 must equal the number of columns
of Par 1 for the operation.

COVAR --
(*MOPER,Par RPar 1,COVAR,Par 2)

Covariance: The measure of association between two columns of the input matrix (Par 1). Par 1, of size
m runs (rows) by n data (columns) is first processed to produce a row vector containing the mean of each
column which is transposed to a column vector (Par 2) of n array elements. The Par 1 and Par 2 operation
then produces a resulting n x n matrix (Par R) of covariances (with the variances as the diagonal terms).

CORR --
(*MOPER,Par RPar 1,CORR,Par 2)

Correlation: The correlation coefficient between two variables. The input matrix (Par 1), of size m runs
(rows) by n data (columns), is first processed to produce a row vector containing the mean of each column
which is then transposed to a column vector (Par 2) of n array elements. The Par 1 and Par 2 operation
then produces a resulting n x n matrix (Par R) of correlation coefficients (with a value of 1.0 for the diag-
onal terms).

SOLV --
(*MOPER,Par RPar 1,SOLV,Par 2)

6-68 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*MOPER

Solution of simultaneous equations: Solves the set of n equations of n terms of the form a,;x; + a,,X, +

"+ ap,X, = b, Where Par 1 contains the matrix of a-coefficients, Par 2 the vector(s) of b-values, and Par R

the vector(s) of x-results. Par 1 must be a square matrix. The equations must be linear, independent, and
well conditioned.

Warning: Non-independent or ill-conditioned equations can cause erroneous results.

SORT --
(*MOPER,Par RPar 1,SORT,Par 2)

Matrix sort: Sorts matrix Par 1 according to sort vectorPar 2 and places the result in Par 1. Rows of Par 1
are moved to the corresponding positions indicated by the values of Par 2. Par 2 may be a column of
Par 1 (in which case it will also be reordered). Par Ris the vector of initial row positions. Sorting Par 1
according to Par Rshould reproduce the initial ordering.

NNEAR --
(*MOPER,Par R Par 1,NNEAR,Toler)

Nearest Node: Quickly determine all the nodes within a specified tolerance of a given array.

Par Ris a vector of the nearest selected nodes, or 0 if no nodes are nearer than Toler. Par 1 is thenx 3
array of coordinate locations.

ENEAR --
(*MOPER,Par RPar 1,ENEAR,Toler)

Nearest Element: Quickly determine the elements whose centroids are within a specified tolerance of
the points in a given array.

Par Ris a vector of the nearest selected elements, or 0 if no element centroids are nearer than Toler. Par 1
is the n x 3 array of coordinate locations.

MAP --
(*MOPER,Par RPar 1,MAP,Par 2,Par 3,kDi m,kQut)

Maps the results from another program onto your ANSYS finite element model. For example, you can
map pressures from a CFD analysis onto your model for a structural analysis.

When you map results, the subsequent Par 2 and Par 3 arguments define your input values and their
locations, and the arguments that follow determine the search area and interpolation schemes (see below).

For Oper = MAP, output points are incorrect if they are not within the boundaries (area or volume) set
via the specified input points. Also, calculations for out-of-bound points require much more processing
time than do points that are within bounds.

When mapping results from one analysis to another (OQper = MAP), Par 1 will be your final, N(out) x 3 array
of points. Par 2will be an N(in) x M array that corresponds to the points inPar 3. For each pointin the
destination mesh, all possible triangles in the source mesh are searched to find the best triangle containing
each point. It then does a linear interpolation inside this triangle. You should carefully specify your inter-
polation method and search criteria in order to provide faster and more accurate results. Results mapping
(Oper = MAP) is available from the command line only.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-69

*MSG

Par 2
Second array parameter matrix input to the operation. For the COVAR and CORR operations, this parameter
must exist as a dimensioned array vector without specified values since its values (means) will be calculated
as part of the operations. For MAP, this will be an {N(in) x M} array of values to be interpolated, where N(in)
is the number of points to interpolate from, and M is the number of values at each point. For the ENEAR and
NNEAR operations, this parameter specifies the tolerance for the search.

Par 3
Third array parameter, used for Oper = MAP. This is an N x 3 array of coordinate locations corresponding to
the values in Par 2.

kDi m
Interpolation criteria; used for Oper = MAP:

If kDi m= 2 or 0, two dimensional interpolation is applied (interpolate on a surface).
If kDi m= 3, three dimensional interpolation is applied (interpolate on a volume).

Unused field

kQut
Outside region results; used for Oper = MAP

If kQut =0, use the value(s) of the nearest region point for points outside of the region.
If kQut =1, set results extrapolated outside of the region to zero.

Notes

Each array starting element number must be defined for each array parameter matrix. For example, *MOP-
ER,A(2,3),B(1,4),MULT,C(1,5) multiplies submatrix B (starting at element (1,4)) by submatrix C (starting at element
(1,5)) and puts the result in matrix A (starting at element (2,3)).

The diagonal corner elements for each submatrix must be defined: the upper left corner by the array starting
element (on thiscommand), the lower right corner by the current values from the ¥*VCOL and *VLEN commands.
The default values are the (1,1) element and the last element in the matrix. No operations progress across matrix
planes (in the 3rd dimension). Absolute values and scale factors may be applied to all parameters [*VABS,
*VFACT]. Results may be cumulative [*VCUM]. Array elements should not be skipped with the *VMASK and the
NI NC value of the *VLEN specifications. See the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Matrix Operations

*MSG, Lab, VAL1, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VAL8
Writes an output message via the ANSYS message subroutine.

APDL: Macro Files
MP ME ST DY <> PREM <> FL PP ED

Lab
Label for output and termination control:

6-70 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*MSG

INFO --
Writes the message with no heading (default).

NOTE --
Writes the message with a "NOTE" heading.

WARN --
Writes the message with a "WARNING" heading. Also writes the message to the errors file, Jobname.ERR.

ERROR --

Writes the message with a "ERROR" heading and causes run termination (if batch) at earliest "clean exit"
point. Also writes the message to the errors file, Jobname.ERR.

FATAL --

Writes the message with a "FATAL ERROR" heading and causes run termination immediately. Also writes
the message to the errors file, Jobname.ERR.

Ul --

Writes the message with a "NOTE" heading and displays it in the message dialog box. This option is most
useful in GUI mode.

VAL1, VAL2, VAL3, VAL4, VALS5, VALG6, VAL7, VALS
Numeric or alphanumeric character values to be included in message. Values may be the results of parameter

evaluations. All numeric values are assumed to be double precision. The FORTRAN nearest integer (NINT)
function is used to form integers for the %l specifier.

Notes

Allows writing an output message via the ANSYS message subroutine. Also allows run termination control. This
command is used only when contained in a prepared file read into the ANSYS program (i.e., *USE,/INPUT, etc.).

A message format must immediately follow the *MSG command (on a separate line, without parentheses, as
described below).

The message format may be up to 80 characters long, consisting of text strings and predefined "data descriptors"
between the strings where numeric or alphanumeric character data are to be inserted. The normal descriptors
are %l forinteger data, %G for double precision data, %C for alphanumeric character data, and %/ for a line break.
The corresponding FORTRAN data descriptors are 19, 1PG16.9 and A8, respectively. Each descriptor must be

preceded by a blank. There must be one data descriptor for each specified value (8 maximum) in the order of
the specified values.

Enhanced descriptions may also be used:

%w.pE w is field width

%w.pG p is precision

%w.pF

%% a single percent sign

%wC; %wS character string

%-wC; %-wS left justify string

%wX w blank characters

%wl integer format

%0wl pad integer with leading zeros rather than blanks
%0w.pl w is field width; p is number of characters filled

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-71

*MWRITE

Do not begin *MSG format lines with *IF, *ELSE , *ELSEIF , or *ENDIF . If the last nonblank character of the
message format is an ampersand (&), a second line will also be read as a continuation of the format. Up to nine
continuations (ten total lines) may be read. If normal descriptions are used, then consecutive blanks are condensed
into one blank upon output, and a period is appended. Up to ten lines of output of 72 characters each may be
produced (using the %/ descriptor). Two examples follow.

Here is an example of the *MSG command and a format to print a message with two integer values and one real
value:

*MSG | NFO, 'lInner',25,1.2,148
Radius (%) = %, Thick = % Length = %

The output line is:
Radi us (lnner) = 25, Thick = 1.2, Length = 148.
Here is an example illustrating multiline displays in GUI message windows:

*MSG, Ul , Vcoi | ris, THTAv, | coi | rns, THTAI , Pappr nt, Pel ec, PF, i ndct nc

Coil RMS voltage, RMS current, apparent pw, actual pw, pw factor: % &
Vcoil = % V (electrical angle %5 DEG) % &

lcoil = % A (electrical angle %5 DEG) % &

APPARENT PONER = %G W % &

ACTUAL PONER = %5 W % &

Power factor: %G % &

I nduct ance = % % &

VALUES ARE FOR ENTIRE CO L (NOT JUST THE MODELED SECTOR)

Note — The /UIS,MSGPOP command controls which messages are displayed in the message dialog box
when the GUl s active. All messages produced by the *MSG command are subject to the /UIS specification,
with one exception, If Lab = Ul, the message will be displayed in the dialog box regardless of the /UIS
specification.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*MWRITE, ParR, Fname, Ext, -, Label, n1, n2, n3
Writes a matrix to a file in a formatted sequence.

APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

Par R
The name of the array parameter. See *SET for name restrictions.

Fname
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

If the file name fields are left blank, the default file is the current output file.

Ext
Filename extension (8 character maximum).

6-72 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

PARRES

Unused field

Label
Can use a value of IJK, IKJ, JIK, JKI, KlJ, KJI, or blank (JIK).

nl,n2,n3
Write as (((Par R(i,j,k), k=1,n1),i=1,n2),j=1,n3)forLabel =KlJ.n1, n2, andn3 defaultto the corresponding
dimensions of the array parameter ParR.

Notes

Writes a matrix or vector to a specified file in a formatted sequence. You can also use the *VWRITE command
to write data to a specified file. Both commands contain format descriptors on the line immediately following
the command. The format descriptors can be in either Fortran or C format.

Fortran format descriptors are enclosed in parentheses. They must immediately follow the *MWRITE command
on a separate line of the same input file. The word FORMAT should not be included. The format must specify the
number of fields to be written per line, the field width, the placement of the decimal point, etc. There should be
one field descriptor for each data item written. The write operation uses the available system FORTRAN FORMAT
conventions (see your system FORTRAN manual). Any standard FORTRAN real format (such as (4F6.0),
(E10.3,2X,D8.2), etc.) and character format (A) may be used. Integer (I) and list-directed (*) descriptors may not
be used. Text may be included in the format as a quoted string. The FORTRAN descriptor must be enclosed in par-
entheses and the format must not exceed 80 characters (including parentheses).

The “C” format descriptors are used if the first character of the format descriptor line is not a left parenthesis. “C”
format descriptors may be up to 80 characters long, consisting of text strings and predefined "data descriptors"
between the strings where numeric or alphanumeric character data are to be inserted. The normal descriptors
are %l for integer data, %G for double precision data, %C for alphanumeric character data, and %/ for a line break.
Each descriptor must be preceded by a blank. There must be one data descriptor for each specified value in the
order of the specified values. The enhanced formats described in *MSG may also be used.

The starting array element number must be defined. Looping continues in the directions indicated by the Label
argument. The number of loops and loop skipping may also be controlled with the *VLEN and *VMASK com-
mands. These commands work in the N1 direction. The vector specifications *VABS, *VFACT, and *VCUM do
not apply to this command. See the *VOPER command for details. If you are in the GUI the *MWRITE command
must be contained in an externally prepared file and read into ANSYS (i.e., *USE, /INPUT, etc.).

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Write to File

PARRES, Lab, Fname, Ext, --

Reads parameters from a file.
APDL: Parameters
MP ME ST DY <> PREM <> FL PP ED

Lab
Read operation:

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-73

PARSAV

NEW --
Replace current parameter set with these parameters (default).

CHANGE --
Extend current parameter set with these parameters, replacing any that already exist.

Fnanme
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext
Filename extension (8 character maximum).

The extension defaults to PARM if Fnane is blank.

Unused field

Notes

Reads parameters from a coded file. The parameter file may have been written with the PARSAV command. The
parameters read may replace or change the current parameter set.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Restore Parameters

PARSAV, Lab, Fname, Ext, --

Writes parameters to a file.
APDL: Parameters
MP ME ST DY <> PREM <> FLPPED

Lab
Write operation:

SCALAR --
Write only scalar parameters (default).

ALL --
Write scalar and array parameters. Parameters may be numeric or alphanumeric.

Fname
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

The file name defaults to Jobname.

Ext
Filename extension (8 character maximum).

6-74 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

/PSEARCH

The extension defaults to PARM if Fnane is blank.

Unused field

Notes

Writes the current parameters to a coded file. Previous parameters on this file, if any, will be overwritten. The
parameter file may be read with the PARRES command.

PARSAV/PARRES operations truncate some long decimal strings, and can cause differing values in your solution
data when other operations are performed. A good practice is to limit the number of decimal places you will use
before and after these operations.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Save Parameters

/PMACRO

Specifies that macro contents be written to the session log file.
APDL: Macro Files
MP ME ST DY <> PR EM <> FL PP ED

Notes
This command forces the contents of a macro or other input file to be written to Jobname.LOG. It is valid only

within a macro or input file, and should be placed at the top of the file. /PMACROshould be included in any
macro or input file that calls GUI functions.

Menu Paths

This command cannot be accessed from a menu.

/PSEARCH, Pname

Specifies a directory to be searched for "unknown command" macro files.
APDL: Macro Files
MP ME ST DY <> PR EM <> FL PP ED

Pnane
Path name (64 characters maximum, and must include the final delimiter) of the middle directory to be
searched. Defaults to the user home directory. If Pname = OFF, search only the ANSYS and current working
directories. If Pnane = STAT, list the current middle directory and show the ANSYS_MACROLIB setting.

Command Default

The middle directory searched is the user home directory.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-75

*REPEAT

Notes

Specifies the pathname of a directory for file searches when reading "unknown command" macro files. The search
for the files is typically from the ANSYS directory, then from the user home directory, and then from the current
working directory. This command allows the middle directory searched to be other than the user home directory.

This command is valid only at the Begin Level.

Menu Paths

Utility Menu>Macro>Macro Search Path

*REPEAT, NTOT, VINC1, VINC2, VINC3, VINC4, VINC5, VINC6, VINC7, VINC8, VINC9, VINC10, VINC11
Repeats the previous command.

APDL: Process Controls
MP ME ST DY <> PREM <> FL PP ED

NTOT
Number of times the preceding command is executed (including the initial execution). Must be 2 or greater.
NTOT of 2 causes one repeat (for a total of 2 executions).

VI NC1, VI NC2, VI NC3, VI NC4, VI NC5, VI NC6, VI NC7, VI NC8, VI NC9, VI NC10, VI NC11
Value increments applied to first through eleventh data fields of the preceding command.

Notes

*REPEAT must immediately follow the command that is to be repeated. The numeric arguments of the initial
command may be incremented in the generated commands. The numeric increment values may be integer or
real, positive or negative, zero or blank. Alphanumeric arguments cannot be incremented. For large values of
NTOT, consider printout suppression (/NOPR command) first.

Most commands beginning with slash (/), star (*), as well as "unknown command" macros, cannot be repeated.
For these commands, or if more than one command is to be repeated, include them within a do-loop. Graphics
slash commands are an exception and can be repeated. Commands causing file switching (causing additional
commands to be read) cannot be repeated. If a *REPEAT command immediately follows another *REPEAT
command, the repeat action only applies to the last non-*REPEAT command. Also, *REPEAT should not be used
in interactive mode immediately after a) acommand (or its log file equivalent) that uses picking, or b)acommand
that requires a response from the user.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

6-76 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*SET

*RETURN, Level

Returns input stream to a higher level.
APDL: Process Controls
MP ME ST DY <> PREM EH FL PP ED

Level
Number of levels to move up from the current level.

Negative --
Move relative to current level. For example: *Return,-2 will go up two levels from the current level.

Positive --
Move to absolute level. For example: *Return,2 will go to level 2.

Level 0 is the primary input file.
Notes
This command is used to jump to the macro call sequence, ending the current macro file, and returning to the

line after the calling line in the previous file. Unlike the *GO command, this command may be used inside *IF or
*DO constructs.

Menu Paths

This command cannot be accessed from a menu.

*¥SET, Par, VALUE, VAL2, VAL3, VAL4, VAL5, VAL6, VAL7, VALS, VALY, VAL10
Assigns values to user-named parameters.

APDL: Parameters
MP ME ST DY <> PREM <> FLPPED

Par

An alphanumeric name used to identify this parameter. Par may be up to 32 characters, beginning with a
letter and containing only letters, numbers, and underscores. Examples: ABC A3X TOP_END. ANSYS command
names, function names, label names, component and assembly names, etc., should not be used. Parameter
names beginning with an underscore (e.g., _LOOP) are reserved for use by ANSYS and should be avoided.
Parameter names ending in an underscore are not listed by the *STATUS command. Array parameter names
must be followed by a subscript, and the entire expression must be 32 characters or less. Examples: A(1,1)
NEW_VAL(3,2,5) RESULT(1000). There is no character parameter substitution for the Par field. Table parameters
that are used in command fields (where constant values are normally given) are limited to 32 characters.

VALUE
Numerical value or alphanumeric character string (up to 8 characters enclosed in single quotes) to be assigned
to this parameter. Examples: A(1,3)=7.4 B="ABC3'. May also be a parameter or a parametric expression. Ex-
amples: C=A(1,3) A(2,2)=(C+4)/2. If blank, delete this parameter. Example: A= deletes parameter A.

VAL2, VAL3, VAL4, VALS5, VAL6, VAL7, VALS, VALY, VAL10
If Par is an array parameter, values VAL2 through VAL10 (up to the last nonblank value) are sequentially as-
signed to the succeeding array elements of the column. Example: *SET,A(1,4),10,11 assigns A(1,4)=10,
A(2,4)=11.*SET,B(2,3),file10",file11" assigns B(2,3)='file10', B(3,3)="file11".

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-77

*SET

Notes

Assigns values to user-named parameters that may be substituted later in the run. The equivalent (and recom-
mended) format is

Par = VALUEVAL2,VAL3,VAL4,VAL5,VAL6,VAL7, VAL8,VALY,VAL10
which may be used in place of *SET,Par, ... for convenience.

This command is valid in any processor.

Parameter Definitions

Parameters (numeric or character) may be scalars (single valued) or arrays (multiple valued in one, two, or three
dimensions). Up to 5000 unique parameter names may be defined in any ANSYS run (fewer than 5000 are available
due to GUl and ANSYS macro requirements); however, a single array parameter name can represent any number
of values. Parameter values may be redefined at any time. Array parameters may also be assigned values within
a do-loop [*DO] for convenience. Internally programmed do-loop commands are also available with the ¥*VXX
commands (*VFILL). Parameter values (except for parameters ending in an underscore) may be listed with the
*STATUS command, displayed with the *VPLOT command (numeric parameters only), and modified with the
*VEDIT command (numeric parameters only). Parameters can also be resolved in comments created by the
/COM command (see /COM for complete documentation). A parameter can be deleted by redefining it with a
blank VALUE. If the parameter is an array, the entire array is deleted. Parameters may also be defined by a response
to a query with the *ASK command or from an "ANSYS-supplied" value with the *GET command.

Array Parameters

Array parameters must be dimensioned [¥*DIM] before being assigned values. Scalar parameters that are not
defined are initialized to a "near" zero value. Numeric array parameters are initialized to zero when dimensioned,
and character array parameters are initialized to blank. An existing array parameter must be deleted before it
can be redimensioned. Array parameter names must be followed by a subscript list (enclosed in parentheses)
identifying the element of the array. The subscript list may have one, two, or three values (separated by commas).
Typical array parameter elements are A(1,1), NEW_VAL(3,2,5), RESULT(1000). Subscripts for defining an array
element must be integers (or parameter expressions that evaluate to integers). Non-integer values are rounded
to the nearest integer value. All array parameters are stored as 3-D arrays with the unspecified dimensions set
to 1. For example, the 4th array element of a 1-dimensional array, A(4), is stored as array element A(4,1,1). Arrays
are patterned after standard FORTRAN conventions.

Numerical Parameter Substitution

If the parameter name Par is input in a numeric argument of a command, the numeric value of the parameter
(as assigned with *SET, *GET, =, etc.) is substituted into the command at that point. Substitution occurs only if
the parameter name is used between blanks, commas, parentheses, or arithmetic operators (or any combination)
in a numeric argument. Substitution can be prevented by enclosing the parameter name Par within single
quotes ('), if the parameter is alone in the argument; if the parameter is part of an arithmetic expression, the
entire expression must be enclosed within single quotes to prevent substitution. In either case the character
string will be used instead of the numeric value (and the string will be taken as 0.0 if it is in a numeric argument).

A forced substitution is available in the text fields of the /TITLE, /STITLE, /TLABEL, /AN3D, /SYP (ARGL--ARGS),
and *ABBR commands by enclosing the parameter within percent (%) signs. Also, parameter substitution may
be forced within the file name or extension fields of commands having these fields by enclosing the parameter

6-78 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*SET

within percent (%) signs. Array parameters [¥*DIM] must include a subscript (within parentheses) to identify the
array element whose value is to be substituted, such as A(1,3). Out-of-range subscripts resultin an error message.
Non-integer subscripts are allowed when identifying a TABLE array element for substitution. A proportional linear
interpolation of values among the nearest array elements is performed before substitution. Interpolation is done
in all three dimensions.

Note — Interpolation is based upon the assigned index numbers which must be defined when the table
is filled [*DIM].

Character Parameter Substitution

Most alphanumeric arguments permit the use of character parameter substitution. When the parameter name
Par input, the alphanumeric value of the parameter is substituted into the command at that point. Substitution
can be suppressed by enclosing the parameter name within single quotes ('). Forced substitution is available
in some fields by enclosing the parameter name within percent (%) signs. Valid forced substitution fields include
command name fields, Fnane (filename) or Ext (extension) arguments, *ABBR command (Abbr arguments),
[TITLE and /STITLE commands (Ti t | e argument) and /TLABEL command (Text argument). Character parameter
substitution is also available in the *ASK, /AN3D, *CFWRITE, *IF, *ELSEIF, *MSG, *SET, *USE, *VREAD, and
*VWRITE commands. Character array parameters must include a subscript (within parentheses) to identify the
array element whose value is to be substituted.

Parameter Expressions

If a parameter operation expression is input in a numeric argument, the numeric value of the expression is substi-
tuted into the command at that point. Allowable operation expressions are of the form

E10E20E3 ...0E10
where ET, E2, etc. are expressions connected by operators (0). The allowable operations (o) are
+--F/FF>

For example, A+B**C/D*E is a valid operation expression. The * represents multiplication and the ** represents
exponentiation.

Note — Exponentiation of a negative number (without parentheses) to an integer power follows standard
FORTRAN hierarchy conventions; that is, the positive number is exponentiated and then the sign is at-
tached. Thus, -4**2 is evaluated as -16. If parentheses are applied, such as (-4)**2, the result is 16.

A parameter is evaluated as a number within parentheses before exponentiation. Exponentiation of a negative
number to a non-integer power is performed by exponentiating the positive number and prepending the minus
sign, for example, -4**2.3 is -(4**2.3). The < and > operators allow conditional substitution. For example, E1<E2
substitutes the value of E1 if the comparison is true or the value of E2 if the comparison is false.

Spaces should not be used around operation symbols since “ *” (a space and a star) makes the rest of the line a
comment. Operation symbols (or symbols and signs) may not be immediately adjacent to each other. Parentheses
may be used to separate symbols and signs, to determine a hierarchy of operations, or for clarity. For example,
A**(-B) must be used instead of A**-B. Numbers ending with +0nn or -Onn are assumed to be of exponential
form (as written on files by some computer systems) so that 123-002 is 123E-2 while 123-2is 121. This form of
exponential data should not be input directly. The default hierarchy follows the standard FORTRAN conventions,
namely:

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-79

*SET

+ operations in parentheses (innermost first)
+ then exponentiation (right to left)

+ then multiplication or division (left to right)
+ then unary association (such as +A or -A)

« then addition or subtraction (left to right)

+ then logical evaluations (left to right).

Expressions (E) may be a constant, a parameter, a function, or another operation expression (of the form
E10E20E3 ...0E10). Functions are of the form FTN(A) where the argument (A) may itself be of the form
E10E20E3 ...0E10. Operations are recursive to a level of four deep (three levels of internally nested parentheses).
Iterative floating point parameter arithmetic should not be used for high precision input because of the accumu-
lated numerical round off-error. Up to 10 expressions are accepted within a set of parenthesis.

Valid functions (which are based on standard FORTRAN functions where possible) are:

SIN(X) Sine
COS(X) Cosine
TAN(X) Tangent
ASIN(X) Arcsine
ACOS(X) Arccosine
ATAN(X) Arctangent
ATAN2(Y,X) Arctangent (Y/X) with the sign of each component considered
SINH(X) Hyperbolic sine
COSH(X) Hyperbolic cosine
TANH(X) Hyperbolic tangent
SQRT(X) Square root
ABS(X) Absolute value
SIGN(X,Y) Absolute value of X with sign of Y. Y=0 results in positive sign
NINT(X) Nearest integer
MOD(X,Y) Remainder of X/Y Y=0 returns zero (0)
EXP(X) Exponential
LOG(X) Natural log
LOG10(X) Common log
RAND(X,Y) Random number, where Xis the lower bound, and Y is the upper bound

GDIS(X,Y) Random sample of Gaussian distributions, where Xis the mean, and Y'is the standard
deviation

LWCASE(CPARM) Lowercase equivalent of character parameter CPARM
UPCASE(CPARM) Uppercase equivalent of character parameter CPARM

VALCHR(CPARM) Numeric value of character parameter CPARM (If CPARM is a numeric parameter,
returns 0.0)

CHRVAL(PARM) Character value of numerical parameter PARM. For ABS(PARM) < 10, character value
formatis F8.5;for 10 = ABS(PARM) < 1000, format is F8.3;for 1,000 < ABS(PARM)<

10,000,000, format is F8.0. For 10,000,000 = PARM < 100,000,000, format is also
F8.0. Otherwise result is 0.0 and is not a character value.

IBSET(b1,n2) Set the n2 bitin value b1 (bits are numbered from 0 to 31)

6-80 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*SREAD

IBCLEAR(b1,n2) Clear the n2 bit in value b1
BTEST(b1,n2) Test the n2 bit in value b1 (return true (1.0) if bit is set)
BITAND(b1,b2) Bitwise AND of value b1 and b2
BITOR(b1,b2) Bitwise OR of value b1 and b2
BITXOR(b1,b2) Bitwise XOR of value b1 and b2
BITSET(b1,b2) Set the b2 bitsin b1
BITCLEAR(b1,b2) Clear the b2 bitsin b1

Function arguments (X,Y, etc.) must be enclosed within parentheses and may be numeric values, parameters, or
expressions. Input arguments for angular functions must evaluate to radians by default. Output from angular
functions are also in radians by default. See the *AFUN command to use degrees instead of radians for the an-
gularfunctions. See the *VYFUN command for applying these parameter functions to a sequence of array elements.
Additional functions, called "get functions" are described with the *GET command.

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Delete>Structural>Section
Main Menu>Preprocessor>LS-DYNA Options>Inertia Options>Define Inertia
Main Menu>Preprocessor>Modeling>Create>Circuit>Builder>ROM>ElecStruc
Main Menu>ROM Tool>Mode Selection>Edit

Main Menu>Solution>Define Loads>Delete>Structural>Section

Main Menu>Solution>Solve>Electromagnet>Static Analysis>Induct Matrix
Main Menu>Solution>Time Controls>Time Step Prediction

Utility Menu>Parameters>Scalar Parameters

*SREAD, strArray, Fname, Ext, --, nChar, nSkip, nRead
Reads afile into a string array parameter.

APDL: Array Parameters
MP ME ST DY <> PREM EH FL PP ED

StrArray
Name of the “string array” parameter which will hold the read file. String array parameters are similar to
character arrays, but each array element can be as long as 128 characters. If the string parameter does not
exist, it will be created. The array will be created as: *DIM,StrArray,STRING,nChar,nRead

Fnanme
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext
Filename extension (8 character maximum).

Unused field

nChar
Number of characters per line to read (default is length of the longest line in the file).

nSkip
Number of lines to skip at the start of the file (default is 0).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-81

*STATUS

nLines
Number of lines to read from the file (default is the entire file).

Notes

The *SREAD command reads from a file into a string array parameter. The file must be an ASCII text file.

Menu Paths

This command cannot be accessed from a menu.

*STATUS, Par, IMIN, IMAX, JMIN, JMAX, KMIN, KMAX, LMIN, LMAX, MMIN, MMAX, KPRI
Lists the current parameters and abbreviations.

APDL: Parameters
MP ME ST DY <> PREM <> FL PP ED

Par
Specifies the parameter or sets of parameters listed. For array parameters, use | M N, | MAX, etc. to specify
ranges. Use *DIM to define array parameters. Use *VEDIT to review array parameters interactively. Use
*VWRITE to print array values in a formatted output. If Par is blank, list all scalar parameter values, array
parameter dimensions, and abbreviations. If ARGX, list the active set of local macro parameters (ARG1 to
AR99) [*USE].

The following are possible values for Par

ALL or blank --
Lists all parameters (except those with names beginning or ending with an underbar) and toolbar abbre-
viations.

_PRM --
Lists all parameters with names beginning with an underbar (_). These are ANSYS internal parameters.

PRM_ --
Lists all parameters with names ending with an underbar (_). A good APDL programming convention is
to ensure that all parameters created by your system programmer are named with a trailing underbar.

ABBR --
Lists all toolbar abbreviations.

PARM --
Lists all user parameters.

PARNAME --
Lists only the parameter specified. PARNAME cannot be a parameter name beginning or ending with an
underbar.

ARGX --
Lists all parameter values passed into the current macro (ARG1- AR18).

I M N, I MAX, IM N, JMAX, KM N, KMAX, LM N, LMAX, MM N, MVAX
Range of array elements to display (in terms of the dimensions (row, column, plane, book, and shelf). Minimum
values default to 1. Maximum values default to the maximum dimension values. Zero may be input for1 M N,

6-82 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*TAXIS

JM N, and KM Nto display the index numbers. See *TAXIS command to list index numbers of 4- and 5-D

tables.

KPRI
Use this field to list your primary variable labels (X, Y, Z, TIME, etc.).

1
List the labels (default). YES, Y, or ON are also valid entries.

Do not list the labels. NO, N, or OFF are also valid entries.

Notes

This command is valid in any processor.

Menu Paths

Utility Menu>List>Other>Named Parameter

Utility Menu>List>Other>Parameters

Utility Menu>List>Status>Parameters>All Parameters
Utility Menu>List>Status>Parameters>Named Parameters

*TAXIS, ParmLoc, nAxis, Val1, Val2, Val3, Val4, Vals, Valé, Val7, Val8, Val9, Val10
Defines table index numbers.

APDL: Parameters

MP ME ST DY <> PREM <> FL PP ED

Par m_oc

Name and starting location in the table array parameter for indexing. Indexing occurs along the axis defined

with nAxi s.
nAXi s
Axis along which indexing occurs. Valid labels are:

1--
Corresponds to Row. Default.

2 —

Corresponds to Column.
3 -

Corresponds to Plane.
4 -

Corresponds to Book.
5--

Corresponds to Shelf.
ALL --

Lists all index numbers. Valid only if Val 1 = LIST.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-83

/TEE

Val 1 - Val 10
Values of the index numbers for the axis nAxi s, starting from the table array parameter location Par m_oc.
You can define up to ten values.

To list the index values specified with nAxi s, issue Val 1 = LIST. If Val 1 =LIST, Val 2 - Val 10 are ignored.

Notes

*TAXIS is a convenient method to define table index values. These values reside in the zero column, row, etc.
Instead of filling values in these zero location spots, use the *TAXIS command. For example,

*TAXI' S, l ongtabl e(1,4,1,1),2,1.0,2.2,3.5,4.7,5.9

would fill index values 1.0, 2.2, 3.5, 4.7, and 5.9 in nAxi s 2 (column location), starting at location 4.

To list index numbers, issue *TAXIS,Par mLoc, nAxi s, LIST, where nAxi s = 1 through 5 or ALL.

Menu Paths

This command cannot be accessed from a menu.

ITEE, Label, Fname, Ext, --
Writes a list of commands to a specified file at the same time that the commands are being executed.

APDL: Macro Files
MP ME ST DY <> PREM <> FL PP ED

Label
Indicates how ANSYS is to interpret this /TEE command:

NEW --
Signals the beginning of the command text that is to be written to Fnane. If Fnane already exists, spe-
cifying NEW causes the contents of Fnane to be overwritten.

APPEND --
Indicates that you want to append to Fnane the command text that follows.

END --
Signals the end of the command text that is to be written to or appended to Fnane.

Fname
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext
Filename extension (8 character maximum).

If you plan to execute the file as if it were an ANSYS command, use the extension . mac.

Unused field

6-84 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*TOPER

Notes

You can use the /TEE command to record a macro to a specified file at the same time that the macro is being
executed. It is similar to the UNIX tee command.

For more information about the /TEE command, see the ANSYS APDL Programmer's Guide.

The following example illustrates the use of the /TEE command. If you issue these commands:

/tee, new, nyfil e, mac
et,1,42,0,0,1

ex, 1, 3e7

/tee, end

/ t ee, append, nyfile, mac
n, 1,8

n, 5,11

fill

ngen, 5,5,1,5,1,0,1
/tee, end

the content of myfile.mac is:

et,1,42,0,0,1
ex, 1, 3e7

n, 1,8

n,5, 11

fill

ngen, 5,5,1,5,1,0,1

This command is valid in any processor, but only during an interactive run.

Menu Paths

This command cannot be accessed from a menu.

*TOPER, ParR, Par1, Oper, Par2, FACT1, FACT2, CON1
Operates on table parameters.

APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

Par R
Name of the resulting table parameter. The command will create a table array parameter with this name.
Any existing parameter with this name will be overwritten.

Par 1
Name of the first table parameter.

Qper
The operation to be performed: ADD. The operation is: ParR(i,j,k) = FACT1*Par1(i,j,k) + FACT2 *Par2(i,j,k)
+CON1

Par 2
Name of the second table parameter.

FACT1
The first table parameter multiplying constant. Defaults to 1.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-85

*TREAD

FACT2
The second table parameter multiplying constant. Defaults to 1.

CON1
The constant increment for offset. Defaults to 0.

Notes
*TOPER operates on table parameters according to: ParR(i,j,k) = FACT1*Par1(i,,k) + FACT2 *Par2(i,j,k) +CON1

Par1 and Par2 must have the same dimensions and the same variable names corresponding to those dimensions.
Par1 and Par2 must also have identical index values for rows, columns, etc.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Table Operations

*TREAD, Par, Fname, Ext, --, NSKIP
Reads data from an external file into a table array parameter.

APDL: Parameters
MP ME ST DY <> PREM <> FLPPED

Par
Table array parameter name as defined by the *DIM command.

Fname
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.
File name has no default.

Ext
Filename extension (8 character maximum).

Extension has no default.

Unused field

NSKI P
Number of comment lines at the beginning of the file being read that will be skipped during the reading.
Default = 0.

Notes

Use this command to read in a table of data from an external file into an ANSYS table array parameter. The ex-
ternal file may be created using a text editor or by an external application or program. The external file must be
in tab-delimited, blank-delimited, or comma-delimited format to be used by *TREAD. The ANSYS TABLE type
array parameter must be defined before you can read in an external file. See *DIM for more information.

This command is not applicable to 4- or 5-D tables.

6-86 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*TREAD

Menu Paths

Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Timelnt>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Timelnt>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Timelnt>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Boundary>Voltage>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharge>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCharge>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCurrent>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>AppCurrent>0n Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>ImprCurr>0n Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Electric>Excitation>ImprCurr>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Flow>On Keypoints

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Flow>0On Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Heat Generat>Uniform Heat
Gen

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>0On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>On Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Displacement>0n Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Forces>Body Forces>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>0On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Pressure DOF>0On Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Species>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Species>On Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Species>On Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Turbulence>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Turbulence>On Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Turbulence>On Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Keypoints

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>On Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Velocity>0n Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On
Elements

Main Menu>Preprocessor>Loads>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On
Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Element Components

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-87

*TREAD

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>On Elements

Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>0On Node Components
Main Menu>Preprocessor>Loads>Define Loads>Apply>Structural>Pressure>0n Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Elements

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Ambient Rad>On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>0On Elements>Uniform
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>0n Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Convection>0n Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Areas

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Lines

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Flux>On Nodes

Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Areas
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Elements
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Keypoints
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Lines
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>0On Nodes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>On Volumes
Main Menu>Preprocessor>Loads>Define Loads>Apply>Thermal>Heat Generat>Uniform Heat Gen
Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Timelnt>0On Areas

Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Timelnt>On Keypoints

Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Timelnt>On Nodes

Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Areas

Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Keypoints

Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Lines

Main Menu>Solution>Define Loads>Apply>Electric>Boundary>Voltage>On Nodes

Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharge>On Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCharge>On Nodes

Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCurrent>0n Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>AppCurrent>0n Nodes
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>ImprCurr>0n Keypoints
Main Menu>Solution>Define Loads>Apply>Electric>Excitation>ImprCurr>0On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Flow>On Keypoints

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Flow>0On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Elements

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Keypoints

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Heat Generat>Uniform Heat Gen
Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Areas

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>0On Keypoints

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>On Lines

Main Menu>Solution>Define Loads>Apply>Fluid/ANSYS>Pressure DOF>0On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Areas

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>0n Keypoints

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Lines

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Displacement>On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Forces>Body Forces>On Nodes

6-88 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*TREAD

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>0On Areas
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>0n Keypoints
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>On Lines
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Pressure DOF>0On Nodes
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Species>On Areas

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Species>On Lines

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Species>On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Turbulence>On Areas

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Turbulence>On Lines

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Turbulence>On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Areas

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Keypoints

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Lines

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Velocity>On Nodes

Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On Elements
Main Menu>Solution>Define Loads>Apply>Fluid/CFD>Volume Fract>Bound Loads>On Lines
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Element Components
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Elements

Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Node Components
Main Menu>Solution>Define Loads>Apply>Structural>Pressure>On Nodes

Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Areas

Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Elements

Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Lines

Main Menu>Solution>Define Loads>Apply>Thermal>Ambient Rad>On Nodes

Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Areas

Main Menu>Solution>Define Loads>Apply>Thermal>Convection>0On Elements>Uniform
Main Menu>Solution>Define Loads>Apply>Thermal>Convection>On Lines

Main Menu>Solution>Define Loads>Apply>Thermal>Convection>0On Nodes

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Areas

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Elements

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>On Lines

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Flux>0On Nodes

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Areas

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Elements

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Keypoints

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Lines

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>0On Nodes

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>On Volumes

Main Menu>Solution>Define Loads>Apply>Thermal>Heat Generat>Uniform Heat Gen
Utility Menu>Parameters>Array Parameters>Read from File

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-89

/UCMD

/UCMD, cmd, SRNUM

Assigns a user-defined command name.
APDL: Abbreviations
MP ME ST <> <> <> <> <> <>PP <>

Cmd
User-defined command name. Only the first four characters are significant. Must not conflict with any ANSYS
command name or any user "unknown command" macro name.

SRNUM
User subroutine number (1 to 10) programmed for this command. For example, the command /UCMD,MY-
CMD,3 will execute subroutine USER03 whenever the command MYCMD is entered. Use a blank command
name to disassociate SRNUMfrom its command. For example, /JUCMD,,3 removes MYCMD as a command.

Notes

Assigns a user-defined command name to a user-programmable (system-dependent) subroutine. This feature
allows user-defined commands to be programmed into the ANSYS program. Once programmed, this command
can be input to the program like other commands, and can also be included in the ANSYS start-up file. See *ULIB
for another way of defining user commands.

Up to 10 subroutines are available for user-defined commands (USERO1 to USER10). Users must have system
permission, system access, and knowledge to write, compile, and link the appropriate subprocessors into the
ANSYS program at the site where it is to be run. All routines should be written in FORTRAN 77. The USERO1 routine
is commented and should be listed from the distribution media (system dependent) for more details. Issue
/UCMD,STAT to list all user-defined command names. Since a user-programmed command is a nonstandard use
of the program, the verification of any ANSYS run incorporating these commands is entirely up to the user. In
any contact with ANSYS customer support regarding the performance of a custom version of the ANSYS program,
you should explicitly state that a user programmable feature has been used. See the ANSYS Advanced Analysis
Techniques Guide for a general description of user-programmable features and Guide to ANSYS User Programmable
Features for a detailed description of these features.

This command is valid only at the Begin Level.

Menu Paths

This command cannot be accessed from a menu.

*ULIB, Fname, Ext, --
Identifies a macro library file.
APDL: Macro Files
MP ME ST DY <> PREM <> FLPPED

Fname
File name and directory path (248 characters maximum, including directory). If you do not specify a directory
path, it will default to your working directory and you can use all 248 characters for the file name.

Ext
Filename extension (8 character maximum).

6-90 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*USE

Unused field

Command Default

No macro library file.

Notes

Identifies a macro library file for the *USE command. A library of macros allows blocks of often used ANSYS
commands to be stacked and executed from a single file. The macro blocks must be enclosed within block
identifier and terminator lines as shown in the example below. If you want to add comment lines to a macro
block, you may place them anywhere within the macro block. (This includes placing them directly on the lines
where the macro block identifier and the macro block terminator appear, as shown in the example.) Do not place
comment lines (or any other lines) outside of a macro block.

ABC! Any valid al phanunmeric name (8 characters maxi num

I identifying this data bl ock
---1 ANSYS data input commands

/ECF! Terminator for this data block
XYZ! ldentify another data block (if desired)
---1 ANSYS data input commands

| EOF! Termi nator for this data bl ock
(etc.)

The name of the macro library file is identified for reading on the *ULIB command. The name of the macro block
is identified on the *USE command. The commands within the macro block are copied to a temporary file (of
the macro block name) during the *USE operation and executed as if a macro file of that name had been created
by the user. The temporary file is deleted after it has been used. Macro block names should be acceptable filenames
(system dependent) and should not match user created macro file names, since the user macro file will be used
first (if it exists) before the library file is searched. Macro blocks may be stacked in any order. Branching [¥*GO or
*IF] external to the macro block is not allowed.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Execute Data Block

*USE, Name, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7, ARGS8, ARGY, AR10, AR11,AR12,AR13, AR14, AG15,
AR16,AR17,AR18
Executes a macro file.

APDL: Macro Files
MP ME ST DY <> PREM <> FL PP ED

Nane
Name (32 characters maximum, beginning with a letter) identifying the macro file or a macro block on a
macro library file.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-91

*USE

ARGL, ARGK2, ARG3, ARA, ARG5, ARG, ARG/, ARGB, AR, AR10, AR11, AR12, AR13, AR14, AGL5, AR16, AR17, AR18
Values passed into the file or block where the parameters ARG1 through ARG9 and AR10 through AR18 are
referenced. Values may be numbers, alphanumeric character strings (up to 8 characters enclosed in single
quotes), parameters (numeric or character) or parametric expressions. See below for additional details.

Notes

Causes execution of a macro file called Nane, or, if not found, a macro block "Nane" on the macro library file
[*ULIB]. Argument values (numeric or character) are passed into the file or block and substituted for local para-
meters ARG1, ARG2, .., AR18. The file Name may also be executed as an "unknown command" (i.e., without the
*USE command name) as described below.

A macrois a sequence of ANSYS commands (as many as needed) recorded in a file or in a macro block in a library
file (specified with the *ULIB command). The file or block is typically executed with the *USE command. In addition
to command, numerical and alphanumeric data, the macro may include parameters which will be assigned nu-
merical or alphanumerical character values when the macro is used. Use of the macro may be repeated (within
a do-loop, for example) with the parameters incremented. A macro is defined within a run by "enclosing" a se-
guence of data input commands between a *CREATE and a *END command. The data input commands are
passive (not executed) while being written to the macro file. The macro file (without *CREATE and *END) can
also be created external to ANSYS.

Up to 99 specially named scalar parameters called ARG1 to AR99 are locally available to each macro. Note that
the prefix for the first 9 parameters is "ARG," while the prefix for the last 90 is "AR." A local parameter is one which
is not affected by, nor does it affect, other parameters, even those of the same name, which are used outside of
the macro. The only way a local parameter can affect, or be affected by, parameters outside the macro is if values
are passed out of, or into, the macro by an argument list. Parameters ARG1 through AR18 can have their values
(numeric or character) passed via the argument list on the *USE command (ARG1 through AR19 can be passed
as arguments on the "unknown command" macro). Parameters AR19 through AR99 (AR20 through AR99 in the
"unknown command" macro) are available solely for use within the macro; they cannot be passed via an argument
list. Local parameters are available to do-loops and to /INPUT files processed within the macro. In addition to
an ARG1--AR99 set for each macro, another ARG1--AR99 set is available external to all macros, local to "non-
macro" space.

A macro is exited after its last line is executed. Macros may be nested (such as a *USE or an "unknown command"
within a macro). Each nested macro has its own set of 99 local parameters. Only one set of local parameters can
be active at a time and that is the set corresponding to the macro currently being executed or to the set external
to all macros (if any). When a nested macro completes execution, the previous set of local parameters once again
becomes available. Use *STATUS,ARGX to view current macro parameter values.

An alternate way of executing a macro file is via the "unknown command" route. If a command unknown to the
ANSYS program is entered, a search for a file of that name (plus a .MAC suffix) is made. If the file exists, it is ex-
ecuted, if not, the "unknown command" message is output. Thus, users can write their own commands in terms
of other ANSYS commands. The procedure is similar to issuing the *'USE command with the unknown command
in the Nane field. For example, the command CMD,10,20,30 is internally similar to *USE,CMD, 10,20,30. The macro
file named CMD.MAC will be executed with the three parameters. The *USE macro description also applies to
the "unknown command" macro, except that various directories are searched and a suffix ((MAC) is assumed.
Also, a macro library file is not searched.

A three-level directory search for the "unknown command" macro file may be available (see the ANSYS Operations
Guide). The search order may be: 1) a high-level system directory, 2) the login directory, and 3) the local (working)
directory. Use the /PSEARCH command to change the directory search path. For an "unknown command" CMD,
the first file named CMD.MAC found to exist in the search order will be executed. The command may be input

6-92 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VABS

as upper or lower case, however, it is converted to upper case before the file name search occurs. On systems
that uniquely support both upper and lower case file names, the file with the matching lower case name will be
used if it exists, otherwise, the file with the matching upper case name will be used. All macro files placed in the
apdl directory must be upper case.

Note, since undocumented commands existin the ANSYS program, the user should issue the command intended
for the macro file name to be sure the "unknown command" message is output in the processor where it's to be
used. If the macro is to be used in other processors, the other processors must also be checked.

This command is valid in any processor.

Menu Paths

Utility Menu>Macro>Execute Data Block

*VABS, KABSR, KABS1, KABS2, KABS3
Applies the absolute value function to array parameters.

APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

KABSR
Absolute value of results parameter:

0--
Do not take absolute value of results parameter (ParR).

1--
Take absolute value.

KABS1
Absolute value of first parameter:

O —
Do not take absolute value of first parameter (Par1 or Parl).

'| _—
Take absolute value.

KABS2
Absolute value of second parameter:

0--
Do not take absolute value of second parameter (Par2 or ParJ).
1--

Take absolute value.

KABS3
Absolute value of third parameter:

O —
Do not take absolute value of third parameter (Par3 or ParK).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-93

*VCOL

1--
Take absolute value.

Command Default

Do not use absolute values.

Notes

Applies an absolute value to parameters used in certain *VXX and *MXX operations. Typical absolute value ap-
plications are of the form:

ParR = |f(|Par1|)|
or
ParR =|(|Par1| o |Par2|)|

The absolute values are applied to each input parameter value before the operation and to the result value after
the operation. Absolute values are applied before the scale factors so that negative scale factors may be used.
The absolute value settings are reset to the default (no absolute value) after each *VXX or *MXX operation. Use
*¥VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*¥*VCOL, ncoL1, NCoL2
Specifies the number of columns in matrix operations.

APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

NCOL1
Number of columns to be used for Par1 with *MXX operations. Defaults to whatever is needed to fill the
result array.

NCCOL2
Number of columns to be used for Par2 with *MXX operations. Defaults to whatever is needed to fill the
result array.

Command Default

Fill all locations of the result array from the specified starting location.

Notes

Specifies the number of columns to be used in array parameter matrix operations. The size of the submatrix used
is determined from the upper left starting array element (defined on the operation command) to the lower right

6-94 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VCUM

array element (defined by the number of columns on this command and the number of rows on the *VLEN
command).

The default NCOL is calculated from the maximum number of columns of the result array (the *DIM column di-
mension) minus the starting location + 1. For example, *DIM,R,, 1,10 and a starting location of R(1,7) gives a default
of 4 columns (starting with R(1,7), R(1,8), R(1,9), and R(1,10)). Repeat operations automatically terminate at the
last column of the result array. Existing values in the rows and columns of the results matrix remain unchanged
where not overwritten by the requested input or operation values.

The column control settings are reset to the defaults after each *MXX operation. Use *VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VCUM, Key

Allows array parameter results to add to existing results.
APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

KEY
Accumulation key:

O _—
Overwrite results.

1--
Add results to the current value of the results parameter.

Command Default

Overwrite results.

Notes

Allows results from certain *VXX and *MXX operations to overwrite or add to existing results. The cumulative
operation is of the form:

ParR = ParR + ParR(Previous)

The cumulative setting is reset to the default (overwrite) after each *VXX or *MXX operation. Use *VSTAT to list
settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-95

*VEDIT

*VEDIT, par

Allows numerical array parameters to be graphically edited.
APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

Par
Name of the array parameter to be edited.

Notes

Invokes a graphical editing system that displays array parameter values in matrix form, and allows the use of the
mouse to edit individual values. The starting array subscripts must be defined, such as *VEDIT,A(4,6,1), to indicate
the section of the array to be edited. The array section starts at the specified array element and continues to the
maximum extent of the array parameter. Row and column index values may be set or changed in any plane, and
those values will be applied to all planes. The menu system must be on [/MENU] when this command is issued.
Graphical editing is not available for character array parameters. The *VEDIT command can not be used in a
macro or other secondary input file.

This command is not applicable to 4- or 5-D arrays.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Define/Edit

*VFACT, FACTR, FACT1, FACT2, FACT3
Applies a scale factor to array parameters.

APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

FACTR
Scale factor applied to results (ParR) parameter. Defaults to 1.0.

FACT1
Scale factor applied to first parameter (Par1 or Parl). Defaults to 1.0.

FACT2
Scale factor applied to second parameter (Par2 or ParJ). Defaults to 1.0.

FACT3
Scale factor applied to third parameter (Par3 or ParK). Defaults to 1.0.

Command Default

Use 1.0 for all scale factors.

6-96 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VFILL

Notes

Applies a scale factor to parameters used in certain *VXX and *MXX operations. Typical scale factor applications
are of the form:

ParR = FACTR*f(FACT1*Par1)
or
ParR = FACTR*((FACT1*Par1) o (FACT2*Par2))

The factors are applied to each input parameter value before the operation and to the result value after the op-
eration. The scale factor settings are reset to the default (1.0) after each *VXX or *MXX operation. Use *VSTAT to
list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VFILL, ParR, Func, CON1, CON2, CON3, CON4, CON5, CON6, CON7, CON8, CON9, CON10
Fills an array parameter.

APDL: Parameters
MP ME ST DY <> PREM <> FLPP ED

Par R
The name of the resulting numeric array parameter vector. See *SET for name restrictions. The parameter
must exist as a dimensioned array [*DIM].

Func
Fill function:

DATA --
Assign specified values CON1, CON2, etc. to successive array elements. Up to 10 assignments may be made
at a time. Any CON values after a blank CON value are ignored.

RAMP --
Assign ramp function values: CON1+((n-1)*CON2) , where n is the loop number [*VLEN]. To specify a
constant function (no ramp), set CON2 to zero.

RAND --
Assign random number values based on a uniform distribution: RAND(CON1,CON2), where CONL is the
lower bound (defaults to 0.0) and CON2 is the upper bound (defaults to 1.0).

GDIS --
Assign random sample of Gaussian distributions: GDIS(CON1,CON2), where CON1 is the mean (defaults to
0.0) and CON2 is the standard deviation (defaults to 1.0).

TRIA --
Assigns random number values based on a triangular distribution: TRIA(CON1,CON2,CON3), where CON1
is the lower bound (defaults to 0.0), CON2 is the location of the peak value (CON1 < CON2 < CON3; CON2

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-97

*VFUN

defaults to 0 if CON1 =0 < CON3, CONL if 0 = CON1, or CON3 if CON3 = 0), and CON3 is the upper bound
(defaults to 1.0 + CON1 if CON1 20 or 0.0 if CON1 <0).

BETA --
Assigns random number values based on a beta distribution: BETA(CON1,CON2,CON3,CON4), where CON1
is the lower bound (defaults to 0.0), CON2 is the upper bound (defaults to 1.0+CONL1 if CON1 20 or 0.0 if

CONL = 0), and CON3 and CON4 are the alpha and beta parameters, respectively, of the beta function. Alpha
and beta must both be positive; they default to 1.0.

GAMM --
Assigns random number values based on a gamma distribution: GAMM(CON1,CON2,CON3), where CON1
is the lower bound (defaults to 0.0), and CON2 and CON3 are the alpha and beta parameters. respectively,
of the gamma function. Alpha and beta must both be positive; they default to 1.0.

CON1, CON2, CON3, CON4, CON5, CONG, CON7, CONB, CON9, CON10
Constants used with above functions.

Notes
Operates on input data and produces one output array parameter vector according to:
Par R=f(CON1, CON2, ..)

where the functions (f) are described above. A starting array element number must be defined for the result array
parameter vector. Operations use successive array elements [¥*VLEN, *VMASK] with the default being all successive
elements. For example, *VFILL,A(1),RAMP,1,10 assigns A(1) = 1.0, A(2) = 11.0, A(3) = 21.0, etc.
*VFILL,B(5,1),DATA,1.5,3.0 assigns B(5,1) = 1.5 and B(6,1) = 3.0. Absolute values and scale factors may be applied
to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for
details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Fill

*VFUN, ParR, Func, Par1, CON1, CON2, CON3
Performs a function on a single array parameter.

APDL: Array Parameters
MP ME ST DY <> PR EM <> FL PP ED

Par R
The name of the resulting numeric array parameter vector. See *SET for name restrictions. The parameter
must exist as a dimensioned array [*DIM].

Func
Function to be performed:

ACOS --
Arccosine: ACOS(Par 1).

6-98 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VFUN

ASIN --
Arcsine: ASIN(Par 1).

ASORT --
Par1is sorted in ascending order. *VCOL, *VMASK, *VCUM, and *VLEN, NINC do not apply. *VLEN,NROW
does apply.

ATAN --
Arctangent: ATAN(Par 1).

COMP --
Compress: Selectively compresses data set. "True" (*VMASK) values of Par 1 (or row positions to be
considered according to the NI NCvalue on the *VLEN command) are written in compressed form to
Par R, starting at the specified position.

COPY --
Copy: Par 1 copied to Par R

COS --
Cosine: COS(Par 1).

COSH --
Hyperbolic cosine: COSH(Par 1).

DIRCOS --
Direction cosines of the principal stresses (nX9). Par 1 contains the nX6 component stresses for the n
locations of the calculations.

DSORT --
Par 1 is sorted in descending order. *VCOL, *VMASK, *VCUM, and *VLEN, NINC do not apply.
*VLEN,NROW does apply.

EULER --
Eulerangles of the principal stresses (nX3). Par 1 contains the nX6 component stresses for the n locations
of the calculations.

EXP --
Exponential: EXP(Par 1).

EXPA --
Expand: Reverse of the COMP function. All elements of Par 1 (starting at the position specified) are written
in expanded form to corresponding "true" (*VMASK) positions (or row positions to be considered accord-
ing to the NI NCvalue on the *VLEN command) of Par R

LOG --
Natural logarithm: LOG(Par 1).

LOG10 --
Common logarithm: LOG10(Par 1).

NINLearest integer: 2.783 becomes 3.0, -1.75 becomes -2.0.
NOT --

Logical complement: values = 0.0 (false) become 1.0 (true). Values > 0.0 (true) become 0.0 (false).
PWR --

Power function: Par 1**CONL. Exponentiation of any negative numberin the vector Par 1 to a non-integer

power is performed by exponentiating the positive number and prepending the minus sign. For example,
-4*%2 3 is -(4%*2.3).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-99

*VFUN

SIN --

Sine: SIN(Par 1).

SINH --

Hyperbolic sine: SINH(Par 1).

SQRT --

Square root: SQRT(Par 1).

TAN --

Tangent: TAN(Par 1).

TANH --

Hyperbolic tangent: TANH(Par 1).

TANG --

Tangent to a path at a point: the slope at a point is determined by linear interpolation half way between
the previous and next points. Points are assumed to be in the global Cartesian coordinate system. Path
points are specified in array Par 1 (having 3 consecutive columns of data, with the columns containing
the x, y, and z coordinate locations, respectively, of the points). Only the starting row index and the
column index for the x coordinates are specified, such as A(1,1). The y and z coordinates of the vector
are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3). The tangent result,
Par R, must also have 3 consecutive columns of data and will contain the tangent direction vector (nor-
malized to 1.0); such as 1,0,0 for an x-direction vector.

NORM --

Normal to a path and an input vector at a point: determined from the cross-product of the calculated
tangent vector (see TANG) and the input direction vector (with the i, j, and k components input as CON1,
CON2, and CONB3). Points are assumed to be in the global Cartesian coordinate system. Path points are
specified in array Par 1 (having 3 consecutive columns of data, with the columns containing the x, y, and
z coordinate locations, respectively, of the points). Only the starting row index and the column index for
the x coordinates are specified, such as A(1,1). The y and z coordinates of the vector are assumed to begin
in the corresponding next columns, such as A(1,2) and A(1,3). The normal result, Par R, must also have 3
consecutive columns of data and will contain the normal direction vector (normalized to 1.0); such as
1,0,0 for an x-direction vector.

LOCAL --

Transforms global Cartesian coordinates of a point to the coordinates of a specified system: points to be
transformed are specified in array Par 1 (having 3 consecutive columns of data, with the columns con-
taining the x, y, and z global Cartesian coordinate locations, respectively, of the points). Only the starting
row index and the column index for the x coordinates are specified, such as A(1,1). They and z coordinates
of the vector are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3). Results
are transformed to coordinate system CONL (which may be any valid coordinate system number, such
as 1,2,11,12, etc.). The transformed result, Par R, must also have 3 consecutive columns of data and will
contain the corresponding transformed coordinate locations.

GLOBAL --

Transforms specified coordinates of a point to global Cartesian coordinates: points to be transformed
are specified in array Par 1 (having 3 consecutive columns of data, with the columns containing the local
coordinate locations (x, y, zorr, 0, z or etc.) of the points). Only the starting row index and the column
index for the x coordinates are specified, such as A(1,1). The y and z coordinates (or 6 and z, or etc.) of
the vector are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3). Local co-
ordinate locations are assumed to be in coordinate system CON1 (which may be any valid coordinate
system number, such as 1,2,11,12, etc.). The transformed result, Par R, must also have 3 consecutive
columns of data, with the columns containing the global Cartesian x, y, and z coordinate locations, re-
spectively.

6-100

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VGET

Par 1
Array parameter vector in the operation.

CON1, CON2, CON3
Constants (used only with the PWR, NORM, LOCAL, and GLOBAL functions).

Notes
Operates on one input array parameter vector and produces one output array parameter vector according to:
Par R=f(Par 1)

where the functions (f) are described below. Functions are based on the standard FORTRAN definitions where
possible. Out-of-range function results (or results with exponents whose magnitudes are approximately greater
than 32 or less than -32) produce a zero value. Input and output for angular functions may be radians (default)
or degrees [*AFUN]. Par Rmay be the same as Par 1. Starting array element numbers must be defined for each
array parameter vector. For example, *VFUN,A(1),SQRT,B(5) takes the square root of the fifth element of B and
stores the result in the first element of A. Operations continue on successive array elements [¥*VLEN, *VMASK]
with the default being all successive elements. Absolute values and scale factors may be applied to all parameters
[*VABS, *VFACT]. Results may be cumulative [¥*VCUM]. Skipping array elements via *VMASK or *VLEN for the
TANG and NORM functions skips only the writing of the results (skipped array element data are used in all calcu-
lations). See the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector Functions

*VGET, ParR, Entity, ENTNUM, Item1, ITINUM, Item2, ITZ2NUM, KLOOP
Retrieves values and stores them into an array parameter.

APDL: Parameters
MP ME ST DY <> PREM <> FL PP ED

Par R
The name of the resulting vector array parameter. See *SET for name restrictions. The parameter must exist
as a dimensioned array [¥*DIM].

Entity
Entity keyword. Valid keywords are NODE, ELEM, KP, LINE, AREA, VOLU, etc. as shown for Enti ty =in the
table below.

ENTNUM
The number of the entity (as shown for ENTNUM= in the table below).

[teml
The name of a particular item for the given entity. Valid items are as shown in the I t eml columns of the table
below.

I TINUM
The number (or label) for the specified | t ent (if any). Valid | TLNUMvalues are as shown in the | TINUM
columns of the table below. Some | t el labels do not require an | TINUMvalue.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-101

*VGET

[ten?, | T2NUM
A second set of item labels and numbers to further qualify the item for which data is to be retrieved. Most
items do not require this level of information.

KLOOP
Field to be looped on:

Oor2--
Loop on the ENTNUM field (default).
3--
Loop on the | t en field.
4 -
Loop on the | TINUMfield. Successive items are as shown with | TLNUM
5 —
Loop on the | t en? field.
6 —
Loop on the | T2NUMfield. Successive items are as shown with | T2NUM
Notes

Retrieves values for specified items and stores the values in an output vector of a user-named array parameter
according to:

Par R=f(Entity, ENTNUMItemd, | TINUM It en?, | T2NUM

where (f) is the *GET function; Enti ty, | t eml, and I t enR are keywords; and ENTNUM | TLNUM and | T2NUMare
numbers or labels corresponding to the keywords. A starting array location number must be defined for the
result array parameter. Looping continues over successive entity numbers (ENTNUM for the KLOOP default. For
example, *VGET,A(1),ELEM,5,CENT, X returns the centroid x-location of element 5 and stores the resultin the first
location of A. Retrieving continues with element 6, 7, 8, etc. until successive array locations [*VLEN, *VMASK]
are filled. Absolute values and scale factors may be applied to the result parameter [*VABS, *VFACT]. Results
may be cumulative [*VCUM]. See the *VOPER command for general details. Results can be put back into an
analysis by writing a file of the desired input commands with the *VWRITE command. See also the *VPUT
command.

Both *GET and *VGET retrieve information from the active data stored in memory. The database is often the
source, and sometimes the information is retrieved from common memory blocks that ANSYS uses to manipulate
information. Although POST1 and POST26 operations use a *.rst file, GET data is accessed from the database or
from the common blocks. Get operations do not access the *.rst file directly.

The *VGET command retrieves both the unprocessed real and the imaginary parts (original and duplicate sector
nodes and elements) of a cyclic symmetry solution.

This command is valid in any processor.

*VGET - PREP7 Items

PREP7 Items
Enti t y = NODE, ENTNUM= n (node number)
ltem1 ITINUM Description

6-102 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VGET

LOC
ANG
NSEL

XY,z
XY, YZ,ZX

PREP7 Items
X, Y, or Z location in the active coordinate system.

THXY, THYZ, THZX rotation angle.

Select status of node n (-1 - unselected, 0 - undefined, 1 - selected).

Enti ty = ELEM, ENTNUM= n (element number)

Iltem1
NODE
CENT

ADJ
ATTR

GEOM

ESEL
SHPAR

ITINUM
1,2,--20
XY,z

1,2,-6

name

Test

Description
Node number at position 1,2,--20 of element n.

Centroid X, Y, or Z location (based on shape function) in the active coordin-
ate system.

Number of element adjacent to face 1, 2, -- 6.

Number assigned to attribute name = MAT, TYPE, REAL, ESYS, ENAM, or
SECN).

Characteristic element geometry. Length of line element (straight line
between ends), area of area element, or volume of volume element. Issuing
*VGET for an element returns a signed value. To always get a positive value,
issue *VABS, 1 just prior to issuing *VGET,par(n),ELEM,x,GEOM.

Select status of element n (-1 - unselected, 0 - undefined, 1 - selected).
Element shape test result for selected element n, where Test =ANGD
(SHELL28 corner angle deviation), ASPE (aspect ratio), JACR (Jacobian ratio),

MAXA (maximum corner angle), PARA (deviation from parallelism of oppos-
ite edges), or WARP (warping factor).

Enti ty = KP, ENTNUM= n (keypoint number)

ltem1
LOC
ATTR

DIV
KSEL

ITINUM
XY, Z

name

Description
X, Y, or Z location in the active coordinate system.

Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NODE or
ELEM).

Divisions (element size setting) from KESIZE command.

Select status of keypoint n (-1 - unselected, 0 - undefined, 1 - selected).

Ent i t y = LINE, ENTNUM= n (line number)

ltem1
KP
ATTR

LENG
LSEL

ITTINUM
1,2

name

Description
Keypoint number at position 1 or 2.

Number assigned to attribute (narme = MAT, TYPE, REAL, ESYS, NNOD, NELM,
or NDIV). NNOD = number of nodes, NELM = number of elements, NDIV =
number of divisions.

Length.

Select status of line n (-1 - unselected, 0 - undefined, 1 - selected).

Ent ity = AREA, ENTNUM= n (area number)

ltem1

LOOP
ltem2

LINE

ATTR

AREA
ASEL

ITINUM
1,21

IT2NUM
1! 21 - p

name

Description

Loop number. Must be input if LINE number is to be retrieved.
Description
Line number at position 1, 2, --- p.

Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NNOD, or
NELM). NNOD = number of nodes, NELM = number of elements.

Area (after last ASUM).

Select status of area n (-1 - unselected, 0 - undefined, 1 - selected).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-103

*VGET

PREP7 Items

Entity =VOLU, ENTNUM= n (volume number)

Item1
SHELL

ltem2
AREA
ATTR

VOLU
VSEL

ITINUM
1,2,

IT2NUM
1,2,-p

name

Description

Shell number. Must be input if AREA number is to be retrieved.
Description

Area number at position 1, 2, --- p.

Number assigned to attribute (name = MAT, TYPE, REAL, ESYS, NNOD, or
NELM). NNOD = number of nodes, NELM = number of elements.

Volume (after last VSUM).

Select status of volume n (-1 - unselected, 0 - undefined, 1 - selected).

Ent ity = CDSY, ENTNUM= n (coordinate system number)

Iltem1
LOC
ANG

ATTR

ITINUM
XY, Z
XY, YZ,ZX

name

Description
X,Y, or Z origin location (global Cartesian coordinate).

THXY, THYZ, or THZX rotation angle (°) relative to the global Cartesian co-
ordinate system.

Number assigned to attribute (name = KCS, KTHET, KPHI, PAR1, or PAR2). A
-1.0 is returned for KCS if coordinate system is undefined).

Ent i t y = RCON, ENTNUM= n (real constant set number)

ltem1
CONST

ITINUM
1,2,—-m

Description

Real constant value for constant 1,2,-—- m

Ent ity =TLAB, ENTNUM= n (Tl ab is the data table label: BKIN, MKIN, MISO, etc. as described on the TB
command. n is the material number.)

ltem1
TEMP

ltem2
CONST

*VGET - POST1 Items

ITTINUM
val
IT2NUM

num

Description
Temperature value (if any) at which to retrieve table data.
Description

Constant number whose value is to be retrieved (see Data Tables - Implicit
Analysis in the ANSYS Elements Reference). For constants inputas X, Y points,
the constant numbers are consecutive with the X constants being the odd
numbers, beginning with one.

Enti t y = NODE, ENTNUM= n (node number)

Vector items are in the active results coordinate system unless otherwise specified.

Item1

ITINUM

Description

Valid labels for nodal degree of freedom results are:

u
ROT
TEMP

PRES
VOLT
MAG

XY,z
XY,z

XY,z

X, Y, or Z structural displacement.
X, Y, or Z structural rotation.

Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3)
=0or 1,use TBOT, TE2, TE3, ..., TTOP instead of TEMP. Alternative get
functions: TEMP(N), TBOT(N), TE2(N), etc.

Pressure.
Electric potential.
Magnetic scalar potential.

X, Y, or Z fluid velocity.

6-104

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VGET

Enti t y = NODE, ENTNUM= n (node number)

Vector items are in the active results coordinate system unless otherwise specified.

Item1

A
CURR
EMF
ENKE
ENDS

ITINUM
XY, Z

Description
X, Y, or Z magnetic vector potential.
Current.
Electromotive force drop.
Turbulent kinetic energy (FLOTRAN).
Turbulent energy dissipation (FLOTRAN).

Valid labels for element nodal results are:

ltem1

EPEL

EPPL

HS

BFE

TG
TF
PG
EF

ITINUM
XY, Z,XY,YZ XZ
1,23
INT, EQV
XY, Z,XY,YZ XZ
1,2,3
INT, EQV
XY, Z,XY,YZ, XZ
1,2,3
INT, EQV
XY, Z,XY,YZ, XZ
1,2,3
INT, EQV
XY, Z,XY,YZ XZ
1,2,3
INT, EQV
XY, Z,XY,YZ XZ
1,2,3
INT, EQV

SEPL
SRAT
HPRES
EPEQ
PSV
PLWK
XY,z

TEMP

X, Y, Z,SUM
XY, Z,SUM
XY, Z,SUM
X, Y, Z,SUM

Description
Component stress.
Principal stress.
Stress intensity or equivalent stress.
Component total strain (EPEL + EPPL + EPCR).
Principal total strain.
Total strain intensity or total equivalent strain.
Component elastic strain.
Principal elastic strain.
Elastic strain intensity or elastic equivalent strain.
Component plastic strain.
Principal plastic strain.
Plastic strain intensity or plastic equivalent strain.
Component creep strain.
Principal creep strain.
Creep strain intensity or creep equivalent strain.
Component thermal strain.
Principal thermal strain.
Thermal strain intensity or thermal equivalent strain.
Swelling strain.
Equivalent stress (from stress-strain curve).
Stress state ratio.
Hydrostatic pressure.
Accumulated equivalent plastic strain.
Plastic state variable.
Plastic work/volume.

Component magnetic field intensity from current sources (in the
global Cartesian coordinate system).

Body temperatures (calculated from applied temperatures) as used
in solution.

Component thermal gradient and sum.
Component thermal flux and sum.
Component pressure gradient and sum.

Component electric field and sum.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-105

*VITRP

Enti t y = NODE, ENTNUM= n (node number)

Vector items are in the active results coordinate system unless otherwise specified.

Item1 ITTINUM Description
D X, Y, Z, SUM Component electric flux density and sum.
H X, Y,Z, SUM Component magnetic field intensity and sum.
B X,Y,Z, SUM Component magnetic flux density and sum.
FMAG X, Y, Z, SUM Component magnetic force and sum.
Valid labels for FLOTRAN nodal results are:

ltem1 ITINUM Description
TTOT Total temperature.
HFLU Heat flux.
HFLM Heat transfer (film) coefficient.
COND Fluid laminar conductivity.
PCOE Pressure coefficient.
PTOT Total (stagnation) pressure.
MACH Mach number.
STRM Stream function. (2-D applications only.)
DENS Fluid density.
VISC Fluid laminar viscosity.
EVIS Fluid effective viscosity.
ECON Fluid effective conductivity.
YPLU Y+, a turbulent law of the wall parameter.
TAUW Shear stress at the wall.

Enti ty = ELEM, ENTNUM= n (element number)
Valid labels for element results are:
ETAB Lab Any user-defined element table label (see ETABLE command).

Menu Paths

Utility Menu>Parameters>Get Array Data

*VITRP, ParR, ParT, Parl, ParJ, Park
Forms an array parameter by interpolation of a table.

APDL: Array Parameters
MP ME ST DY <> PR EM <> FL PP ED

Par R
The name of the resulting array parameter. See *SET for name restrictions. The parameter must exist as a
dimensioned array [*DIM].

Par T
The name of the TABLE array parameter. The parameter must exist as a dimensioned array of type TABLE
[*DIM].

6-106 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VLEN

Par |
Array parameter vector of | (row) index values for interpolation in Par T.

Par J
Array parameter vector of J (column) index values for interpolation in Par T (which must be at least 2-D).

Par K
Array parameter vector of K (depth) index values for interpolation in Par T (which must be 3-D).

Notes

Forms an array parameter (of type ARRAY) by interpolating values of an array parameter (of type TABLE) at specified
table index locations according to:

Par R=f(Par T, Par | , Par J, Par K)

where Par Tis the type TABLE array parameter, and Par | , Par J, Par Kare the type ARRAY array parameter vectors
of index values for interpolation in Par T. See the *DIM command for TABLE and ARRAY declaration types. Linear
interpolation is used. Starting array element numbers must be defined for each array parameter. The starting
array element number for the TABLE array (Par T) is not used (but a value must be input). For example, *VIT-
RP,R(5),TAB(1,1),X(2),Y(4) uses the second element of X and the fourth element of Y as index values (row and
column) for a 2-D interpolation in TAB and stores the result in the fifth element of R. Operations continue on
successive array elements [*VLEN, *VMASK] with the default being all successive elements. Absolute values and
scale factors may be applied to the result parameter [*VABS, *VFACT]. Results may be cumulative [*VCUM]. See
the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector Interpolate

*¥VLEN, NROW, NINC
Specifies the number of rows to be used in array parameter operations.

APDL: Array Parameters
MP ME ST DY <> PR EM <> FL PP ED

NROW
Number of rows to be used with the *VXX or *MXX operations. Defaults to the number of rows needed to
fill the result array.

NI NC
Perform the operation on every NI NC row (defaults to 1).

Command Default

Fill all locations of the result array from the specified starting location.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-107

*VMASK

Notes

Specifies the number of rows to be used in array parameter operations. The size of the submatrix used is determ-
ined from the upper left starting array element (defined on the operation command) to the lower right array
element (defined by the number of rows on this command and the number of columns on the *VCOL command).
NI NCallows skipping row operations for some operation commands. Skipped rows are included in the row count.
The starting row number must be defined on the operation command for each parameter read and for the result
written.

The default NROWMs calculated from the maximum number of rows of the result array (the *DIM row dimension)
minus the starting location + 1. For example, *DIM,R,,10 and a starting location of R(7) gives a default of 4 loops
(filling R(7), R(8), R(9), and R(10)). Repeat operations automatically terminate at the last row of the result array.
Existing values in the rows and columns of the results matrix remain unchanged where not overwritten by the
requested input or operation values.

The stride (NI NC) allows operations to be performed at regular intervals. It has no effect on the total number of
row operations. Skipped operations retain the previous result. For example, *DIM,R,,6, with a starting location
of R(1), NROW= 10, and NI NC= 2 calculates values for locations R(1), R(3), and R(5) and retains values for locations
R(2), R(4), and R(6). A more general skip control may be done by masking [¥*VMASK]. The row control settings
are reset to the defaults after each *VXX or ¥*MXX operation. Use *VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VMASK, par

Specifies an array parameter as a masking vector.
APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

Par
Name of the mask parameter. The starting subscript must also be specified.

Command Default

No mask parameter specified (use true for all operations).

Notes

Specifies the name of the parameter whose values are to be checked for each resulting row operation. The mask
vector usually contains only 0 (for false) and 1 (for true) values. For each row operation the corresponding mask
vector value is checked. A true value allows the operation to be done. A false value skips the operation (and retains
the previous results). A mask vector can be created from direct input, such as M(1) = 1,0,0,1,1,0,1; or from the
DATA function of the *VFILL command. The NOT function of the *VFUN command can be used to reverse the
logical sense of the mask vector. The logical compare operations (LT, LE, EQ, NE, GE, and GT) of the *VOPER
command also produce a mask vector by operating on two other vectors. Any numeric vector can be used as a
mask vector since the actual interpretation assumes values less than 0.0 are 0.0 (false) and values greater than

6-108 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VOPER

0.0 are 1.0 (true). If the mask vector is not specified (or has fewer values than the result vector), true (1.0) values
are assumed for the unspecified values. Another skip control may be input with NI NCon the *VLEN command.
If both are present, operations occur only when both are true. The mask setting is reset to the default (no mask)
after each *VXX or ¥*MXX operation. Use *VSTAT to list settings.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Operation Settings

*VOPER, ParR, Par1, Oper, Par2, CON1, CON2
Operates on two array parameters.

APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

Par R
The name of the resulting array parameter vector. See *SET for name restrictions. The parameter must exist
as a dimensioned array [¥*DIM].

Par 1
First array parameter vector in the operation. May also be a scalar parameter or a literal constant.
Qper
Operations:
ADD--
Addition: Par 1+Par 2.
SUB --
Subtraction: Par 1-Par 2.
MULT --
Multiplication: Par 1*Par 2.
DIV --
Division: Par 1/Par 2 (a divide by zero results in a value of zero).
MIN --
Minimum: minimum of Par 1 and Par 2.
MAX --
Maximum: maximum of Par 1 and Par 2.
LT--
Less than comparison: Par 1<Par 2 gives 1.0 if true, 0.0 if false.
LE --
Less than or equal comparison: Par 1 < Par 2 gives 1.0 if true, 0.0 if false.
EQ--
Equal comparison: Par 1 = Par 2 gives 1.0 if true, 0.0 if false.
NE --

Not equal comparison: Par 1 = Par 2 gives 1.0 if true, 0.0 if false.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-109

*VOPER

GE --

Greater than or equal comparison: Par 1 = Par2 gives 1.0 if true, 0.0 if false.
GT -

Greater than comparison: Par 1>Par 2 gives 1.0 if true, 0.0 if false.
DER1 --

First derivative: d(Par 1)/d(Par 2). The derivative at a point is determined over points half way between
the previous and next points (by linear interpolation). Par 1 must be a function (a unique Par 1 value for
each Par 2 value) and Par 2 must be in ascending order.

DER2 --
Second derivative: d*(Par 1)/d(Par 2)2. See also DER1.

INTT --

Singleintegral: -[Par 1 d(Par 2), where CONL is the integration constant. The integral at a point is determ-
ined by using the single integration procedure described in the ANSYS, Inc. Theory Reference.

INT2 --

Double integral: -r -[Par 1 d(Par 2), where CONL is the integration constant of the first integral and CON2
is the integration constant of the second integral. If Par 1 contains acceleration data, CON1 is the initial
velocity and CON2 is the initial displacement. See also INT1.

DOT --
Dot product: Par 1 . Par 2. Par 1 and Par 2 must each have three consecutive columns of data, with the
columns containing the i, j, and k vector components, respectively. Only the starting row index and the
columnindex for the i components are specified for Par 1 and Par 2, such as A(1,1). The jand k components
of the vector are assumed to begin in the corresponding next columns, such as A(1,2) and A(1,3).

CROSS --
Cross product: Par 1 x Par 2. Par 1, Par 2, and Par Rmust each have 3 components, respectively. Only
the starting row index and the column index for the i components are specified for Par 1, Par 2, and
Par R such as A(1,1). The j and k components of the vector are assumed to begin in the corresponding
next columns, such as A(1,2) and A(1,3).

GATH --
Gather: For a vector of position numbers, Par 2, copy the value of Par 1 at each position number to Par R
Example: for Par 1 = 10,20,30,40 and Par 2 = 2,4,1; Par R=20,40,10.

SCAT --
Scatter: Opposite of GATH operation. For a vector of position numbers, Par 2, copy the value of Par 1 to
that position number in Par R Example: for Par 1 = 10,20,30,40,50 and Par 2 = 2,1,0,5,3; Par R=
20,10,50,0,40.

Par 2
Second array parameter vector in the operation. May also be a scalar parameter or a literal constant.

CON1
First constant (used only with the INT1 and INT2 operations).

CON2
Second constant (used only with the INT2 operation).

Notes

Operates on two input array parameter vectors and produces one output array parameter vector according to:

6-110 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VPLOT

ParR=Par 1 o Par 2

where the operations (0) are described below. Par Rmay be the same as Par 1 or Par 2. Absolute values and scale
factors may be applied to all parameters [*VABS, *VFACT]. Results may be cumulative [*VCUM]. Starting array
element numbers must be defined for each array parameter vector, such as *VOPER,A(1),B(5),ADD,C(3) which
adds the third element of C to the fifth element of B and stores the result in the first element of A. Operations
continue on successive array elements [*VLEN, *VMASK] with the default being all successive elements. Skipping
array elements via *VMASK or *VLEN for the DER_and INT_ functions skips only the writing of the results (skipped
array element data are used in all calculations).

Parameter functions and operations are available to operate on a scalar parameter or a single element of an array
parameter, such as SQRT(B) or SQRT(A(4)). See the *SET command for details. Operations on a sequence of array
elements can be done by repeating the desired function or operation in a do-loop [*DO]. The vector operations
within the ANSYS program (¥*VXX commands) are internally programmed do-loops that conveniently perform
the indicated operation over a sequence of array elements. If the array is multidimensional, only the first subscript
is incremented in the do-loop, that is, the operation repeats in column vector fashion "down" the array. For ex-
ample, for A(1,5), A(2,5), A(3,5), etc. The starting location of the row index must be defined for each parameter
read and for the result written.

The default number of loops is from the starting result location to the last result location and can be altered with
the *VLEN command. A logical mask vector may be defined to control at which locations the operations are to
be skipped [*VMASK]. The default is to skip no locations. Repeat operations automatically terminate at the last
array element of the result array column if the number of loops is undefined or if it exceeds the last result array
element. Zeroes are used in operations for values read beyond the last array element of an input array column.
Existing values in the rows and columns of the results matrix remain unchanged where not changed by the re-
quested operation values. The result array column may be the same as the input array column since results in
progress are stored in a temporary array until being moved to the results array at the end of the operation. Results
may be overwritten or accumulated with the existing results [¥*VCUM]. The default is to overwrite results. The
absolute value may be used for each parameter read or written [¥*VABS]. A scale factor (defaulting to 1.0) is also
applied to each parameter read and written [*VFACT].

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector Operations

¥VPLOT, ParX, ParY, Y2, Y3, Y4,Y5,Y6,Y7, Y8
Graphs columns (vectors) of array parameters.
APDL: Array Parameters

MP ME ST DY <> PREM <> FLPPED

Par X
Name of the array parameter whose column vector values will be the abscissa of the graph. If blank, row
subscript numbers are used instead. Par X is not sorted by the program.

ParY
Name of the array parameter whose column vector values will be graphed against the Par X values.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-111

*VPUT

Y2,Y3,Y4,Y5,Y6,Y7,Y8
Additional column subscript of the Par Y array parameter whose values are to be graphed against the Par X
values.

Notes

The column to be graphed and the starting row for each array parameter must be specified as subscripts. Addi-
tional columns of the Par Y array parameter may be graphed by specifying column numbers for Y2, Y3, ..., Y8. For
example, *VPLOT,TIME (4,6), DISP (8,1),2,3 specifies that the 1st, 2nd, and 3rd columns of array parameter DISP
(all starting at row 8) are to be graphed against the 6th column of array parameter TIME (starting at row 4). The
columns will be graphed from the starting row to their maximum extent. See the *VLEN and *VMASK commands
to limit or skip data to be graphed. The array parameters specified on the *VPLOT command must be of the
same type (type ARRAY or TABLE; [*DIM]. Arrays of type TABLE will be graphed as continuous curves. Arrays of
type ARRAY will be displayed in bar chart fashion.

The normal curve labeling scheme for *VPLOT is to label curve 1 “COL 17, curve 2 “COL 2" and so on. You can
use the /GCOLUMN command to apply user-specifed labels (8 characters maximum) to your curves. See Modi-
fying Curve Labels in the ANSYS APDL Programmer's Guide for more information on using /GCOLUMN.

When a graph plot reaches minimum or maximum y-axis limits, ANSYS indicates the condition by clipping the
graph. The clip appears as a horizontal magenta line. ANSYS calculates y-axis limits automatically; however, you
can modify the (YMIN and YMAX) limits via the /YRANGE command.

This command is valid in any processor.

Menu Paths

Utility Menu>Plot>Array Parameters

*¥VPUT, ParR, Entity, ENTNUM, Item1, ITINUM, Item2, IT2NUM, KLOOP
Restores array parameter values into the ANSYS database.

APDL: Array Parameters
MP ME ST DY <> PR EM <> FL PP ED

Par R
The name of the input vector array parameter. See *SET for name restrictions. The parameter must exist as
a dimensioned array [¥*DIM] with data input.

Entity
Entity keyword. Valid keywords are shown for Ent i t y = in the table below.

ENTNUM
The number of the entity (as shown for ENTNUM= in the table below).

Iteml
The name of a particular item for the given entity. Valid items are as shown in the I t eml columns of the table
below.

I TINUM
The number (or label) for the specified | t ent (if any). Valid | TLNUMvalues are as shown in the | TINUM
columns of the table below. Some | t enl labels do not require an | TINUMvalue.

6-112 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VPUT

Iten2, | T2NUM
A second set of item labels and numbers to further qualify the item for which data is to be stored. Most items
do not require this level of information.

KLOOP
Field to be looped on:

Oor2--
Loop on the ENTNUM field (default).
3--
Loop on the | t en field.
4 -
Loop on the | TINUMfield. Successive items are as shown with | TLNUM
5 —
Loop on the | t en? field.
6 —
Loop on the | T2NUMfield. Successive items are as shown with | T2NUM
Notes

The *VPUT command is not supported for PowerGraphics displays. Inconsistent results may be obtained if this
command is not used in /GRAPHICS, FULL.

Plot and print operations entered via the GUI (Utility Menu> Pltcrtls, Utility Menu> Plot) incorporate the
AVPRIN command. This means that the principal and equivalent values are recalculated. If you use *VPUT to
put data back into the database, issue the plot commands from the command line to preserve your data.

This operation is basically the inverse of the *VGET operation. Vector items are put directly (without any coordinate
system transformation) into the ANSYS database. Items can only replace existing items of the database and not
create new items. Degree of freedom results that are replaced in the database are available for all subsequent
postprocessing operations. Other results are changed temporarily and are available mainly for the immediately
following print and display operations. The vector specification *VCUM does not apply to this command. The
valid labels for the location fields (Ent i t y, ENTNUM | t entl, and | TLINUM are listed below. | t en2 and | T2NUM
are not currently used. Not all items from the *VGET list are allowed on *VPUT since putting values into some
locations could cause the database to be inconsistent.

This command is valid in any processor.

*¥*VPUT - POST1 Items

Enti t y = NODE, ENTNUM= n (node number)
Item1 ITINUM Description

Valid labels for nodal degree of freedom results are:

U XY,z X, Y, or Z structural displacement.
ROT XY, Z X, Y, or Z structural rotation.
TEMP Temperature. For SHELL131 and SHELL132 elements with KEYOPT(3)

=0or1,use TBOT, TE2, TE3, ..., TTOP instead of TEMP. Alternative get
functions: TEMP(N), TBOT(N), TE2(N), etc.

PRES Pressure.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-113

*VPUT

Enti t y = NODE, ENTNUM= n (node number)

Item1

VOLT
MAG
\

A
CURR
EMF
ENKE
ENDS

ITINUM

XY,z
XY,z

Description
Electric potential.
Magnetic scalar potential.
X, Y, or Z fluid velocity.
X, Y, or Z magnetic vector potential.
Current.
Electromotive force drop.
Turbulent kinetic energy (FLOTRAN).
Turbulent energy dissipation (FLOTRAN).

Valid labels for element nodal results are:

ltem1

EPEL

EPPL

TG
TF
PG
EF

ITINUM
XY, Z,XY,YZ, XZ
1,2,3
INT, EQV
XY, Z,XY,YZ XZ
1,23
INT, EQV
XY, Z,XY,YZ, XZ
1,2,3
INT, EQV
XY, Z,XY,YZ, XZ
1,23
INT, EQV
XY, Z,XY,YZ, XZ
1,2,3
INT, EQV
XY, Z,XY,YZ XZ
1,2,3
INT, EQV

SEPL
SRAT
HPRES
EPEQ
PSV
PLWK
XY,z
XY, Z
XY,z
XY,z
XY, Z

Description
Component stress.
Principal stress.
Stress intensity or equivalent stress.
Component total strain (EPEL + EPPL + EPCR).
Principal total strain.
Total strain intensity or total equivalent strain.
Component elastic strain.
Principal elastic strain.
Elastic strain intensity or elastic equivalent strain.
Component plastic strain.
Principal plastic strain.
Plastic strain intensity or plastic equivalent strain.
Component creep strain.
Principal creep strain.
Creep strain intensity or creep equivalent strain.
Component thermal strain.
Principal thermal strain.
Thermal strain intensity or thermal equivalent strain.
Swelling strain.
Equivalent stress (from stress-strain curve).
Stress state ratio.
Hydrostatic pressure.
Accumulated equivalent plastic strain.
Plastic state variable.
Plastic work/volume.
Component thermal gradient.
Component thermal flux.
Component pressure gradient.
Component electric field.

Component electric flux density.

6-114

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VREAD

Enti t y = NODE, ENTNUM= n (node number)

Item1 ITINUM Description
H XY, Z Component magnetic field intensity.
B XY,z Component magnetic flux density.
FMAG XY, Z Component magnetic force.
Valid labels for FLOTRAN nodal results are:
ltem1 ITINUM Description
TTOT Total temperature.
HFLU Heat flux.
HFLM Heat transfer (film) coefficient.
COND Fluid laminar conductivity.
PCOE Pressure coefficient.
PTOT Total (stagnation) pressure.
MACH Mach number.
STRM Stream function. (2-D applications only.)
DENS Fluid density.
VISC Fluid laminar viscosity.
EVIS Fluid effective viscosity.
ECON Fluid effective conductivity.
YPLU Y+, a turbulent law of the wall parameter.
TAUW Shear stress at the wall.

Ent it y = ELEM, ENTNUM= n (element number)
Valid labels for element results are:

ETAB Lab Any user-defined element table label (see ETABLE command).

Menu Paths

Utility Menu>Parameters>Array Operations>Put Array Data

*VREAD, ParR, Fname, Ext, -, Label, n1, n2, n3, NSKIP
Reads data and produces an array parameter vector or matrix.

Par R

APDL: Parameters
MP ME ST DY <> PREM <> FLPPED

The name of the resulting array parameter vector. See *SET for name restrictions. The parameter must exist

as a dimensioned array [¥*DIM]. String arrays are limited to a maximum of 8 characters.

Fnane

File name and directory path (248 characters maximum, including directory). If you do not specify a directory

path, it will default to your working directory and you can use all 248 characters for the file name.

If the Fnane field is left blank, reading continues from the current input device, such as the terminal.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

6-115

*VREAD

Ext
Filename extension (8 character maximum).

Unused field
Label

Can take a value of IJK, IKJ, JIK, JKI, KIJ, KJI, or blank (1JK).
nl,n2,n3

Read as (((Par R(i,j,k), k=1,n1),i=1,n2),j=1,n3) for Label =KlJ.n2 and n3 defaultto 1.
NSKI P

Number of lines at the beginning of the file being read that will be skipped during the reading. Default = 0.

Notes

Reads data from a file and fills in an array parameter vector or matrix. Data are read from a formatted file or, if
the menu is off [[MENU,OFF] and Fnane is blank, from the next input lines. The format of the data to be read
must be input immediately following the *VREAD command. The format specifies the number of fields to be
read per record, the field width, and the placement of the decimal point (if none specified in the value). The read
operation follows the available FORTRAN FORMAT conventions of the system (see your system FORTRAN
manual). Any standard FORTRAN real format (such as (4F6.0), (E10.3,2X,D8.2), etc.) or alphanumeric format (A)
may be used. Alphanumeric strings are limited to a maximum of 8 characters for any field (A8). Integer (I) and
list-directed (*) descriptors may not be used. The parentheses must be included in the format and the format must
not exceed 80 characters (including parentheses). The input line length is limited to 128 characters.

A starting array element number must be defined for the result array parameter vector (numeric or character).
For example, entering these two lines:

*VREAD, A(1) , ARRAYVAL
(2F6. 0)

will read two values from each line of file ARRAYVAL and assign the values to A(1), A(2), A(3), etc. Reading continues
until successive row elements [*VLEN, *VMASK, *DIM] are filled.

For an array parameter matrix, a starting array element row and column number must be defined. For example,
entering these two lines:

VREAD, A(1, 1), ARRAYVAL, , , 1 JK, 10, 2
(2F6. 0)

will read two values from each line of file ARRAYVAL and assign the values to A(1,1), A(2,1), A(3,1), etc. Reading
continues until n1 (10) successive row elements are filled. Once the maximum row number is reached, subsequent
data will be read into the next column (e.g., A(1,2), A(2,2), A(3,2), etc.)

For numerical parameters, absolute values and scale factors may be applied to the result parameter [*VABS,
*VFACT]. Results may be cumulative [*VCUM]. See the *VOPER command for details. If you are in the GUI the
*VREAD command must be contained in an externally prepared file read into the ANSYS program (i.e., *USE,
/INPUT, etc.).

This command is not applicable to 4- or 5-D arrays.

This command is valid in any processor.

6-116 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VSCFUN

Menu Paths

Utility Menu>Parameters>Array Parameters>Read from File

*VSCFUN, ParR, Func, Par1

Determines properties of an array parameter.
APDL: Array Parameters
MP ME ST DY <> PREM <> FL PP ED

Par R
The name of the resulting scalar parameter. See *SET for name restrictions.
Func

Functions:

MAX --
Maximum: the maximum Par 1 array element value.

MIN --
Minimum: the minimum Par 1 array element value.

LMAX --
Index location of the maximum Par 1 array element value. Array Par 1 is searched starting from its specified
index.

LMIN --
Index location of the minimum Par 1 array element value. Array Par 1 is searched starting from its specified
index.

FIRST --
Index location of the first nonzero value in array Par 1. Array Par 1 is searched starting from its specified
index.

LAST --
Index location of the last nonzero value in array Par 1. Array Par 1 is searched starting from its specified
index.

SUM --
Sum: Par 1 (the summation of the Par 1 array element values).

MEDI --
Median: value of Par 1 at which there are an equal number of values above and below.

MEAN --
Mean: (o Par1)/NUM, where NUM is the number of summed values.

VARI --
Variance: (o ((Par 1-MEAN)**2))/NUM.

STDV --
Standard deviation: square root of VARI.

RMS --
Root-mean-square: square root of (o (Par 1**2))/NUM.

NUM --

Number: the number of summed values (masked values are not counted).

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-117

*VSTAT

Par 1
Array parameter vector in the operation.

Notes
Operates on one input array parameter vector and produces one output scalar parameter according to:
Par R=f(Par 1)

where the functions (f) are described below. The starting array element number must be defined for the array
parameter vector. For example, *VSCFUN,MU,MEAN,A(1) finds the mean of the A vector values, starting from
the first value and stores the result as parameter MU. Operations use successive array elements [¥*VLEN, *VMASK]
with the default being all successive array elements. Absolute values and scale factors may be applied to all
parameters [*VABS, *VFACT]. Results may be cumulative [¥*VCUM]. See the *VOPER command for details.

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Operations>Vector-Scalar Func

*VSTAT

Lists the current specifications for the array parameters.
APDL: Array Parameters
MP ME ST DY <> PR EM <> FL PP ED

Notes
Lists the current specifications for the *VABS, *VCOL, *VCUM, *VFACT, *VLEN, and *VMASK commands.
This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

*VVWRITE, rar1, Par2, Par3, Par4, Par5, Par6, Par7, Par8, Par9, Par10, Par11, Par12, Par13, Par14, Par15, Par16,
Par17, Pari18, Par19
Writes data to a file in a formatted sequence.

APDL: Array Parameters

MP ME ST DY <> PREM <> FL PP ED

Par 1 - Par 19
You can write up to 19 parameters (or constants) at a time. Any Par values after a blank Par value are ignored.
If you leave them all blank, one line will be written (to write a title or a blank line). If you input the keyword
SEQU, a sequence of numbers (starting from 1) will be written for that item.

6-118 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

*VWRITE

Notes

You use ¥*VWRITE to write data to a file in a formatted sequence. Data items (Par 1, Par 2, etc.) may be array
parameters, scalar parameters, character parameters (scalar or array), or constants. You must evaluate expressions
and functions in the data item fields before using the *VWRITE command, since initially they will be evaluated
to a constant and remain constant throughout the operation. Unless afile is defined with the *CFOPEN command,
data is written to the standard output file. Data written to the standard output file may be diverted to a different
file by first switching the current output file with the /OUTPUT command. You can also use the *MWRITE com-
mand to write data to a specified file. Both commands contain format descriptors on the line immediately following
the command. The format descriptors can be in either Fortran or C format.

You must enclose Fortran format descriptors in parentheses. They mustimmediately follow the *VWRITE command
on a separate line of the same input file. Do not include the word FORMAT. The format must specify the number
of fields to be written per line, the field width, the placement of the decimal point, etc. You should use one field
descriptor for each data item written. The write operation uses your system's available FORTRAN FORMAT con-
ventions (see your system FORTRAN manual). You can use any standard FORTRAN real format (such as (4F6.0),
(E10.3,2X,D8.2), etc.) and alphanumeric format (A). Alphanumeric strings are limited to a maximum of 8 characters
for any field (A8) using the Fortran format. Use the “C” format for string arrays larger than 8 characters. Integer
(I) and list-directed (*) descriptors may not be used. You can include text in the format as a quoted string. The
parentheses must be included in the format and the format must not exceed 80 characters (including parentheses).
The output line length is limited to 128 characters.

The “C” format descriptors are used if the first line of the format descriptor is not a left parenthesis. “C” format
descriptors are up to 80 characters long, consisting of text strings and predefined "data descriptors" between
the strings where numeric or alphanumeric character data will be inserted. The normal descriptors are %l for
integer data, %G for double precision data, %C for alphanumeric character data, and %/ for a line break. Each
descriptor must be preceded by a blank. There must be one data descriptor for each specified value (8 maximum)
in the order of the specified values. The enhanced formats described in *MSG may also be used.

For array parameter items, you must define the starting array element number. Looping continues (incrementing
the vector index number of each array parameter by one) each time you output a line, until the maximum array
vector element is written. For example, *VWRITE,A(1) followed by (F6.0) will write one value per output ling, i.e.,
A(1), A(2), A(3), A(4), etc. You write constants and scalar parameters with the same values for each loop. You can
also control the number of loops and loop skipping with the *VLEN and *VMASK commands. The vector spe-
cifications *VABS, *VFACT, and *VCUM do not apply to this command. If looping continues beyond the supplied
data array's length, zeros will be output for numeric array parameters and blanks for character array parameters.
For multi-dimensioned array parameters, only the first (row) subscript is incremented. See the *VOPER command
for details. If you are in the GUI, the *VWRITE command must be contained in an externally prepared file and
read into ANSYS (i.e., *USE, /INPUT, etc.).

This command is valid in any processor.

Menu Paths

Utility Menu>Parameters>Array Parameters>Write to File

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. 6-119

/WAIT

/WAIT, DTIME

Causes a delay before the reading of the next command.
APDL: Process Controls
MP ME ST DY <> PREM <> FL PP ED

DTI ME
Time delay (in seconds). Maximum time delay is 59 seconds.

Notes

The command following the /WAIT will not be processed until the specified wait time increment has elapsed.
Useful when reading from a prepared input file to cause a pause, for example, after a display command so that
the display can be reviewed for a period of time. Another "wait" feature is available via the *ASK command.

This command is valid in any processor.

Menu Paths

This command cannot be accessed from a menu.

6-120 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Appendix A. APDL Gateway Commands

When you need to determine the applicability of a command or a group of commands to a specific product, the
following *GET functions will return a TRUE or a FALSE (a 1 or a 0) value to indicate if the command in question
is valid for your ANSYS product.

Addi tional *get commands for a new entity=PRODUCT

Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)

Iteml I'tlnum I'ten? I't2num Description
pnane -P option from Ansys conmand |ine
name start 1-n Ansys product name. A character string

Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)

of 8 characters is returned starting at
position It2num Use *dim and *do to get

all 32

characters.

Iteml I'tlnum Description (return values: 1=allowed, 0O=not all owed)
[aux12 Check for Ansys gateway command/feature /AUX12
/config Check for Ansys gateway comrand/feature /CONFI G
/ucmd Check for Ansys gateway command/feature /UCVD

addam Check for Ansys gateway comrand/feature ADDAM

al phad Check for Ansys gateway command/feature ALPHAD

ant ype Check for Ansys gateway command/feature ANTYPE

ant ype static Check for Ansys gateway comrand/feature ANTYPE, STATI C
ant ype buckl e Check for Ansys gateway comrand/feature ANTYPE, BUCKLE
ant ype nodal Check for Ansys gateway comrand/feature ANTYPE, MODAL
ant ype harm c Check for Ansys gateway comrand/feature ANTYPE, HARM C
ant ype trans Check for Ansys gateway conmand/feature ANTYPE, TRANS
ant ype substr Check for Ansys gateway comrand/feature ANTYPE, SUBSTR
ant ype spectr Check for Ansys gateway command/feature ANTYPE, SPECTR
arcl en Check for Ansys gateway command/feature ARCLEN

bet ad Check for Ansys gateway command/feature BETAD

bl c4 Check for Ansys gateway command/feature BLCA

bl c5 Check for Ansys gateway command/feature BLC5

bl ock Check for Ansys gateway command/feature BLOCK

cdread Check for Ansys gateway command/feature CDREAD

con4 Check for Ansys gateway comrand/feature CON4

cone Check for Ansys gateway command/feature CONE

cqc Check for Ansys gateway conmand/feature CQC

cyl 4 Check for Ansys gateway comrand/feature CYL4

cyl 5 Check for Ansys gateway command/feature CYL5

cylind Check for Ansys gateway comrand/feature CYLIND

Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)

Iteml I'tlnum Description (return values: 1=allowed, 0O=not all owed)
danor ph Check for Ansys gateway conmmand/feature DAMORPH
denor ph Check for Ansys gateway conmmand/feature DEMORPH
dsum Check for Ansys gateway conmand/feature DSUM
dvnor ph Check for Ansys gateway conmmand/feature DVMORPH
edadapt Check for Ansys gateway conmmand/feature EDADAPT
edbvi s Check for Ansys gateway commands/feature EDBVI S
eddc Check for Ansys gateway commands/feature EDDC
edcgen Check for Ansys gateway commands/feature EDCGEN
edcl i st Check for Ansys gateway commands/feature EDCLI ST
edcont act Check for Ansys gateway comrands/feature EDCONTACT
edcpu Check for Ansys gateway commands/feature EDCPU
edcrb Check for Ansys gateway commands/feature EDCRB
edcsc Check for Ansys gateway commands/feature EDCSC
edcts Check for Ansys gateway commands/feature EDCTS
edcurve Check for Ansys gateway commands/feature EDCURVE
eddanp Check for Ansys gateway conmmands/feature EDDAMP
edener gy Check for Ansys gateway commands/feature EDENERGY
edf pl ot Check for Ansys gateway commands/feature EDFPLOT
edhgl s Check for Ansys gateway commands/feature EDHAS
edhti me Check for Ansys gateway commands/feature EDHTI ME

APDL Programmer's Guide .

ANSYS Release 8.1.001973. © SASIP, Inc.

Appendix A. APDL Gateway Commands

edhi st Check for Ansys gateway commands/feature EDH ST
edi nt Check for Ansys gateway conmands/feature EDI NT
edvel Check for Ansys gateway conmmands/feature EDVEL
edl cs Check for Ansys gateway conmands/feature EDLCS
edl dpl ot Check for Ansys gateway commands/feature EDLDPLOT
Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)
Iteml I'tlnum Description (return values: 1=allowed, 0=not all owed)
edl oad Check for Ansys gateway conmmands/feature EDLOAD
ednp Check for Ansys gateway commands/feature EDWP
ednb Check for Ansys gateway commands/feature EDNB
edndt sd Check for Ansys gateway conmands/feature EDNDTSD
edout Check for Ansys gateway conmands/feature EDOUT
edpart Check for Ansys gateway commands/feature EDPART
edr ead Check for Ansys gateway commands/feature EDREAD
eddr el ax Check for Ansys gateway commands/feature EDDRELAX
edr st Check for Ansys gateway conmands/feature EDRST
edshel | Check for Ansys gateway conmands/feature EDSHELL
edsol ve Check for Ansys gateway conmands/feature EDSOLVE
edstart Check for Ansys gateway conmands/feature EDSTART
edwel d Check for Ansys gateway commands/feature EDWELD
edwite Check for Ansys gateway conmmands/feature EDWRI TE
ekill Check for Ansys gateway conmmands/feature EKILL
ems Check for Ansys gateway commands/feature EM S
et Check for Ansys gateway commands/feature ET
Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)
Iteml I'tlnum Description (return values: 1=allowed, O0=not all owed)
etchg Check for Ansys gateway conmmands/feature ETCHG
fldata Check for Ansys gateway conmmands/feature FLDATA
flotest Check for Ansys gateway conmands/feature FLOTEST
flread Check for Ansys gateway commands/feature FLREAD
f vmesh Check for Ansys gateway commands/feature FVMESH
agrp Check for Ansys gateway conmands/feature CGRP
hr opt Check for Ansys gateway conmands/feature HROPT
hr opt full Check for Ansys gateway commands/feature HROPT, FULL
hr opt reduc Check for Ansys gateway commands/feature HROPT, REDUC
hr opt nmsup Check for Ansys gateway commands/feature HROPT, MSUP
igesin Check for Ansys gateway conmmands/feature | GESIN
i gesout Check for Ansys gateway conmands/feature | GESOUT
nmodopt Check for Ansys gateway commands/feature MODOPT
nmodopt reduc Check for Ansys gateway conmands/feature MODOPT, REDUC
nmodopt subsp Check for Ansys gateway conmmands/feature MODOPT, SUBSP
nmodopt unsym Check for Ansys gateway conmands/feature MODOPT, UNSYM
nmodopt danp Check for Ansys gateway commands/feature MODOPT, DAMP
nmodopt | anb Check for Ansys gateway commands/feature MODOPT, LANB
nmodopt qr danp Check for Ansys gateway commands/feature MODOPT, QRDAMP
nooney Check for Ansys gateway commands/feature MOONEY
nm Check for Ansys gateway commands/feature MP
nmp ex Check for Ansys gateway conmands/feature M, EX
nmp al px Check for Ansys gateway conmands/feature MP, ALPX
nmp reft Check for Ansys gateway conmands/feature MP, REFT
nmp prxy Check for Ansys gateway conmands/feature MP, PRXY
Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)
Iteml I'tlnum Description (return values: 1=allowed, 0=not all owed)
nmp nuxy Check for Ansys gateway conmands/feature MP, NUXY
nmp gxy Check for Ansys gateway commands/feature MP, GXY
nm danp Check for Ansys gateway conmmands/feature MP, DAMP
nmp mu Check for Ansys gateway conmmands/feature MP, MJ
nmp dens Check for Ansys gateway conmands/feature MP, DENS
nmp c Check for Ansys gateway commands/feature MP,C
nmp enth Check for Ansys gateway conmands/feature MP, ENTH
nmp kxx Check for Ansys gateway commands/feature MP, KXX
nmp hf Check for Ansys gateway conmands/feature MP, HF
nmp ems Check for Ansys gateway conmands/feature MP,EM S
nmp grate Check for Ansys gateway commands/feature MP, QRATE
nmp Vi sc Check for Ansys gateway conmands/feature MP, VI SC
nmp sonc Check for Ansys gateway commands/feature MP, SONC
nmp rsvx Check for Ansys gateway conmands/feature MP, RSVX

A=2 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Appendix A. APDL Gateway Commands

nmp perx Check for Ansys gateway conmands/feature MP, PERX

nmp mur x Check for Ansys gateway conmands/feature MP, MURX

nmp nmgxx Check for Ansys gateway conmmands/feature MP, MaXX

nmp hgl s Check for Ansys gateway conmmands/feature MP, HGLS

nmp rigid Check for Ansys gateway conmmands/feature MP,RIG D
nmp cabl e Check for Ansys gateway commands/feature MP, CABLE
nmp ort ho Check for Ansys gateway conmands/feature MP, ORTHO
nmp | sst Check for Ansys gateway conmands/feature MP, LSST
npdat a Check for Ansys gateway commands/feature MPDATA
nmpdata ex Check for Ansys gateway conmmands/feature MPDATA, EX
mpdata al px Check for Ansys gateway commands/feature MPDATA, ALPX
Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)

Iteml I'tlnum Description (return values: 1=allowed, O0=not all owed)
nmpdat a reft Check for Ansys gateway conmmands/feature MPDATA, REFT
nmpdat a prxy Check for Ansys gateway commands/feature MPDATA, PRXY
nmpdat a nuxy Check for Ansys gateway commands/feature MPDATA, NUXY
mpdata gxy Check for Ansys gateway conmmands/feature MPDATA, GXY
npdata danp Check for Ansys gateway commands/feature MPDATA, DAMP
npdat a mu Check for Ansys gateway commands/feature MPDATA, MJ
nmpdata dens Check for Ansys gateway commands/feature MPDATA, DENS
mpdata ¢ Check for Ansys gateway conmmands/feature MPDATA, C
nmpdata enth Check for Ansys gateway commands/feature MPDATA, ENTH
npdat a kxx Check for Ansys gateway conmmands/feature MPDATA, KXX
npdat a hf Check for Ansys gateway conmands/feature MPDATA, HF
nmpdata ems Check for Ansys gateway commands/feature MPDATA, EM S
nmpdata qrate Check for Ansys gateway conmmands/feature MPDATA, QRATE
nmpdata visc Check for Ansys gateway commands/feature MPDATA, VI SC
nmpdata sonc Check for Ansys gateway commands/feature MPDATA, SONC
nmpdat a rsvx Check for Ansys gateway commands/feature MPDATA, RSVX
nmpdat a per x Check for Ansys gateway commands/feature MPDATA, PERX
nmpdat a mur x Check for Ansys gateway commands/feature MPDATA, MURX
nmpdat a nmyxx Check for Ansys gateway commands/feature MPDATA, MGXX
nmpdat a | sst Check for Ansys gateway conmands/feature MPDATA, LSST
nscap Check for Ansys gateway conmands/feature MSCAP

nsdat a Check for Ansys gateway commands/feature MSDATA
nmsmet h Check for Ansys gateway commands/feature MSMETH
nmsnonf Check for Ansys gateway conmmands/feature MSNOVF
nsprop Check for Ansys gateway conmmands/feature MSPROP

Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)

Iteml I'tlnum Description (return values: 1=allowed, 0=not allowed)
nmsquad Check for Ansys gateway commands/feature MSQUAD

nsr el ax Check for Ansys gateway conmands/feature MSRELAX
nmssol u Check for Ansys gateway commands/feature MSSOLU
nmsspec Check for Ansys gateway commands/feature MSSPEC
nsvary Check for Ansys gateway commands/feature MSVARY

nl geom Check for Ansys gateway conmands/feature NLGEOM
nrlsum Check for Ansys gateway conmands/feature NRLSUM
optyp Check for Ansys gateway conmands/feature OPTYP
optyp subp Check for Ansys gateway conmmands/feature OPTYP, SUBP
optyp first Check for Ansys gateway conmmands/feature OPTYP, FI RST
optyp rand Check for Ansys gateway conmands/feature OPTYP, RAND
optyp run Check for Ansys gateway conmmands/feature OPTYP, RUN
optyp fact Check for Ansys gateway commands/feature OPTYP, FACT
optyp grad Check for Ansys gateway conmands/feature OPTYP, GRAD
optyp sweep Check for Ansys gateway commands/feature OPTYP, SWEEP
optyp user Check for Ansys gateway conmmands/feature OPTYP, USER
opuser Check for Ansys gateway commands/feature OPUSER
pri2 Check for Ansys gateway conmands/feature PRI 2

prism Check for Ansys gateway commands/feature PRI SM
psdcom Check for Ansys gateway conmands/feature PSDCOM
psdfrq Check for Ansys gateway conmmands/feature PSDFRQ

psol ve Check for Ansys gateway commands/feature PSOLVE
rate Check for Ansys gateway commands/feature RATE
resune Check for Ansys gateway commands/feature RESUVE
rpr4 Check for Ansys gateway commands/feature RPR4

Ent i t y=PRODUCT, ENTNUM=0 (or bl ank)

Iteml I'tlnum Description (return values: 1=allowed, 0=not allowed)
rprism Check for Ansys gateway conmands/feature RPRI SM
save Check for Ansys gateway commands/feature SAVE

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Appendix A. APDL Gateway Commands

se
sesymm
setran
sol ve
sph4
sph5
sphere
spop
spop
spop
spop
spop
Srss
tb

tb

th

tb

th

th

tb

th

th

th

sprs
nprs
ddam
psd

bki n
nki n
m so
bi so
ani so
dp
anand
mel as
user

Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

Ent i t y=PRODUCT, ENTNUM=0 (or bl
Descripti

Itenml
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
th
torus
trnopt
trnopt
trnopt
trnopt

It lnum
creep
swel |
bh

pi ez
fail
nooney
wat er
ane
concr
pfl ow
evi sc
pl aw
foam
honey
conp
n
nliso
chab
boyce
eos

full
reduc
nmsup

Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check
Check

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys

ank)

gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway

commands/ feature
commuands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commuands/ feature
commuands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature

on (return values: 1=all owed,

Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys
Ansys

Ent i t y=PRODUCT, ENTNUMEO (or bl ank)

gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway
gat eway

commuands/ feature
commands/ feature
commands/ feature
commuands/ feature
commands/ feature
commuands/ feature
commands/ feature
commands/ feature
commands/ feature
commands/ feature
commuands/ feature
commuands/ feature
commands/ feature
commuands/ feature
commuands/ feature
commuands/ feature
commuands/ feature
commands/ feature
commuands/ feature
commands/ feature
commuands/ feature
commuands/ feature
commuands/ feature
commands/ feature
commands/ feature

SE

SESYMWN
SETRAN
SOLVE
SPH4

SPH5
SPHERE
SPOP
SPOP, SPRS
SPOP, MPRS
SPOP, DDAM
SPOP, PSD
SRSS

B

TB, BKI N
TB, MKI N
TB, M SO
TB, BI SO
TB, ANl SO
TB, DP

TB, ANAND
TB, MELAS
TB, USER

O=not al | owed)
TB, CREEP
TB, SWELL

TB, BH

TB, Pl EZ

TB, FAI L

TB, MOONEY
TB, WATER
TB, ANEL

TB, CONCR
TB, PFLOW
TB, EVI SC
TB, PLAW

TB, FOAM

TB, HONEY
TB, COWP

TB, NL

TB, NLI SO
TB, CHAB

TB, BOYCE
TB, ECS
TORUS
TRNOPT
TRNOPT, FULL
TRNOPT, REDUC
TRNOPT, MSUP

Iteml I'tlnum Description (return values: 1=allowed, O0=not all owed)

usrcal Check for Ansys gateway commands/feature USRCAL

\Y Check for Ansys gateway conmands/feature V

va Check for Ansys gateway commands/feature VA

vadd Check for Ansys gateway commands/feature VADD

vevfill Check for Ansys gateway conmands/feature VCVFILL

vdr ag Check for Ansys gateway conmands/feature VDRAG

vext Check for Ansys gateway commands/feature VEXT

vgen Check for Ansys gateway commands/feature VGEN

vgl ue Check for Ansys gateway conmands/feature VGLUE

Vi np Check for Ansys gateway commands/feature VINP

Vi nv Check for Ansys gateway commands/feature VINV

vl scal e Check for Ansys gateway conmmands/feature VLSCALE

vnesh Check for Ansys gateway conmands/feature VMESH

vof f set Check for Ansys gateway conmands/feature VOFFSET

vovl ap Check for Ansys gateway commands/feature VOVLAP

vptn Check for Ansys gateway commands/feature VPTN

vrot at Check for Ansys gateway commands/feature VROTAT

vsbha Check for Ansys gateway commands/feature VSBA
A-4 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Appendix A. APDL Gateway Commands

vshbv
vsbw
vsynmm
vtran

Check for
Check for
Check for
Check for

Ansys
Ansys
Ansys
Ansys

Ent i t y=PRODUCT, ENTNUMEO (or bl ank)

Itenml
el em

It lnum

gat eway
gat eway
gat eway
gat eway

commands/ f eat ure VSBV
comuands/ f eat ure VSBW
commands/ f eat ure VSYMM
commands/ f eat ure VTRAN

Description (return values: 1=allowed, 0=not all owed)

Check to see if Ansys elenent type "i" is allowed.

Ent i t y=PRODUCT, ENTNUMEO (or bl ank)

Itenml
limt
limt
limt
limt
limt
limt
limt
limt

It lnum

node
el em
kp
line
area
\'o]
dof
nmdof

Description (return values: 1=allowed, 0=not all owed)
Get nmaxi mum al | owed node nunber

Get nmaxi mum al | owed el enent nunber
Get nmaxi mum al | owed keypoi nt nunber

Get maxi num al | owed |i ne nunber
Get maxi num al | owed area nunber

Get maxi mum al | owed vol une nunber
Get maxi num al | owed dof nunber
Get nmaxi mum al | owed master dof nunber

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. A-5

A-6

Appendix B. GET Function Summary

A"get function"is available for some items, and can be used instead of the *GET command. The function returns
the value and uses it where the function is input (bypassing the need for storing the value with a parameter
name and inputting the parameter name where the value is to be used). For example, assume the average X-
location of two nodes is to be calculated. Using the *GET command, parameter L1 can be assigned the X location
of node 1 (*GET, L1, NODE, 1, LOC, X), and parameter L2 can be assigned the X location of node 2, then the mid
location can be computed from MID = (L1+L2)/2. However, using the node location "get function" NX(N), which
returns the X location of node N, MID can be computed directly from MID = (NX(1)+NX(2))/2, without the need
forintermediate parameters L1 and L2. Get functions return values in the active coordinate system unless stated
otherwise.

Get function arguments may themselves be parameters or other get functions. The get function
NELEM(ENUM,NPOS) returns the node number in position NPOS for element ENUM. Combining functions,
NX(NELEM(ENUM,NPQS)) returns the X location of that node. Get functions (where available) are shown with the
corresponding *GET items in the tables below and are summarized at the end of this command description.

Get functions are described at the beginning of this command (see Notes) and are shown as alternatives to the
*GET items where they apply. They are summarized here (grouped by functionality) for convenience.

Table B.1 *GET - Get Function Summary

"Get Function" Summary

Entity Status Get Function Description

NSEL(N) Status of node N: -1=unselected, 0O=undefined, 1=selected.

ESEL(E) Status of element E: -1=unselected, O=undefined, 1=selected.

KSEL(K) Status of keypoint K: -1=unselected, 0=undefined, 1=selected.

LSEL(L) Status of lineL: -1=unselected, 0=undefined, 1=selected.

ASEL(A) Status of area A: -T1=unselected, O=undefined, 1=selected.

VSEL(V) Status of volume V: -1=unselected, O=undefined, 1=selected.

Next Selected Entity

NDNEXT(N) Next selected node having a node number greater than N.

ELNEXT(E) Next selected element having an element number greater than E.

KPNEXT(K) Next selected keypoint having a keypoint number greater than K.

LSNEXT(L) Next selected line having a line number greater than L.

ARNEXT(A) Next selected area having an area number greater than A.

VLNEXT(V) Next selected volume having a volume number greater than V.

Locations

CENTRX(E) Centroid X-coordinate of element E in global Cartesian coordinate
system. Centroid is determined from the selected nodes on the element.

CENTRY(E) Centroid Y-coordinate of element E in global Cartesian coordinate
system. Centroid is determined from the selected nodes on the element.

CENTRZ(E) Centroid Z-coordinate of element E in global Cartesian coordinate
system. Centroid is determined from the selected nodes on the element.

NX(N) X-coordinate of node Nin the active coordinate system.

NY(N) Y-coordinate of node Nin the active coordinate system.

NZ(N) Z-coordinate of node Nin the active coordinate system.

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Appendix B. GET Function Summary

Entity Status Get Function

KX(K)

KY(K)

KZ(K)

LX(L, LFRAQ)
LY(L, LFRAC)
LZ(L, LFRAQ)
LSX(L, LFRAC)
LSY(L, LFRAC)
LSZ(L, LFRAC)
Nearest to Location
NODE(X, Y, Z2)

KP(X, Y, 2)

Distances
DISTND(NL, N2)
DISTKP(K1, K2)
DISTEN(E, N)

"Get Function" Summary
Description

X-coordinate of keypoint Kin the active coordinate system
Y-coordinate of keypoint Kin the active coordinate system
Z-coordinate of keypoint K in the active coordinate system
X-coordinate of line L at length fraction LFRAC (0.0 to 1.0).
Y-coordinate of line L at length fraction LFRAC (0.0 to 1.0).
Z-coordinate of line L at length fraction LFRAC (0.0 to 1.0).
X slope of line L at length fraction LFRAC (0.0 to 1.0).

Y slope of line L at length fraction LFRAC (0.0 to 1.0).

Z slope of line L at length fraction LFRAC (0.0 to 1.0).

Number of the selected node nearest the X, Y, Z point (in the active
coordinate system, lowest number for coincident nodes).

Number of the selected keypoint nearest the X, Y, Z point (in the active
coordinate system, lowest number for coincident nodes).

Distance between nodes N1 and N2.
Distance between keypoints K1 and K2.

Distance between the centroid of element E and node N. Centroid is
determined from the selected nodes on the element.

Angles (in radians by default -- see the *AFUN command)

ANGLEN(N1, N2, N3)
ANGLEK(K1, K2, K3)

Nearest to Entity
NNEAR(N)
KNEAR(K)
ENEARN(N)

Areas

AREAND(NL, N2, N3)
AREAKP(K1, K2, K3)
ARNODE(N)

Normals
NORMNX(N1, N2, N3)

NORMNY(N1, N2, N3)

NORMNZ(N1, N2, N3)

Subtended angle between two lines (defined by three nodes where
N1 is the vertex node). Default is in radians.

Subtended angle between two lines (defined by three keypoints where
K1 is the vertex keypoint). Default is in radians.

Selected node nearest node N.
Selected keypoint nearest keypoint K.

Selected element nearest node N. The element position is calculated
from the selected nodes.

Area of the triangle with vertices at nodes N1, N2, and N3.
Area of the triangle with vertices at keypoints K1, K2, and K3.

Area at node Napportioned from selected elements attached to node
N. For 2-D planar solids, returns edge area associated with the node.
For axisymmetric solids, returns edge surface area associated with the
node. For 3-D volumetric solids, returns face area associated with the
node. For 3-D, select all the nodes of the surface of interest before using
ARNODE.

X-direction cosine of the normal to the plane containing nodes N1,
N2, and N3.

Y-direction cosine of the normal to the plane containing nodes N1,
N2, and N3.

Z-direction cosine of the normal to the plane containing nodes N1,
N2, and N3.

B-2

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Appendix B. GET Function Summary

Entity Status Get Function
NORMKX(K1, K2, K3)

NORMKY(K1, K2, K3)
NORMKZ(K1, K2, K3)
Connectivity

ENEXTN(N, LOC)

NELEM(E,NPCS)
NODEDOF(N)

Faces
ELADJ(E, FACE)

NDFACE(E, FACE, LOC)

NMFACE(E)

ARFACE(E)

Degree of Freedom Results
UX(N)

UY(N)

UZ(N)

ROTX(N)

ROTY(N)

ROTZ(N)

TEMP(N)

PRES(N)

"Get Function" Summary
Description

X-direction cosine of the normal to the plane containing keypoints K1,
K2, and K3.

Y-direction cosine of the normal to the plane containing keypoints K1,
K2, and K3.

Z-direction cosine of the normal to the plane containing keypoints K1,
K2, and K3.

Element connected to node N. LOCis the position in the resulting list
when many elements share the node. A zero is returned at the end of
the list.

Node number in position NPOS (1--20) of element E.
Returns the bit pattern for the active DOFs at the specified node.

bit 0 is UX, bit 1 is UY,... bit 5 is ROTZ

bits 6,7,8 are AX,AY,AZ

bits 9,10,11 are VX,VY,VZ

bit 18 is PRES, bit 19 is TEMP, bit 20 is VOLT, bit 21 is MAG

bit 24 is EMF, bit 25 is CURR

For a node with UX,UY,UZ the return value will be 7 (bits 0,1,2)

For a node with UX,UY,UZ,ROTX,ROTY,ROTZ the return value will be 63
(bits 0,1,2,3,4,5)

For 2-D planar solids and 3-D volumetric solids, element adjacent to a
face (FACE) of element E. The face number is the same as the surface
load key number. Only elements of the same dimensionality and shape
are considered. A -1 is returned if more than one is adjacent.

Node in position LOC of a face number FACE of element E. The face
number is the same as the surface load key number. LOC is the nodal
position on the face (for an IJLK face, LOC=1 is at node |, 2 is at node J,
etc.)

Face number of element E containing the selected nodes. The face
number output is the surface load key. If multiple load keys occur on
a face (such as for line and area elements) the lowest load key for that
face is output.

For 2-D planar solids and 3-D volumetric solids, returns the area of the
face of element E containing the selected nodes. For axisymmetric
elements, the area is the full (360 degree) area.

UX structural displacement at node N.
UY structural displacement at node N.
UZ structural displacement at node N.
ROTX structural rotation at node N.
ROTY structural rotation at node N.
ROTZ structural rotation at node N.

Temperature at node N. For SHELL131 and SHELL132 elements with
KEYOPT(3) =0 or 1, use TBOT(N), TE2(N), TE3(N), ..., TTOP(N) instead of
TEMP(N).

Pressure at node N.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. B-3

Appendix B. GET Function Summary

"Get Function" Summary

Entity Status Get Function Description
VX(N) VX fluid velocity at node N.
VY(N) VY fluid velocity at node N.
VZ(N VZ fluid velocity at node N.
ENKE(N) Turbulent kinetic energy (FLOTRAN) at node N.
ENDS(N) Turbulent energy dissipation (FLOTRAN) at node N.
VOLT(N) Electric potential at node N.
MAG(N) Magnetic scalar potential at node N.
AX(N) AX magnetic vector potential at node N.
AY(N) AY magnetic vector potential at node N.
AZ(N) AZ magnetic vector potential at node N.
Returns information about the data base manager
VIRTINQR(1) Number of pages in core.
VIRTINQR(4) Page size in integer words.
VIRTINQR(7) Maximum number of pages allowed on disk.
VIRTINQR(8) Number of read/write operations on page.
VIRTINQR(9) Maximum record number on page.
VIRTINQR(11) Maximum pages touched.
Returns the current value of ANSYS filtering keywords.
KWGET(KEYWORD) Returns the current value the keyword specified by KEYWORD. See the

ANSYS UIDL Programmer's Guide for a list of keywords and values.

Character String Functions Strings must be dimensioned (see *DIM) as a character parameter or enclosed in
single apostrophes (‘char’).

Functions which return a double precision value of a numeric character string.

VALCHR(a8) a8 is a decimal value expressed in a string.
VALOCT (a8) a8 is an octal value expressed in a string.
VALHEX(a8) a8 is a hex value expressed in a string.
Functions which return an 8 character string of a numeric value.

CHRVAL (dp) dp is a double precision variable.

CHROCT (dp) dp is an integer value.

CHRHEX(dp) dp is an integer value.

Functions which manipulate strings: StrOut is the output string (or character parameter) Str1 and Str2 are input strings.
Strings are a maximum of 128 characters. (see *DIM)

StrOut = STRSUB(Str1, nLoc,nChar) Get the nChar substring starting at character nLoc in Str1.
StrOut = STRCAT(Str1,5tr2) Add Str2 at the end of Str1.

StrOut = STRFILL(Str1,Str2,nLoc) Add Str2 to Str1 starting at character nLoc.

StrOut = STRCOMP(Str1) Remove all blanks from Str1

StrOut = STRLEFT(Str1) Left-justify Str1

nLoc = STRPOS(Str1,Str2) Get starting location of Str2 in Str1.

nLoc = STRLENG(Str1) Location of last nonblank character

StrOut = UPCASE(Str1) Upper case of Str1

StrOut = LWCASE(Str1) Lower case of Str1

The following functions manipulate file names.

B-4 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Appendix B. GET Function Summary

"Get Function" Summary
Entity Status Get Function Description

Path String =JOIN ('directory','filename’,'ex- Produces a contiguous pathstring. e.g. directory/filename.ext
tension')

Path String = JOIN ('directory', filename’) Produces a contiguous pathstring. e.g. directory/filename

SPLIT('PathString', 'DIR") Produces a separate output of the directory from the pathstring.

SPLIT('PathString’, 'FILE") Produces a separate output of the complete filename (with extension)
from the pathstring.

SPLIT('PathString’, 'NAME') Produces a separate output of the filename from the pathstring.

SPLIT('PathString', 'EXT') Produces a separate output of the file extension from the pathstring.

APDL Programmer's Guide . ANSYS Release 8.1.001973.© SAS IP, Inc. B-5

B-6

I d *VPLOT command, 6-111

n EX *VPUT command, 6-112
*VREAD command, 6-115

Symbols *VSCFUN command, 6-117

*VSTAT command, 6-118
*VWRITE command, 6-118
/DFLAB command, 6-10
/DIRECTORY command, 6-14
/INQUIRE command, 6-63
/MAIL command, 6-65
/PMACRO command, 6-75
/PSEARCH command, 6-75
/TEE command, 6-84
/UCMD command, 6-90
/WAIT command, 6-120

*ABBR command, 6-3
*AFUN command, 6-5
*ASK command, 6-6
*CFCLOS command, 6-6
*CFOPEN command, 6-7
*CFWRITE command, 6-8
*CREATE command, 6-8
*CYCLE command, 6-9
*DEL command, 6-9
*DIM command, 6-11
*DO command, 6-14
*DOWHILE command, 6-15

*EL SE command, 6-16 f\BBR]

* _ A command, 2-1, 3-11

*ELSEIF command, 616 *ABBRES command, 2-3, 6-3
END command, 6-17 > C , ,

*ENDDO command, 6-18 abbreylatlons

*ENDIF command, 6-18 ?Ieflned, 2-1

*EXIT command, 6-19 iles, 2-3

*GET command, 6-19 nesting on toolbar, 2-3

*GO command, 6-60 *ABBSAV command, 2-3, 6-4

*IF command, 6-61 *ABCHECK command

*MFOURI command, 6-66 defined, 5-5

*MFUN command, 6-67 :QEBISI Cornmar;ld,35—52

*MOPER command, 6-68 command, 3-1

*MSG command, 6-70 ANSYS startup options, 3-3

*MWRITE command, 6-72 ANSYS_MACROLIB environment variable, 4-2

*REPEAT command, 6-76 APDL

*RETURN command, 6-77 comments, 3-12

*SET command, 6-77 defined, 1-1

*SREAD command, 6-81 macros, 4-1

*STATUS command, 6-82 mathematical functions, 3-12

*TAXIS command, 6-83 operators, 3-12

*TOPER command, 6-85 AR20 through AR99, 4-8

*TREAD command, 6-86 ARGT1 through AR19, 4-8

*ULIB command, 6-90 ARRAY

*USE command, 6-91 deflnecll, 3-14

*VABS command, 6-93 examples, 3-16

*\/COL command, 6-94 array parameters, 3-14

*YCUM command, 6-95 1-D table example, 3-23

*VEDIT command, 6-96 2-D table example, 3-23

*VFACT command, 6-96 3-D table example, 3-23

*\/FILL command, 6-97 ARBAY, 3-14

*VFUN command, 6-98 basics, 3-15

*\/GET command, 6-101 CHAR, 3-14, 3-16, 3-20

*VITRP command, 6-106 examples, 3-16

*VLEN command, 6-107 ; Fa_ming conflict, 3-20

*VMASK command, 6-108 efining, 3-19

*VOPER command, 6-109 editing interactively, 3-21

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Index

examples, 3-16
filling from a data file, 3-23, 3-23
filling vectors, 3-21
interpolating values, 3-27
labeling, 3-44
listing, 3-19, 3-29, 3-29
matrix operations, 3-35
operations, 3-32
plotting, 3-40
specifying values, 3-19
TABLE, 3-14,3-17,3-17
examples, 3-17
writing data files, 3-30
Array parameters
ARRAY, 3-16
examples, 3-16
*ASK command, 3-10
defined, 5-1

C
*CFCLOS command, 4-3
*CFOPEN command, 3-30, 4-3
*CFWRITE command, 3-10, 4-3
CHAR

defined, 3-14

examples, 3-16

limitation with *VEDIT, 3-21

naming conflict, 3-20
character parameters, 3-8
comment character, 3-12
*CREATE command, 4-3
create macro dialog box, 4-4
*CSET command, 5-2
*CYCLE command, 4-12,4-12

defined, 4-13

D
data descriptors, 3-10, 3-30

in messages, 5-4
data files

writing from arrays, 3-30
/DECRYPT command, 6-2
macros

introduction to programming, 4-1
*DIM command, 3-11, 3-19, 3-20
*DO command, 4-12

defined, 4-13
do-loops, 4-12

vector operations, 3-32
do-while, 4-13

E

*ELSE command, 4-9, 5-4
defined, 4-13

*ELSEIF command, 3-10, 4-9, 5-4
defined, 4-13

/ENCRYPT command
defined, 6-1

encrypting macros, 6-1

*END command, 4-3

*ENDDO command, 4-12
defined, 4-13

*ENDIF command, 4-9, 5-4
defined, 4-13

/EOF command, 4-6

ETABLE command, 3-1

*EXIT command, 4-12,4-12
defined, 4-13

expressions, 3-12

F
FILE command, 3-9
/FILENAME command, 3-9
files

abbreviations, 2-3
Format

data descriptors, 3-30
functions, 3-12

G
*GET command, 3-11
assigning parameters, 3-3
GET functions, 3-4
global encryption key, 6-2
*GO command, 4-9,4-12
/GOPR command, 4-12, 6-1
GUI
interfacing with, 5-1

H

home directory, 4-2

|

*IF command, 3-10,4-12,4-13, 5-4
defined, 4-9

/INPUT command, 3-9, 4-1

L
Array parameters
CHAR, 3-21
limitation with *VEDIT, 3-21
login directory, 4-2

Index-2 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Index

looping, 4-12,4-13

M

macros

control functions, 4-9, 4-13
quick reference, 4-13

creating, 4-1

creating status bar, 5-5

creating STOP button, 5-5

creating with a text editor, 4-5

displaying messages, 5-4

encrypting, 6-1

executing, 4-7, 6-2
encrypted, 6-2

general examples, 4-16

library files, 4-6

local variables, 4-8

naming, 4-1

nesting, 4-1,4-9

passing arguments to, 4-8

picking, 5-7

prompting for single parameter, 5-1

prompting with dialog box, 5-2
search path, 4-2
writing to session log, 5-7
matrix operations, 3-35
messages
types of, 5-4
*MFOURI command, 3-35
*MFUN command, 3-35
*MOPER command, 3-35
examples, 3-35
*MSG command, 3-10
defined, 5-4, 5-4
MULTIPRO command
defined, 5-2
example, 5-2

N
/NOPR command, 6-1

(o)
operators, 3-12

order of evaluation, 3-12
/OUTPUT command, 3-9

P

parameters, 3-1, 4-1
array (see array parameters)

assigning ANSYS-supplied values, 3-3

assigning at startup, 3-3
assigning during execution, 3-2

assigning through ANSYS command line, 3-3

assigning through ANSYS Launcher, 3-3

character, 3-8, 3-8, 3-11

defining, 3-2

deleting, 3-8, 3-8

dynamic substitution of, 3-11

forcing substitution of, 3-9

listing, 3-7

maximum number, 3-7

PASSWORD, 6-2

preventing substitution of, 3-9

resuming, 3-13

saving, 3-13

substituting numeric values, 3-9

using *GET, 3-3

using get functions, 3-3

using in-line get functions, 3-4

writing, 3-13

_RETURN, 5-5

_RETURN parameter, 4-14

_STATUS parameter, 4-14
Parameters

naming conventions, 3-1
parametric expressions, 3-12
parametric functions, 3-12
PARRES command, 3-10, 3-13, 6-73
PARSAV command, 3-10, 3-13, 6-74
passing arguments to macros, 4-8
plotting

array vectors, 3-40

labeling, 3-44
/PMACRO command, 5-7

R
*REPEAT command, 4-11
repeating a command, 4-11
RESUME command, 3-9
parameters
retrieving or restoring parameter values, 3-29

S
*SET command, 3-2,3-11, 3-19, 3-20
specification commands
vector and matrix operations, 3-37
start.ans file, 3-3
status bar, 5-5
*STATUS command, 3-7, 3-11, 3-29, 3-37
examples, 3-29
/STITLE command, 3-9, 3-11
STOP button
creating using a macro, 5-5

APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

Index-3

Index

T
TABLE

defined, 3-14

examples, 3-17
/TEE command, 4-4
text editor, 4-5
/TITLE command, 3-9, 3-11
/TLABEL command, 3-9, 3-11
toolbar

default buttons, 2—-1

modifying, 2-1

nesting abbreviations on, 2-3
*TREAD command, 3-19, 3-23, 3-23

V)
UIDL functions
calling in macros, 5-7
/UIS command, 5-4
*ULIB command, 4-7
UNIX shells, 3-3
unknown command
method for executing macros, 4-7
*USE command, 4-7, 4-7

\')
*VABS command, 3-37
*VCOL command, 3-37
*VCUM command, 3-37
vector operations, 3-32
*VEDIT command, 3-11, 3-19
defined, 3-21
*VFACT command, 3-37
example, 3-37
*VFILL command, 3-11, 3-19, 3-32
defined, 3-21, 3-37
*VFUN command, 3-11, 3-32
examples, 3-32, 3-37
*VGET command, 3-11, 3-32
*VITRP command, 3-11, 3-32
*VLEN command, 3-11, 3-37
examples, 3-37,3-37
*VMASK command, 3-11, 3-37
example, 3-37,3-37
*VOPER command, 3-11, 3-32
examples, 3-32, 3-32
gather and scatter, 3-32
*VPLOT command
defined, 3-40, 3-40, 3-44
*VPUT command
defined, 3-29

*VREAD command, 3-10,3-11,3-19, 3-23,3-32,3-32,

3-37

*VSCFUN command, 3-11, 3-32

*VSTAT command, 3-37, 3-37

*VWRITE command, 3-10, 3-11, 3-13, 3-32, 3-37
data descriptors, 3-30, 3-30

w

windows
current directory, 4-2

Index-4 APDL Programmer's Guide . ANSYS Release 8.1.001973. © SAS IP, Inc.

	APDL Programmer's Guide
	Table of Contents
	Chapter 1: Introducing APDL
	1.1. What Is APDL?

	Chapter 2: Working with the Toolbar
	2.1. Adding Commands to the Toolbar
	2.2. Modifying the Toolbar
	2.2.1. Example: Adding a Toolbar Button
	2.2.2. Saving Toolbar Buttons

	2.3. Nesting Toolbar Abbreviations

	Chapter 3: Using Parameters
	3.1. Parameters
	3.2. Guidelines for Parameter Names
	3.2.1. Hiding Parameters from *STATUS

	3.3. Defining Parameters
	3.3.1. Assigning Parameter Values During Execution
	3.3.2. Assigning Parameter Values At Startup
	3.3.3. Assigning ANSYS-Supplied Values to Parameters
	3.3.3.1. Using the *GET Command
	3.3.3.2. Using In-line Get Functions

	3.3.4. Listing Parameters

	3.4. Deleting Parameters
	3.5. Using Character Parameters
	3.6. Substitution of Numeric Parametric Values
	3.6.1. Preventing Substitution
	3.6.2. Substitution of Character Parametric Values
	3.6.2.1. Forced Substitution
	3.6.2.2. Other Places Where Character Parameters Are Valid
	3.6.2.3. Character Parameter Restrictions

	3.7. Dynamic Substitution of Numeric or Character Parameters
	3.8. Parametric Expressions
	3.9. Parametric Functions
	3.10. Saving, Resuming, and Writing Parameters
	3.11. Array Parameters
	3.11.1. Array Parameter Basics
	3.11.2. Array Parameter Examples
	3.11.3. TABLE Type Array Parameters
	3.11.4. Defining and Listing Array Parameters
	3.11.5. Specifying Array Element Values
	3.11.5.1. Specifying Individual Array Values
	3.11.5.2. Filling Array Vectors
	3.11.5.3. Interactively Editing Arrays
	3.11.5.4. Filling an Array From a Data File Using *VREAD
	3.11.5.5. Filling a TABLE Array From a Data File Using *TREAD
	3.11.5.6. Interpolating Values
	3.11.5.7. Retrieving Values into or Restoring Array Parameter Values
	3.11.5.8. Listing Array Parameters

	3.11.6. Writing Data Files
	3.11.6.1. Format Data Descriptors

	3.11.7. Operations Among Array Parameters
	3.11.7.1. Vector Operations
	3.11.7.2. Matrix Operations
	3.11.7.3. Specification Commands for Vector and Matrix Operations

	3.11.8. Plotting Array Parameter Vectors
	3.11.9. Modifying Curve Labels

	Chapter 4: APDL as a Macro Language
	4.1. What is an APDL Macro?
	4.2. Creating a Macro
	4.2.1. Macro File Naming Conventions
	4.2.2. Macro Search Path
	4.2.3. Creating a Macro Within ANSYS
	4.2.3.1. Using *CREATE
	4.2.3.2. Using *CFWRITE
	4.2.3.3. Using /TEE
	4.2.3.4. Using Utility Menu> Macro> Create Macro

	4.2.4. Creating Macros with a Text Editor
	4.2.5. Using Macro Library Files

	4.3. Executing Macros and Macro Libraries
	4.4. Local Variables
	4.4.1. Passing Arguments to a Macro
	4.4.2. Local Variables Within Macros
	4.4.3. Local Variables Outside of Macros

	4.5. Controlling Program Flow in APDL
	4.5.1. Nested Macros: Calling Subroutines Within a Macro
	4.5.2. Unconditional Branching: Goto
	4.5.3. Conditional Branching: The *IF Command
	4.5.4. Repeating a Command
	4.5.5. Looping: Do-Loops
	4.5.6. Implied (colon) Do Loops
	4.5.7. Additional Looping: Do-While

	4.6. Control Functions Quick Reference
	4.7. Using the _STATUS and _RETURN Parameters in Macros
	4.8. Using Macros with Components and Assemblies
	4.9. Reviewing Example Macros

	Chapter 5: Interfacing with the GUI
	5.1. Prompting Users for a Single Parameter Value
	5.2. Prompting Users With a Dialog Box
	5.3. Using Macros to Display Your Own Messages
	5.4. Creating and Maintaining a Status Bar from a Macro
	5.5. Picking within Macros
	5.6. Calling Dialog Boxes From a Macro

	Chapter 6: Encrypting Macros
	6.1. Preparing a Macro for Encryption
	6.2. Creating an Encrypted Macro
	6.3. Running an Encrypted Macro

	APDL Commands Reference
	*ABBR
	ABBRES
	ABBSAV
	*AFUN
	*ASK
	*CFCLOS
	*CFOPEN
	*CFWRITE
	*CREATE
	*CYCLE
	*DEL
	/DFLAB
	*DIM
	/DIRECTORY
	*DO
	*DOWHILE
	*ELSE
	*ELSEIF
	*END
	*ENDDO
	*ENDIF
	*EXIT
	*GET
	*GO
	*IF
	/INQUIRE
	/MAIL
	*MFOURI
	*MFUN
	*MOPER
	*MSG
	*MWRITE
	PARRES
	PARSAV
	/PMACRO
	/PSEARCH
	*REPEAT
	*RETURN
	*SET
	*SREAD
	*STATUS
	*TAXIS
	/TEE
	*TOPER
	*TREAD
	/UCMD
	*ULIB
	*USE
	*VABS
	*VCOL
	*VCUM
	*VEDIT
	*VFACT
	*VFILL
	*VFUN
	*VGET
	*VITRP
	*VLEN
	*VMASK
	*VOPER
	*VPLOT
	*VPUT
	*VREAD
	*VSCFUN
	*VSTAT
	*VWRITE
	/WAIT

	Appendix A. APDL Gateway Commands
	Appendix B. GET Function Summary
	Index

