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1. Discrete Spectral Lines – DRAFT, INCOMPLETE

Discrete spectral features are useful for the following:

abundance of elements too low to contribute to the continuous opacity at any wavelength

sample wide range of atmospheric depths, in particular, cores of strongest lines formed much

closer to surface than wings/continuum, so can probe upper atmosphere levels, reaching in

some cases the chromosphere, just above the temperature minimum

precision radial velocities, including planet searches

much more sensitive to velocity fields on/near stellar surface due to much narrower

frequency range

isolate orbital motions for individual stars in the spectrum of a binary star

2. Reminder Re Sources of Continuum Opacity

The main source of continuum opacity in cool stars is H−, which has only one bound

state and an ionization potential of 0.75 eV. In hotter stars, the H bound-free and free-free

opacities dominate. The appended figures indicating the contributions of the various sources

as a function of temperature and frequency are taken from Gray, 3rd edition.
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Fig. 1.— The bound-free absorption coefficient for H. (Fig. 8.2 of Gray)
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Fig. 2.— The bound-free and free-free absorption coefficient for H−. (Fig. 8.4 of Gray)
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Fig. 3.— The contributions to the total opacity for low temperatures. (Fig. 8.5 of Gray)
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Fig. 4.— The contributions to the total opacity for higher temperatures where the

contribution from H dominates. (Fig. 8.5 of Gray, additional panels)
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3. The Line Absorption Coefficient

We assume a solution for the model atmosphere with the desired values of the stellar

parameters Teff and log(g) (and chemical composition, X, Y, Z) has been created using

the appropriate continuous opacity. We assume that individual lines are then added, but

they do not modify the T (τc) structure established using the equations of stellar structure

appropriate for the atmosphere with the continuous opacity sources.

The specification of a specific spectral line includes the element X of abundance A(X)

and stage of ionization N (N = nuetral or singly ionized or ...) which give rise to the

line. The excitation potential χ for the lower state of the transition is also required as is

specification of the central frequency ν0 = ∆(Eul)/h where Eul is the energy difference

between the upper and lower electronic configurations/states of this transition.

The profile of this line is a normalized function of ν which we call φ(ν) peaked at ν0.

∫

∞

0

φ(ν)dν = 1.

To find the profile function, we need to find x(t) for the radiating electron/particle,

then Fourier transform that to get f(ω), where ω = 2πν.

If several different types of broadening with different functional forms for f(ω)

contribute, we need to convolve those to obtain the final profile function. Convolution

in physical space is equivalent to multiplication in Fourier space, so it may be easier to

calculate this in Fourier space.

The damped harmonic oscillator,

d2x

dt2
= − ω20 x− γ

dx

dt
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has the solution

x(t) = x0e
iω0te−γt/2

The Fourier transform of this solution x(t) is the Lorenz function,

φ(ω) ∝
Γ

(ν − ν0)2 + Γ2

where Γ = γ/(4π).

Natural damping (from considering the energy lost by a radiating electron) is always

present, and is effectively a damped harmonic oscillator. Hence in frequency space it

appears as a Lorenz profile. For natural damping,

γ =
2e2ω2

3mc3

Natural damping has a FWHM which is constant in wavelength, ∆λ1/2 = 1.2 × 10−4 Å.

This values is both fixed and small compared to other sources of line broadening.

Various collision perturbation terms also lead to a Lorenz profile, or something quite close

to that function.

Note that the convolution of two Lorenz profiles is also a Lorenz profile with

Γtotal = Γ1 + Γ2.

Doppler broadening, from thermal motions, reflects the Maxwellian velocity

distribution, and has a Gaussian profile function. The Fourier transform of a Gaussian is a

Gaussian.
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φ(ν) ∝ e−
v2

β2
dv

β
∝ e

−
∆ν2

∆ν2
D

where β2 = 2kT/m (β is the mean thermal speed) and ∆νD = ν0β/c.

The Voigt profile, which does not have a simple analytical form, is the convolution of a

damping profile and thermal broadening.

4. Forming the Line Absorption Coefficient

Given the normalized profile function φ(ν), the cross section/radiating atom is

σ(ν) =
πe2

mc
fφ(ν)

The first factor is a cross section, πr2e , multiplied by the quantum mechanical correction

factor f (ranging from about 2 to 10−4 depending on whether the transition is permitted

by the selection laws of QM or not.

To get α(ν), the absorption coefficient/cm of the line of element X in the correct

ionization state and correct lower level, we set:

α(ν) =
πe2

mc
(gf) n(X) [IF (X)] e−χ/kT φ(ν)

The latter terms give the number of atoms of type X in the correct ionization stage

and electronic level, which contains the ionization fraction IF (X) (the fraction of atoms of

element X in the desired ionization stage), the excitation potential χ, and statistical weight

of the lower level g. The last term is the normalized line profile function.

At large ∆ν, far from the line center, α(ν) ∝ 1/∆ν2, while close to the line center, the
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Doppler core dominates.

5. Collisional Broadening

Two treatments, one collision at a time (impact approximation) or statistical. First

has a Lorentz profile where γ = 2/τ , τ is the mean time between collisions.

For an impact parameter ρ and a perturber number density np we have 1/τ = πρ
2npvrel,

where the relative velocity of the radiating atom and the perturber is used. A smaller

impact parameter means a collision which produces a larger perturbation. Such close

collisions, for a given number density of perturbers, are rare. The impact approximation

will be valid when the duration of a collision, approximated by ρ/vrel, is less than τ , where

τ is the mean time between collisions.

We assume an interaction δω = Cp/r
p, where Cp is a constant. p = 2 for the linear

Stark effect (H + charged particle), p = 6 for Van der Waals broadening (atom A + atom

B, both neutral).

The total phase shift for the collision is

η(t) =
∫ t

−∞

∆ω(s)ds η(∞) =
∫

∞

−∞

∆ω(t)dt =
∫

∞

−∞

Cp
[(vt)2 + ρ2]p/2

dt

If η(∞) > η0, colisions are effective at broadening the line. Choose η0 = 1 to get

the Weiskopf radius, i.e. the maximum impact parameter of interest for the impact

approximation to be valid, ρ0.

In the statistical theory, consider only the nearest neighbor, at distance d. We need the

probability distribution for d, P (d), then take P (d)Cp/d
p. This results in a function which

is almost a Lorentz profile.
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In practice one can adopt the following approximation for Van der Waals broadening

(p = 6) (hydrogen broadening with p = 2 requires a more careful treatment)

Γ(p = 6) = 17C2/5v3/5np Hz, C = 6.5× 1034
R2K
a20

where a0 is the Bohr radius for hydrogen and RK is the radius in the radiating atom of the

relevant electronic state in units of the Bohr radius.

Since γ ∝ np, the number density of the perturbers, for a fixed temperature, it increases

as the pressure increases. Hence γ increases with surface gravity for a fixed Teff stellar

model atmosphere.

6. Radiative Transfer Issues

The addition of absorption under the assumptions outlined in the introductory

paragraphs basically means a shifting of the optical depth – physical depth relation

previously established using only the continuous opacity sources. Adding in the line opacity,

we determine the value of τ(line), which includes both the line and continuous opacities,

for a given physical depth. This will give a lower surface emitted flux than when just the

continuous opacity is included for a model atmosphere where temperature increases inward.

Note that τ(line) = τ(cont) for frequencies far from the line center, where α(ν) is very

small and can be ignored. At frequencies near the line center, for any physical depth z,

τ(line) > τC .
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7. Approximations for Equivalent Width

We define A(ν) as the fraction of the continuum absorbed using the computed detailed

line profile as a function of frequency,

A(ν) =
FC − Fline(ν)

FC
.

when we take into account the presence of the line by using κ = κ(cont) + κ(line). We

evaluate FC near ν0, the frequency of the line center.

We define the residual intensity R(ν) as R(ν) = Fline(ν)/FC . The equivalent width

Wν =
∫

∞

0

A(ν)dν.

Wλ is often used as well. Wν represents the frequency width of the line if viewed as an

inverted top hat, with 100% absorption of the continuum over that frequency interval.

Ditto for Wλ with regard to a wavelength interval.

To get approximate solutions, we assume that F (τ = 0, ν) is Bν(T : τ = 2/3). We

then derive for weak lines, i.e. those with κline << κC at the line center,

A(ν) =
2

3

κline(ν)

κC

dlnBν
dτC

, evaluated at τC = 2/3.

Thus for weak lines,

W ∝
n(X) IF (X) e−χ/kTgf

∆νD κC
.

For strong lines, where the damping wings dominate,

W ∝
√

Γ n(X) (IF ) e−χ/kTgf/κC.
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In lines of intermediate strength, the line center absorbtion is strong enough that the

flux is the minimum flux level, corresponding to Bν(T : τ = 0), which is about 20% of

the continuuum flux. Recall that the continuum flux can be approximated as originating

at τc = 2/3; see the notes on radiative transfer. The whole Doppler core gradually is

brought down to this minimum flux level for lines of intermediate strength. In this case,

W ∝ log[n(X)IFe−χ/kTgf/(∆νDκC)]. Eventually the whole Doppler core has F (ν) at this

minimum. At that point the wings begin to become important, and we switch to the strong

line case.
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Fig. 5.— The contribution to the flux on the blue and red side of the Balmer jump as a

function of depth in the atmosphere. The much higher opacity on the blue side of the Balmer

jump means that the flux is coming from shallower, cooler layers. This is Fig. 9.10 of Gray.
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Fig. 6.— The contribution to the emitted flux in the continuum at various wavelengths as

a function of depth in the atmosphere. S0 is Teff/Teff(Sun). This is Fig. 9.9 of Gray.
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Fig. 7.— The perturbation of the upper and lower levels of an atomic transition. The upper

level has electrons at larger distances from the atomic nucleus in the mean, hence is more

easily perturbed by collisions. This is Fig. 11.2 of Gray.
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Fig. 8.— Upper panel: damping constants for the NaI D line as a function of depth in the

solar atmosphere calculated in several diferent ways. Lower panel: The Hjerting (Voigt)

function which describes the line profile, with both Gaussian and damping contributions.

This is Fig. 11.4 (top) and 11.10 (bottom) of Gray.
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Fig. 9.— Upper panel: curve of growth, lower panel: a series of line profiles as abundance

changes by a factor of 10. Note the presence of the Doppler core and the damping wings

(for the higher abundances) in the line profiles. This is Fig. 13.12 of Gray.
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Fig. 10.— Theoretical Balmer line profiles from Fuhrman, Axer & Gehren, 1993, A&A,

271, 451. Left panels - Feff chaging from 5000 K to 6700 K (steps 100 K), middle panels -

changing log(g), right panels - changing metallicity. Vertical axis is residual intensity from

0.70 to 1.0 in each panel.
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Fig. 11.— Upper panel: Strong Balmer lines in Vega. Lower panel: Strong MgI line in the

solar spectrum. Note the presence of the Doppler core and the damping wings in the line

profile. This is Fig. 11.11 of Gray.
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Fig. 12.— Comparison of observed and theoretical Balmer line profiles (from Fuhrman, Axer

& Gehren, 1993, A&A, 271, 451) for the Sun, Procyon, and a metal poor cool dwarf.
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Fig. 13.— The Solar spectrum, NSO/FTS. Full spectral coverage over wavelength regime

about 350 to 950 nm.
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Fig. 14.— A small piece of the Solar spectrum, NSO/FTS.
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Fig. 15.— A small piece of the Solar spectrum, NSO/FTS.
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Fig. 16.— A small piece of the Solar spectrum, NSO/FTS, with the spectral lines identified.
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Fig. 17.— Part of a Keck/HIRES spectrum of an extremely metal-poor star with very

strong CH bands. This is about 1/3 of the total spectral coverage one can obtain in a single

exposure.
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8. The Inglis – Teller Relationship

This relationship is used to predict the number density N by counting the lines in

a series (often the Balmer series is used) that can be resolved as separate features up to

the series limit. Because of the finite width of the lines, the lines can only be counted as

separate up to a definite quantum number nmax, and this limiting value can be used to

obtain the number density.

H lines are broadened by the linear Stark effect, as the perturbation is proportional to

the electric field. Let r0 be the mean interparticle distance. The perturbing atoms in this

case are protons and electrons.

r0 = [
3

4πN
]1/3

Then ∆ω0 = Cp/r
p, Cp = 3, p = 2.

The electric field E = e/r20 = e(4πN/3)
2/3.

The change in energy of an electron in a H atom in the nth level due to this perturbing

force is (recall that the radius of the electron in the nth level is n2a0):

∆En = reeF = n
2a0 e

2 (4πN/3)2/3.

The line series has transitions from lower state 2 (for the Balmer series) to upper level

n, where the energy of level n is 13.6/n2 eV or −e2/(2n2a0). We now look at separation of

two adjacent lines, to levels n and to n+ 1. This is

∆E(n) = En −En+1 =
e2

2n2a0
−

e2

2(n+ 1)2a0
≈

e2

2n2a0
[1− (1− 2/n)] ≈

e2

n3a0
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The lines in the series merge and become undistinguishable when

∆E(n)/2 = ∆E(perturb)

n2a0 e
2 (4πN/3)2/3 =

e2

2n3a0

The solution for the number density N of the perturbers is:

N =
1

n7.5
[

1

2a20(4π/3)
2/3
]1/5.

Evaluating the constants gives, for N/cm3,

log(N) = − 7.5 log(nmax) + 23.48.

A better derivation, including a better theory of line broadening, gives

log(N) = − 7.5 log(nmax) + 22.96.

A dwarf main sequence star might have N ∼ 1016/cm3, which would predict nmax = 9.

A supergiant might have a number density as low as N ∼ 1013/cm3 in its atmosphere,

which would lead to nmax = 23. This difference is easily discernable from inspection of the

spectra of the two stars, even at moderate resolution.

Thus one can deduce the gravity of a star from the Inglis–Teller relationship. Ionization

balance between abundances deduced from spectral lines of the neutral and of the ionized

species of the same element can also be used for this purpose.
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Fig. 18.— Upper panel: The Balmer jump as a function of Teff and surface gravity. Lower

panel: The Balmer lines in a star with Teff ∼ 10, 000 K.
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9. Microturbulence, Macroturbulence, Rotation

Microturbulence is small scale motions of the stellar gas, beyond the always present

thermal motions, such that the local velocity is larger than the appropriate thermal velocity.

The line absorption coefficient is affected in that the Doppler width parameter is then

bigger than that corresponding to just the thermal velocity,
√

2kT/m. The non-thermal

and thermal contributions add in quadrature to obtain the velocity width ∆νD for the

absorption line profile. Microturbulence affects the equivalent width of a spectral feature.

At T = 6000 K, the mean velocity of H atoms is 13 km/sec. For heavier atoms,

v ∝ 1/
√
m, and microturbulent velocities of order of 1 km/sec may substantially affect the

“Doppler width” ∆νD.

Macroturbulence arises from large scale motions such as convection or rotation. (vrot

for the Sun is about 1.9 km/sec.) In this case the local value of the line absorption α(ν) and

of the predicted I(ν) is unaffected, but the velocity shifts this entire profile in frequency

across the disk of the star depending on the local velocity with respect to the mean over

the disk. The total flux at each frequency within the feature is then obtained by applying

the appropriate frequency shift to the nominal line absorption profile (i.e. the local I(ν)),

which is itself constant, and integrating over the area of the disk. A more careful treatment

would include limb darkening across the disk as well as the actual solid angle integral.

The equivalent width of an absorption or emission feature is preserved, but the flux is

redistributed in frequency around the line center.

In the ideal case, both micro and macroturbulence should be negligable, except for

rotation. Neither has any substantive effect on the stellar continuum, only on discrete

absorption or emission lines.

Solid body rotation about an axis perpendicular to the line of sight is fairly
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straightforward to handle; see, for example, chapter 18 of Gray’s book (3rd edition). One

divides the visible disk of the star into strips parallel to the axis of rotation, so that each

strip has a constant rotational velocity with a wavelength shift from the nominal line center

λ0 of ∆λ = λ0 ω x/c, where x is the distance from the axis of rotation of the strip,

0 ≤ x <≤ R, and ω is the angular velocity of the rotation at the surface of the star. The

largest velocities and hence wavelength shifts are found at the limb of the star furthest from

the rotation axis, one side approaching the observer, the other receeding. But these strips

have the smallest solid angle on the disk. The bulk of the material has a smaller velocity

shift with respect to the mean for the star.

The integral of these strips across the disk of I(ν), where I(ν) is appropriately shifted

in frequency within each strip, gives the total observed flux as a function of frequency across

the line.

Rotationally broadened lines have a characteristic U shape and are easily picked out in

high resolution spectra of stars by an experienced person if vrot ∼> 2vD, where the latter is

the total Doppler velocity including any microturbulence. vrot is straightforward to measure

if the line profile is well resolved.

Only vrotsin(i) can be determined, where i is the inclination angle between the line of

sight and the axis of rotation.


