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1. Project summary

The first Magellan primary mirror was cast, generated and polished by the Steward Obser-
vatory Mirror Lab during the period February 1994 - November 1998, The casting procedure is
described by Olbert ef al.! Generating and polishing procedures wete similar to those used for the
MMT primary mirror and described by Martin et al, (1997).2 This report documents the quality of
the finished mirror in terms of mechanical geometry, surface finish, figure accuracy and inferred
image quality.

The mirror promises excellent performance. The structure is sound and has the superb me-
chanical and thermal characteristics of the honeycomb sandwich. The mirror is diffraction-Jimited
(Strehl ratio > 0.8 ) down to A = 400 nm, and at 500 nm focuses 80% of the light into a diameter
well under 0.17.

We generated and polished the rear surface and edges with the mirror supported by the
“spider” handling fixture attached to the front surface. We used the Large Optical Generator
(LOG) for all generating and lapping operations. We chose the position of the mechanical axis to
match the centroid of a set of 30 rib intersections distributed symmetrically over the full mirror.
We measured the radial positions of these rib intersections by viewing them through index match-
ing oil with a CCD camera which was attached to the generating spindle. We chose the tilt of the
mechanical axis to minimize wedge in the backplate, as determined by ultrasonic thickness mea-
surements at a set of 60 cells. We generated and polished the rear surface and all four edges (inner
and outer, top and bottom} at this time.

We marked the locations and orientations of the support load spreaders by grinding shal-
fow rings 1 mm in diameter with a dremel tool attached to the generating spindle. We centered the
pattern of load spreader locations at the mechanical axis and chose its rotation angle to give the
best average agreement with a set of 84 rib intersections. We bonded the load spreaders to the rear
surface with Dow Corning Q3-6093 silicone adhesive, then turned the mirror over and set it on its
polishing support.

We generated the front surface with a sequence of diamond wheels: a cup wheel with 30
mesh diamonds in a metal bond, the same wheel with 100 mesh diamonds in a metal bond, and a
spherical wheel with 120 mesh diamonds in a resin bond. We monitored faceplate thickness with
the ultrasonic gauge and overall thickness with calipers, and measured the surface profile using
the LOG as a profilometer. The accuracy of this measurement is limited to that of the LOG’s mo-
tion, on the order of 10 microns rms.

On completion of generating, we installed the 1.2 m stressed lap and started loose-abrasive
grinding in March 1998. We placed small ceramic tiles on the pitch and used aluminum oxide
abrasives of 25 and 9 micron. The initial optical measurements were made with an IR interferom-
eter and null lens after just enough lapping to achieve continuous interference fringes. They
showed a surface error of 70 microns peak-to-valley, dominated by a trefoil error of 50 microns
peak-to-valley. We believe this was caused by flexure of the turntable bearing under the uneven
load of the mirror and cell. We were able to remove it rapidly by varying the lap pressure dynam-
ically.




In May we removed the ceramic tiles, replaced the pitch, and started polishing. We used,
at different times, bare pitch and thin plastic pads on pitch. We also used cerium oxide and rouge
as the abrasive at different times. We found that bare pitch with rouge gave the best surface finish
(microroughness) and used that combination for the final few weeks.

We made the first measurements at visible wavelength in June. All visible measurements
were made with a 531 nm laser interferometer and a refractive null lens. The mirror was figured to
match a template defined by a computer-generated hologram. Measurements of the hologram re-
vealed a substantial error in the null lens (290 parts per million in conic constant). We are still try-
ing to determine the source of that error.

We used the stressed lap to remove both axisymmetric and asymmetric large-scale figure
errors and to obtain passive smoothing on scales less than about 10 cm. We also ran axisymmetric
strokes with passive laps between 10 cm and 30 cm diameter to remove narrow high zones. We
reached the final accuracy in November 1998.



2. Specifications

2.1 Prescription

The optical prescription is a paraboloid. For purposes of tolerance analysis, we treat it as a
conic section defined by the radius of curvature R and conic constant k. The surface height z as a
function of distance r from the axis of symmetry is

72

R+ R (ke + 1)r2

The values and tolerances of the radius of curvature and conic constant are given by the Technical
Specifications and chuirements3:

z(r) = (1

R = 16256 £3 mm, (2)
k = —1.0000 £ 0.0002, (3)

and the errors in R and k must satisty

|AR + (3.2x10°mm)Ak| < 40 mm, )

The last condition constrains the conic error to roughly +0.00012 .

2.2 Figure error

The figure specification is given by a wavefront structure function Bz(r) , the mean square
wavefront difference between points in the aperture as a function of separation r. It is the structure
function produced by the standard model of atmospheric seeing, with two modifications. The
standard atmospheric structure function is

5% = (27;) 6. 88(r0)5/% , (5)

where r, is the Fried parameter, related to image FWHM 6 as

0 = 0.980(1). (6)

Yo

The first modification tightens the specification at large separations by removing that part of the
atmospheric structure function corresponding to mean wavefront tilt. (This is done because au-
toguiding will remove mean tilt, or 1magc motion, in the telescope, and the laboratory figure mea-
surements are insensitive to it.) Hufmgcl gives an approximate expression for this correction,
which depends only on telescope diameter D. The second modification is a relaxation at small
separations corresponding to scattering a fraction L of the light outside of the seeing disk. The
scattering loss is related to the small-scale rms phase error ¢ as



L=1-¢°7. N

The full specification is then

52 = (%5)2{6.88(%)5/3[1 - 0.975(%)1/3} + 202} . (8)

The two parameters that fix its amplitude are
rg = 1.18 m, )

L = 0.015, (10)
both defined at A = 500 nm. This specification is plotted along with the measured structure func-
tions in Figures 4 and 8.

2.3 Clear aperture
The clear aperture is defined as the annular region with
ID = 923 mm, (1D
OD = 6478 mm. (12)

The structure function is evaluated over this clear aperture, which extends to within about 11 mm
of each edge of the polished surface.

2.4 Mechanical dimensions

Mechanical dimensions are given by drawing 1168, Rev. C. The following tolerances are
listed in the Technical Specifications and Requirements,

1. centration of optical axis with respect to mechanical center: 1 mm
2. vertex thickness: 385.1 £ 0.5 mm

3. wedge angle: 30”



3. Conventions and notation

3.1 Orientation of coordinates

All figure maps show the optical surface as viewed face-on with the mirror horizon-point-
ing. Rotation angles quoted throughout this report use the same view. The x and y axes are in the
usual sense, x increasing to the right and y increasing upward. Angles increase counter-clockwise
from O in the positive x direction. This convention holds for descriptions of the back plate as well
as the optical surface, i. e. one views the back plate through the mirror.

3.2 Zernike polynomial coefficients

We use Zernike polynomial coefficients to describe the aberrations of focus, astigmatism,
coma and spherical aberration. Throughout this report, amplitudes of these aberrations are given
in terms of the Zernike coefficient of surface error. The symbols used for coefficients and the asso-
ciated polynomials are given in Table 1. The polynomials are expressed as functions of the dimen-
sionless radius p normalized to 1 at the edge of the mirror.

Table 1. Zernike polynomial coefficients

aberration coefficient polynomial
focus Rg 2p2 -1
astigmatism (0°) RS 0%c0s(26)
astigmatism (45°) Ry’ p*sin(20)
coma (0°) ' R, (3p> —2p)cosd
coma (90°) Ry (3p° —2p)sin®
spherical aberration Rg 6p4 -6 p2 +1

We sometimes describe astigmatism by the combined Zernike coefficient

2.2 02172
Ry = [(Ry) +(Ry) ] (13)
and the rotation angle
—~2
1 R
By, = iatan[—-z—z—] (14)
Ry

at which the high occurs.

Spherical aberration is equivalent to a change in conic constant; the relation between
Zernike coefficient R, and conic change Ak is



0

3k
Ak = 6144”2, (15)

1l

where f = 1.25 is the focal ratio and D
million,

6.5 m is the diameter. If Ak is expressed in parts per

A R}
_Ak 1.846(——4 J (16)
| ppm | nm

Positive spherical aberration corresponds to a less negative conic constant.

]

3.3 Uncertainties

All uncertainties quoted in this report represent our best estimate of two standard devia-
tions, In other words, a value quoted as x = Ax means that we estimate that the value lies within
that range with 95% probability. This interpretation is valid only for anticipated sources of error.



4. Procedure for figure measurements and analysis

4.1 Measurement system

Optical tests were performed from the center of curvature with the mirror mounted on its
polishing support cell. The measurement system comprises a Shack-cube interferometer, a stabi-
lized frequency-doubled YAG laser at 531 nm, an imaging system with CCD camera, and an
Offner-type refractive null corrector, The measurement is made by phase-shifting interferometry,
in which the phase variations across the pupil are determined from a series of intensity patterns
with phase shifts between them. The Shack cube is translated with piezoelectric transducers to in-
troduce a phase shift, constant across the pupil, between successive intensity patterns. Intensity
patterns are recorded at a 200 Hz frame rate, and reduced to phase measurements using a com-
mercial system from Phase Shift Technology. The CCD camera has square pixels and a resolution
of 197 pixels across the mirror in the full-aperture measurement.

4.2 Measurement noise

Any single phase map contains random errors due to local air turbulence (seeing) and vi-
bration. They are reduced by taking many phase maps and averaging. The error in an individual
full-aperture map, computed as the difference between that map and the average of all maps, is
40-60 nm rms. These errors average out as random noise, with the possible exception of large-
scale features which may persist for 10 s or more and therefore correlate among two or more
maps. The full-aperture map presented here is an average of 150 individual maps, while the sub-
aperture maps arc averages of 50 maps, We estimate that the contribution of seeing and vibration
in the average map is less than 10 nm rms surface error. Some of this is in the form of astigma-
tism, which is ignored. The contribution to the structure function at the critical 5-10 cm separa-
tions is not significant.

4.3 Mirror support

The mirror is supported on passive hydraulic cylinders that match the telescope support
system in location and force. Differences between the support mechanisms in the polishing cell
and the telescope cell are expected to cause force differences on the order of 10 N. Certain support
units exhibited inconsistencies of up to 30 N from day to day, apparently because of friction in the
vertical motion of the unit. These force variations cause significant changes in astigmatism and
smaller changes in other flexible bending modes. Most of their effects will be removed through
the empirical optimization of support forces in the telescope cell.

Plastic skirts used to collect polishing slurry at the inner and outer edges of the mirror
were removed for all tests, so the only mechanical contact with the mirror was through the 104
supports and the 3 tangent rods that provide a kinematic constraint against translation and rota-
tion.




4.4 Thermal equilibration

Temperature differences on the order of 1 K can develop within the mirror during a polish-
ing run, causing thermo-elastic deflections of the mirror. We ventilate the mirror after each polish-
ing run, reducing the temperature differences to about 0.2 K, roughly equal to the sensitivity of
the temperature measurement system in the mirror and polishing cell. All figure measurements re-
ported here were made after at least 24 hours of passive equilibration following the ventilation,
adequate to erase any effects of the final polishing run.

4.5 Removal of test optics errors

We determine the errors in the test optics by measuring a computer-generated hologram
(the primary hologram) that mimics the ideal primary mirror. The principles and procedure are
described in Section 7.3. We subtract a Zernike polynomial representation of the primary holo-
gram map from all maps of the primary mirror. The map of the primary hologram contains spher-
ical aberration with a Zernike coefficient of —155 nm, equivalent to an error in conic constant of
290 parts per million (ppm). This is believed to come from refractive index variations in the
large relay element of the null lens. The relay lens has been measured with a hologram as de-
scribed in Section 7.5. Its transmitted wavefront error is consistent with the error in spherical ab-
erration seen in the map of the primary hologram.

As a separate and independent verification, we plan to remeasure the mirror with a new in-
terferometer before the mirror is removed from the polishing cell. The new interferometer will
subsequently be used for all optical testing after the mirror is installed in the telescope cell. It op-
erates at a different wavelength (633 nm) and therefore requires a respacing of the null lens ele-
ments. The accuracy of the modified null lens will be verified with a new primary hologram.

4.6 Treatment of tilt, defocus and coma

The test optics are mounted in a stiff frame that is positioned relative to the mirror with re-
motely controlled translation and rotation stages. These stages are used to align the test optics in
five degrees of freedom: horizontal and vertical translations and tilt in both directions. This align-
ment is adjusted to minimize tilt, defocus and coma in the reflected wavefront as judged by visual
inspection of the interference pattern. Residual aberrations of these forms are subtracted from the
measured phase map. The aberrations of tilt, defocus and coma are constrained by measured lim-
its on wedge, radius of curvature and centration of the optical axis, respectively. These quantities
are measured separately as described in Section 6.

4.7 Treatment of astigmatism and spherical aberration

We measured varying amounts of astigmatism throughout the fabrication process, includ-
ing the final figure measurements. We believe the variations are related to support forces. The
astigmatism varied in magnitude from about 200 to 400 nm among figure measurements made on
different days after polishing was completed. These variations did not come from noise in the da-
ta, for the variations among maps measured on a given day were much smaller. We estimated the
support forces necessary to cause this much astigmatism from a modal analysis of the BCV finite-



element analysis.5 6 Astigmatism with a Zernike coefficient of 400 nm would be caused by an op-
timized set of forces whose extreme values are +2 N, or by random force errors on the order of 14
N rms. In the telescope, astigmatism will be determined entirely by support forces rather than the
relaxed mirror’s figure.

Spherical aberration varied by about £:10 nm among measurements made after polishing
was completed. The variation is probably caused by small temperature gradients. The final full-
aperture map has 45 nm of spherical aberration, equivalent to an error of 80 parts per million in
conic constant, Spherical aberration can be treated as an etror in conic constant rather than a fig-
ure error.

We present full-aperture maps and structure functions with and without astigmatism and
spherical aberration, The synthetic images are made from the maps with both aberrations subtract-
ed.

4.8 Measured aperture

The physical size of the measured aperture is determined by placing fiducial markers at
known locations on the mirror surface, and measuring their location in the image. We placed
small annular markers at four positions near the edge, at a radius of 2.98 m. Scaling from the im-
age coordinates of these markers to the edge of the image gives a diameter of 6.485 m between the
centers of the outermost pixels in the full-aperture map. Since the pixels are 33 mm wide, the im-
age covers a diameter of 6,518 m, 18 mm larger than the polished surface. This introduces some
noise in the outer ring of pixels. We attempt to eliminate its effect on the structure function and
point-spread function by sampling only inside the clear aperture.

4.9 Subapertfure measurements

We measured three subapertures across the elevation axis. The resolution is 2.2 times that
of the full-aperture map, limited by the need to maintain a certain intensity per pixel. We can shift
the centroid of the interferometer’s intensity pattern to each subaperture, but we cannot focus it to
increase the intensity.

For off-axis subaperture measurements, alignment aberrations and astigmatism are indis-
tinguishable from the spherical aberration due to the null lens. We therefore subtract focus, coma,
astigmatism and spherical aberration from each subaperture map, and make no explicit correction
for the null lens. In some cases this may cause an incomplete removal of null lens errors and/or an
artificial reduction in large-scale aberrations, but it should have virtually no effect on the structure
function at separations below about 10 cm.

The mapping from image to mirror coordinates is done as for the full-aperture maps, with
four small fiducial markers placed at known positions in each subaperture. We verified that the
measured aperture extends at least as far as the clear aperture, both by scaling from these fiducials
and by placing other fiducial markers at the edge of the mirror and noting their appearance in the
image.



4,10 Calculation of structure function

The wavefront structure function is defined as the mean square difference in wavefront er-
ror between randomly selected points as a function of their separation in the aperture. For compar-
ison with the specification, we plot the square root of this quantity along with the corresponding
curve for the specification.

To compute the structure function, we first define a 50 X 50 square grid of points over the
aperture. The grid has uniform spacing in physical coordinates on the mirror. The subset of these
points that lie on the mirror is the set of first points of pairs used to calculate the rms difference.
Each first point is transformed to image coordinates (fractional pixels) using a magnification in
each dimension based on the known size of the measured aperture. The wavefront error at each
first point is interpolated bilinearly from the four pixels surrounding the transformed coordinates.

For each separation, the rms wavefront difference is calculated as follows. For each first
point, five second points are chosen at the appropriate separation, in five directions at equal inter-
vals of 72°. We use five directions in order to avoid any symmetries of the mirror, supports, and
camera. Each second point that lies on the mirror is transformed to image coordinates and its
wavefront error is interpolated. The rms difference over all pairs is recorded.

We have performed numerical experiments to verify that the results of this calculation do
not depend on arbitrary details such as the number of points or directions. There is, however,
some smoothing caused by the interpolation. We have also calculated the structure function using
discrete pixels, and therefore discrete separations, without interpolation. This method is probably
more accurate but has several drawbacks related to the finite number of small separations. Only
certain directions are sampled at small separations, and the method of binning (or not binning)
separations strongly affects the plots. This method is more strongly affected by noise in single
pixels.

We present structure functions calculated with and without interpolation. For the interpo-
Jated values, we use two separations per octave from 2.5 cm to 3.2 m for the full-aperture mea-
surement, and from 1.25 ¢cm to 1.6 m for the subaperture measurements. For the discrete-pixel
calculations, we bin the separations into four bins per octave centered at 2.5 cm to 0.4 m for the
full aperture and 1.25 cm to 0.2 m for the subaperture. (We skip the larger separations for this case
because the calculation is slow, and the two methods differ most at small separations.) Some bins
contain no separations.



5. Figure measurements

5.1 Full-aperture maps and structure functions

Figures 1-3 are gray-scale contour maps and synthetic interference patterns made from the
full-aperture measurements. All measurements have been corrected for errors in the null lens as
determined by the hologram. The three cases are: the original map including astigmatism and
spherical aberration; the map with astigmatism subtracted; and the map with astigmatism and
spherical aberration subtracted. The interference patterns are calculated for a wavelength of 531
nm and contain 10 waves of tilt. Table 2 gives statistics of the maps. Figure 4 shows the wavefront
structure function, calculated over the clear aperture, for all three cases.

Table 2, Statistics of full-aperture maps

map I mse.:r; :‘.ace Ry, 6, Rg
original 110 nm 270 nm -34° 40 nm
astigmatism subtracted 23 nm 40 nm
astigmatism and spherical 14 nm
aberration subtracted

5.2 Synthetic images

We calculated synthetic images from the map of Figure 3, with astigmatism and spherical
aberration subtracted, using the clear aperture. The calculation covers a 4 arcsecond field, with
sampling of 250 points across the clear aperture. Figure 5 shows the point-spread functions of the
actual and perfect mirrors. Figure 6 shows encircled energy diagrams for the actual mirror and a
perfect mirror, in perfect seeing and 0.25 arcsecond seeing. Seeing is included by convolving the
mirror’s PSTF with that of the seeing, calculated from its structure function.

5.3 Subaperture maps and structure functions

Figure 7 shows the subaperture maps obtained with 15 mm pixels, 2.2 times the resolution
of the full-aperture map. Focus, coma, astigmatism and spherical aberration have been subtracted.
Table 3 gives the dimensions and rms surface errors, and Figure 8 shows the structure functions.

11
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Figure 4. Square root of the wavefront structure function for the maps shown in Figures 1-3. Top: calculated
at regular intervals in separation, with phase values interpolated. Bottom: calculated at discrete separations
corresponding to the pixel spacing without interpolation, and binned with 4 bins per octave in separation. The
curve is the goal.



Figure 5. Synthetic images at 0.5 micron for the actual mirror of Figure 3 (left) and a perfect mirror (right).

The images are separated by 0.5 arcsecond.

Table 3. Statistics of subaperture maps

map dimens%ons rms surface
(HXV inm) error
2,78 %348 12 nm
B 2.80x3.52 13 nm
C 2.96 x 3.67 12 nm
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Figure 6. Encircled energy diagram with no seeing for the mirror of Figure 3 and a perfect mirror. Top: in
perfect seeing. Bottom: in 0.25 arcsecond {(FWHM) seeing,



-aceyans paysijod a1 Jo saSpa 3y} 0) PUIXS sAB[ASIP AT, ‘THU [ES JO [ISUSEPABM € J0J PAE[MI[ED S1 uio)yed a0UaI93I3)UI AY T, "I0eyINS
JO WU Q)TF SI9A02 3[eIs 818 aq ], "(JYSLI 03 o[ woay ) pue g °v) ssamradeqns 39173 1oy swraped 2uIe)IUI 23YJUAS pue sdew d[eds-Aels) L 2an31

18



1000 : — T . T : —
M subaperture A
x subaperture B
W subaperture C

T T T 17T
T .

100

||Ili|

rras wavefront difference {nm)

10 Mt§| s ooa vl ! I el L ' I
0.01 0.1 1

separation {m)

1000 —— T ———
[ subaperture A
pe subaperture B
3¥  subaperture C

T T T 17

| N S N

rms wavefront difference (nm)

100 |
L .’
10 4 EX 3 o1l 1 2 PO N A | 1 L 1
0. 0.1 1

separation {(m)

Figure 8, Square root of the wavefront structure function for the subaperture maps shown in Figure 7. Top:
calculated at regular intervals in separation, with phase values interpolated. Bottom: calculated at discrete
separations corresponding to the pixel spacing without interpolation, and binned with 4 bins per octave in
separation, The curve is the goal,



6. Other measurements

6.1 Mechanical dimensions

We generated the mirror according to drawing 1168, Rev. C. Table 4 gives the finished di-
mensions, in inches to match the drawing. The inner and outer diameters, and bevel widihs, match
the drawing within the specified tolerances. The edge thickness given in drawing 1168, Rev. C
fails to take account of the bevel. The correct value is 27.95 inches as listed in Table 4.

Table 4, Mechanical dimensions in inches

dimension F ]e égctlﬁ\;;ngc measured uncertainty
front plate OD 256.40 256.42 0.01
back plate OD 256.40 256.42 0.01
front plate ID 35.00 34.97 0.005
back plate ID 37.00 36.97 0.005
polished surface OD 255.90 255.87 0.01
polished surface 1D 35.50 3545 0.01
edge thickness 27.950 27.970 0.002
wedge 0.0 0.005 0.002

The vertex thickness is calculated from the measured edge thickness and radius of curva-
ture. Its value is 385.7 + 0.1 mm, slightly over the specified thickness. The wedge angle is
4 +2” , well within the tolerance.

6.2 Faceplate thicknesses

We measured faceplate thicknesses with an ultrasonic gauge at 60 uniformly spaced cells.
Table 5 gives the mean thickness, wedge, and radial variation for both faceplates. A positive radial
variation means the outer edge is thicker. The values for the back plate are final values after loose-
abrasive grinding. We last measured the front plate thickness after generating, and subtract the
measured removal of 0.26 mm during loose-abrasive grinding to obtain the mean thickness listed
in the table.

6.3 Radius of curvature

We measured the vertex radius of curvature with a steel tape certified by NIST. The vertex
radius of curvature is defined as the distance from the paraxial center of curvature to the vertex of
the primary mirror. Since neither the vertex nor the center of curvature present a mechanical refer-
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Table 5. Faceplate thicknesses in mm

mean wedge (p-v) rotation angle radial
g¢ P of maximum | variation (p-v)
front plate 29.3 0.1 —-124° 0.8
back plate 26.7 0.3 65° 0.0

ence, we measure their separation indirectly by summing distances between intermediate surfac-
es.

The computer-generated hologram used to measure the nul lens (see Section 7.3) is de-
signed to return a null wavefront when it is placed at the paraxial center of curvature. We align the
null lens at best focus of the primary mirror, as in the measurement of the primary mirror, and in-
stall the hologram mounted on a 5-axis stage. We adjust the stage to align the hologram to the null
lens, thereby placing the hologram at the center of curvature. The lower reference is a two-ball lo-
cating jig that rests on the primary mirror surface near the edge of the center hole. We use the tape
to measure from the 5-axis stage to the locating jig. The radius of curvature is the sum of this dis-
tance, the distance from the stage to the hologram, and the distance from the locating jig to the
vertex, which is calculated from the approximate radius of curvature.

The final radius measurement was made on November 19, 1998. The result is

R = 16257.1 £ 0.5 mm. (7N

6.4 Conic constant
The conic constant of the best-fit conic section is a sum of three terms:

1. spherical aberration in the final surface map;
2. cotrection for null lens error, based on the hologram;
3. correction for conic error caused by an error in radius of curvature.

The conic constant is sensitive to an error in the primary’s radius of curvature because (a) the null
lens and interferometer are positioned at best focus above the mirror, and (b) the test wavefront
becomes more spherical as it propagates, The error in conic constant is related to the error in radi-
us by

Ak _ AR

8- ) 18
P 7 (18)

Table 6 gives the measured values and uncertainties for these terms. The uncertainty in
spherical aberration for the final map is dominated by the presumably thermal variations in the ac-
tual mirror figure, The uncertainty in the hologram correction is discussed in Section 7.3. The un-
certainty in the radius correction comes directly from the uncertainty in radius.
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Table 6. Measurement of conic constant

term Rg (nm) Ak (ppm)

uncorrected final map ~ 150+ 10 -280x20
hologram correction 155440 290170
radius correction 3515 7030
net error 40140 80180

Most of the spherical aberration in the final figure is due to an error in calculating the ho-
logram correction, which was not caught until after polishing was completed. The hologram cor-
rection listed in Table 6 is the cortect value.

From Table 6, the conic constant is

k = —0.99992 + 0.00008 . (19)

If it were to turn out that the null lens is cotrect and the hologram is in error, then we would elim-
inate the hologram correction (but replace its uncertainty with that of the null lens, 110 ppm), and
the conic constant would be

kK’ = —1.00021 £0.00012. (20)

6.5 Centration of the optical axis

We determined the displacement of the optical axis relative to the mechanical axis (de-
fined by the machined cylindrical surfaces at the outer edge of the mirror) by measuring the
change in coma when the mirror is rotated around its mechanical axis. If the optical and mechani-
cal axes were coincident, rotating the mirror would introduce no coma. If they are not, rotating the
mirror 180° changes coma by an amount equal to twice the coma corresponding to the displace-
ment of the two axes.

The interferometer is aligned with the mirror at the standard rotation angle (0°) and the

. . o : 1 . .
mirror is measured, yielding coma coefficients Ry ‘0 . The mirror is then moved back to the turn-

table, rotated 180°, and returned to the test tower. Radial and vertical displacement are monitored
with dial indicators to insure that the mechanical axis repeats within 0.1 mm. The mirror is tilted
to obtain tilt-free fringes, but is not translated, and the interferometer is not moved. The mirror is

o . + . :
then remeasured, yielding coma coefficients Ry : | 50" The coma that would be seen if the interfer-

ometer were aligned with the mechanical axis, and the mirror at 0°, is half the difference of these
fwo measurements:
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These coefficients are related to the displacement of the optical axis by’

Ré m - 35‘;_);3 ’ (22)
Ry = AL, (23)
mo 384 f

where f is the focal ratio. A positive coefficient implies that the optical axis is displaced in the pos-
itive direction.

We made the final centration measurement on September 9, 1998, Further polishing after
that date removed far too little glass to affect coma. Table 7 gives the measurements and inferred
displacement of the optical axis, Values are given for the x and y components of coma and dis-
placement, with uncertainty determined by repeating the procedure of rotating the mirror and
measuring. The net displacement is given at the bottom.

Table 7. Measurement of decenter coma

value uncertainty
parameter X ¥ X Yy
R;' () 003| o010] 03 0.3
Ry o wm) | 128 | 063| 03 | 03
Ry (nm) 066 | -026| 02 | 02
Ax, Ay (mm) 049 | -020| 0.15| 0.15
Ar (imm) 0.53
0 —22°

6.6 Microroughness

We measured the microroughness at three locations on the mirror by making RTV replica-
tions and having them measured with a WYKQ phase-shifting microscope interferometer. Three
measurements wete made at different positions on each 60 mm replication. The results are listed
in Table 8, with locations given as rib intersections. All results are under the specified roughness
of 20 Angstroms. The average roughness is 11 Angsiroms.
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Table 8. Microroughness measurements

radius sample 1 sample 2 sample 3 average

b intersection {m) (Angstroms) | (Angstroms) | (Angstroms) || (Angstroms)

F2/A45/A60 0.77 8.4 9.3 7.9 8.5
F8/A123/A133 1.92 9.9 8.0 12.7 10.2
F14/A167/A170 3.08 11.7 17.1 14.0 14.3
average 11.0

6.7 Scratches, digs and bubbles

We inspected the mirror thoroughly at completion of polishing. Detailed results including
photographs of some defects will be given in a separate report.

There are no scratches in which the actual scratch width is greater than 200 microns. Two
scratches include intermittent chips about 300 microns wide. A series of small fractures appears
to be the remnant of a bad scratch that disappeared during loose-abrasive grinding. It comprises
about 50 fractures on the order of 2 mm long, most of which lie within a 300 mm span. We ground
out and bevelled one large scratch early in the polishing process, leaving a trough about 60 mm
long and 40 mm wide. Some small fractures remain in the trough.

There are no digs greater than 200 microns wide.

The surface contains one bubble 13 mm wide and 8 bubbles between 3 mm and 6 mm
wide. These were bevelled but not plugged. Three defects were ground out to leave spherical de-
pressions between 3 mm and 10 mm wide, Three shallow spherical depressions about 6 mm wide
remain from divots introduced to monitor removal during loose-abrasive grinding. We estimate
that the surface contains about 150 bubble larger than 1 mm, and on the order of 1500 smaller
bubbles that can be detected.

6.8 Internal flaws

Tnspection and treatment of internal flaws is described in detail in a separate document.
We briefly describe the two main categories of flaws here.

There are 12 regions with fractures in ribs and/or large chips removed from the inner sur-
face of the back plate. We treated them by stop-drilling and grinding as necessary to prevent prop-
agation.

A large number of cells exhibited a network of shallow fractures over the inner surface of
the back plate. After polishing the back surface, when accurate visual inspection was possible, we
removed the damaged layer by sandblasting until the worst remaining fractures were less than 2
mm deep.
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7. Null lenses

7.1 Summary

We used two null lenses during the project: one for the 10.6 micron interferometer used
during loose-abrasive grinding and early polishing, and one for the 531 nm interferometer used
for the final figuring. With each null lens we measured a computer-generated holognm that was
designed to mimic a perfect primary mirror. This hologram test is described by Bur ge 9 (Appen-
dix 3). The measurement of the visible hologram indicated that the visible null lens produces a
conic error of ~290 ppm, outside the combined uncertainty of the null fens (110 ppm) and holo-
gram (70 ppm). The final IR measurements were in better agreement with the visible hologram
than with the visible null lens. We remeasured all mechanical dimensions of the null lens and
found no error, but suspected that there might be a problem with the refractive index of the thick
relay lens. We measured the wavefront transmitted by the relay lens with a separate relay holo-
gram, This wavefront was found to have spherical aberration consistent with that seen in the holo-
gram test of the full null lens, but the test does not establish that the etror in the relay lens fully
accounts for the error in the null lens. We proceeded to figure the mirror using the visible holo-
gram as a reference. We are continuing to investigate the discrepancy.

7.2 Optical design and measured parameters

The optical designs of the two null lenses are glven in Appendices 1 and 2, The prelimi-
nary designs and tolerance analysis are given by Burge® (Appendix 4). The infrared null lens con-
sists of an aspheric diverging lens and two positive lenses in an Offner null arrangement. Its input
is a collimated beam from a Twyman-Green interferometer. The larger plano-convex lens is called
the relay lens and the smaller lens the field lens. The visible null lens includes the Shack-cube in-
terferometer, a Fizeau interferometer with a point light source at the center of curvature of its
spherical reference surface. A relay lens and two field lenses provide the aspheric compensation.
The design is extremely well corrected, with a wavefront error (twice the corresponding mirror
surface error) of 12 nm peak-to-valley.

A tolerance analysis determined the allowed error in each parameter. We separate errors
into those that cause an axisymmetric wavefront error and those that cause asymmetric etrors.
Since the measurements of the primary mirror are insensitive to focus, axisymmetric errors are
primarily spherical abetration, equivalent to an error in conic constant. In addition, departure from
the nominal primary radius of curvature introduces a conic error as described in Section 6.4.

Table 9 gives the final design parameters of the visible null lens, the specified tolerances,
as-built dimensions, and uncertainties or measured errors. For most parameters, the final design
incorporates the measured values. In a few cases, subsequent measurements that depart from the
design are listed in the table. Refractive indices are taken from the melt data supplied by the man-
ufacturer. The glass is Ohara BSL7 (Ohara’s version of Schott BK7) for the relay lens and field
lens 2, and Schott BK7 for field tens 1. For both glasses the specified uncertainty in mean index is
10-5 and the specified homogeneity is 106 peak-to-valley. The net uncertainty of the null lens,
excluding the primary radius of curvature, is 110 ppm in conic constant and 20 nm residual 1ms
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surface error, The residual error ignores tilt and coma, which are eliminated by alignment of the

interferometer relative to the primary mirror.

Table 9. Dimensions of visible null lens (mm unless listed)

parameter design value tolerance measured uncertainty
Shack cube:
radius of curvature 29.490 0.005 29.480 0.014
airspace 784.497 0.020 784.497 0.020
relay lens:
radius surface | 2518.3 cev 0.5 2518.3 0.1
thickness 55.495 0.010 55.495 0.005
radius surface 2 206.253 cvx 0.010 206.252 0.005
airspace 440.953 0.020 440.953 0.020
field lens 1:
radius surface 1 198.118 cev 0.005 198.118 0.002
thickness 18.110 0.005 18.114 0.006
radius surface 2 210.770 cvx 0.005 210,770 0.002
airspace 113.022 0.010 113,022 0.010
field lens 2:
curvature surface | 0.18%10°° 0.13%107° 0.20x107° 0.03%x10™°
mm’1 CVX mm’! mm-! mm’!
thickness 14.366 0.010 14.358 0.011
radius surface 2 582.047 0.010 582.047 0.008

The corresponding predicted uncertainties for the IR null lens are 160 ppm in conic con-
stant and 1.5 micron residual rms surface error. The predicted rms surface error is dominated by
possible refractive index variations within the large germanium relay lens, and could contain an
axisymmetric component that would contribute to the uncertainty in conic constant. In fact, how-
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ever, the hologram measurement with the IR null lens gave only 0.2 micron rms surface error, in-
cluding spherical aberration, implying that the germanium is much more uniform than we
thought.

7.3 Corrections with computer-generated holograms

We calibrated each null lens with a computer-generated hologram. The design and fabrica-
tion of the hologram is independent of the design and fabrication of the null lens, except that both
are derived from the prescription of the primary mirror. The hologram consists of many thin con-
centric circles of reflective material deposited on a thick flat glass substrate placed at the paraxial
center of curvature. The radial line spacing is designed to diffract each ray back along its incident
path exactly as it would be reflected by a perfect primary mirror. Both holograms were fabricated
at the Institute of Automation and Electrometry (IAE) in Novosibirsk, Russia.

The wavefront diffracted by the hologram is very sensitive to laser wavelength. For the
visible hologram, a change in wavelength by 0.1 nm causes 310 nm of spherical aberration, or a
conic error of 560 ppm. Our frequency-doubled YAG laser’s wavelength is unstable at that level,
s0 we measure its wavelength at the same time we measure the hologram and correct the holo-
gram measurement accordingly. Table 10 lists the effects of wavelength uncertainty and other sig-
nificant terms in the visible hologram’s error budget. In the table and throughout this section, we
quote spherical aberration and conic errors to a precision of 5 nmin ARS and almost equivalently
10 ppmin Ak.

Table 10. Error budget for visible hologram

source ARQ (nm) Ak (ppm)
writing error of 0.5 jLm over 15 30
68 mm radius
wavelength error of 0.01 nm 30 60
noise in phase measurement 10 20
sum in quadrature 35 70

The IR hologram measurement was not intended to be a definitive measurement of conic
constant, but it does provide additional information which may be useful, especially in light of the
large error measured in the visible, We estimate that the IR hologram measurement has a conic
uncertainty of about 200 ppm.

We measure the hologram exactly as we measure the primary mirror. All large-scale errors
in the resulting map are interpreted as errors in the null lens. The map also contains some small-
scale features due to the hologram or noise in the measurement. We average a number of maps
with the hologram at two or more rotation angles in order to average out some of its non-axisym-
metric errors. We filter out spurious small-scale structure by fitting Zernike polynomials to the
map and using the polynomial representation. We fit 36 polynomials, but only retain those coeffi-
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cients whose absolute values in the average map exceed their standard deviations among the indi-
vidual maps.

Figure 9 and Table 11 show the result of the visible hologram measurement, along with
the correction for wavelength, The hologram is designed for a wavelength of 530.662 nm, and the
correction for the measured wavelength (530.778 £ 0.01 nm) reverses the sign of spherical aber-
ration, Apart from the spherical aberration, the errors are less than those predicted by the toler-
ance analysis of the null lens.

Figure 9. Surface maps representing the error in the visible null lens as defermined by measurement of the
hologram. Upper left: uncorrected map of hologram, with 200 nm spherical aberration; gray scale covers
+150 nm. Upper right: same map with spherical aberration removed, with an rms error of 14 nm; gray scale
covers 50 nm. Lower left: polynomial fit to map of hologram, corrected for wavelength, with -155 nm
spherical aberration; gray scale covers ::150 nm. Lower right: same map with spherical aberration removed,
with an rms error of 5.5 nm; gray scale covers £50 nm.
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Table 11. Spherical aberration in measurement of visible hologram

term value (nm)
measured R 200
wavelength correction -355
net R ~155

The disagreement between the visible null lens and hologram is disturbing. We have at-
tempted to resolve it in several ways, including remeasurement of all mechanical dimensions of
the null lens, measuring the diameter of the outer ring of the hologram, and measuring the wave-
front transmitted by the large relay lens (Section 7.5). We have also made a careful comparison of
the visible and IR measurements at the time of hand-off from IR to visible testing (Section 7.4).

Figure 10 shows the result of the infrared hologram measurement. No correction for wave-
length was made. The map contains 70 nm of spherical aberration. The corresponding conic error
of 130 ppm is within the expected uncertainty of both the IR null lens and the IR hologram.

Figure 10, Surface maps representing the error in the IR null lens as determined by the hologram
measurement. Left: map of hologram, with 70 nm spherical aberration; gray scale covers +600 nm. Right:
polynomial fit to map of hologram; gray scale covers 600 nm.

7.4 Comparison of visible and IR measurements

The visible measurements are expected to be more accurate than the IR measurements in
all respects. We do, however, expect the two measurements fo agree within the uncertainty of the
IR measurements. Given the large discrepancy between the visible null lens and visible hologram,
the IR measurements can help distinguish which is correct. We measured the mirror with both in-
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terferometers on June 9, 1998. (This was the first visible measurement.) Figure 11 compares the
results, with and without correcting each measurement with the hologram. With the exception of
the uncorrected IR map, there is good agreement in the overall figure.

Figure 11. Visible and IR measurements of the mirror made on June 9, 1998, with and without subtraction of
the corresponding hologram map. Upper left: uncorrected IR map. Upper right: corrected IR map
(uncorrected map - hologram map). Lower left: uncorrected visible map. Lower right: corrected visible map.
The gray scale covers £500 nm for all maps. The visible maps cover only 6.36 m diameter because of the high
slopes near the outer edge at the time of this measurement.

At each wavelength we have two measurements of spherical aberration: one determined
by measuring the mirror with the null lens alone, and another by applying the hologram correc-
tion. The four measurements are plotted as a conic error in Figure 12. The error bars are dominat-
ed by the expected uncertainty in the null lens or hologram. A second, smaller term, the
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uncertainty in determining spherical aberration from the surface map, is obtained by fitting differ-
enot numbers of polynomials and comparing the fitted value of third-order spherical aberration,

R, . The values plotted in Figure 12 should be used only to compare the different measurements
and not to indicate the conic constant of the finished mirror. No conic correction has been made
for the mirror’s radius of curvature, and the figure changed substantially after these measurements
were made.
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- vis CGH 1
L IR NL N

Ak (ppm)
o
]

-200 -

—400 PSS R Y TR A T TN SO AN SANN NN VU S NN U S TR S A TR TN S

Figure 12, Conic error inferred from IR and visible measurements made on June 9, 1998, Values labelled NL
are based on the null lens; those labelled CGH are based on the hologram. These values serve as a comparison
only and do not reflect the actual conic constant of the finished mirror.

The comparison reveals that the visible hologram and IR null lens agree almost perfectly,
the visible null lens disagrees substantially with the visible hologram, and the IR hologram is con-
sistent with all the other measurements. Resolving the discrepancy between the visible null lens
and visible hologram is a high priority. In the meantime, we have chosen to trust the visible holo-
gram, primarily because its uncertainties are smaller and better understood than those of the null
lens, The IR measurements support that choice, although not definitively.

7.5 CGH test of the relay lens

Our measurements of mechanical dimensions of the null lens did not reveal any significant
source of spherical aberration in the null lens. A remaining possibility is that the glass has a re-
fractive index that was different from the reported value or varied within a lens. The thick relay
lens is the most likely candidate for index errors. We therefore measured the transmitted wave-
front from this lens alone, using a hologram test similar to that for the full null lens. The hologram
was again fabricated by the TAE and has a predicted accuracy of 2.7 nm surface spherical aberra-
tion. It covers only the inner 190 mm diameter of the relay lens while the measurement of the pri-
mary mirror uses 242 mm on the relay lens. The measured spherical aberration must therefore be
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scaled to the full diameter for comparison with the measurement of the full null lens. A wave-
length correction is applied as for the test of the full null lens. The design wavelength was 530.669
nm while the measured wavelength was 530.778 nm.

The results are summarized in Table 12. There is significant spherical aberration, indicat-
ing an error in the index of the relay lens, and the amount of spherical aberration agrees with that
measured in the null lens. Whether the error in the relay lens fully explains the spherical aberra-
tion in the null lens depends on the precise form of the error. The relay measurement can be ex-
plained by a quadratic radial variation in index with an amplitude of 18 ppm, 18 times the
specified variation. This error would cause spherical aberration in the full null lens with an ampli-
tude about 80% of the measured value, consistent within the uncertainties. But the relay measure-
ment can also be explained by an error in mean index of 27 ppm, 2.7 times the specified accuracy,
with no radial variation. This error would produce only 20% of the spherical aberration seen in the
test of the null lens. At the present, we cannot distinguish among these and other possibilities.

Table 12, Measurement of the relay lens hologram

value (nm) unc(er:‘rtl?;nty
measured Rg 55 5
wavelength correction 125 10
net Rg over 190 mm 70 10
Rg projected to 242 mm -176 30

All measurements are consistent with the hypothesis that the primary mirrot’s conic con-
stant has the value ~ 0.99992 + 0.00008 . We rely heavily on a single measurement, the hologram
measurement of the full null lens, to establish that accuracy. We plan to make a separate measure-
ment of the null lens after respacing the elements to work with a HeNe laser at 633 nm. This mea-
surement will have the advantage of a much smaller uncertainty in wavelength. It may be,
however, that the issue will be completely resolved only with the prime focus tests of the MMT
6.5 m mirror, which was made using the same null lens.
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9. Appendices

1. Infrared null lens design
2. Visible null lens design
3. Chapter 6 from Burge’s dissertation, Reference 8

4. Appendices C and D from Burge’s dissertation, Reference 8
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.00000000
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Surfaces
Tkop

w aiming
X Pupil shift
Y Pupil shift
% Pupil shift
odization

sgtem Aperture

If. Focal Len.
Eff. Focal Len.

rgtem/Prescription Data

INERAL LENS DATA:

18
9
Float By Stop Size = 3250
Paraxial Reference, cache on
¢}
0
: 0.5
:Uniform, factor = 0.00000E+000
~25.99613 (in air)
~-25.99613 (in image space)

Back Focal Len. 26.00775
»eal Track : 17967.27
nage Space F/# 1.029107
rara. Wrkng F/# 2.057753
Working F/# 2.36715
nhj, Space N.A. : 0,2395859
-op Radius 3250
irax. Ima. Hgt.: 0
Parax. Mag. H o]
Entr. Pup. Dia. : 25.26088
itr., Pup. Pos. : -105.4556
<it Pupil Dia. : 17.25287
it Pupil Pos. -52.00388
Field Type : Angle in degrees
Maximum Field 0
rimary Wave 0.53066
ans Units Millimeters
| angular Mag. 0
rields 1
ield Type: Angle in degrees
X-Value Y-Value Weight
1 0.000000 ¢.,000000 1.000000
i ignetting Factors
VDX VDY VCX vey
! 0.000000¢ ©.000000 ©.000000 0.000000
‘Wavelengths 1
nits: Microns
Value Weight
1 0.5306560 1.000000
<UURFACE DATA SUMMARY:
urf Type Comment. Radius Thickness
GBJ STANDARD Infinity 29.49
1 STANDARD -29.49 784.497
2 STANDARD -2518.3 55.495
3 STANDARD -206.253 440.953
4 STANDARD -198.118 18.11
5 STANDARD ~210.77 113.022
6 STANDARD 5555555 14.366
! 7 STANDARD -582.,047 255.3391
8 STANDARD Infinity 16256
=-3T0 STANDARD -16256 -16256
10 STANDARD Infinity -255.3391
11 STANDARD -582.047 -14.366
12 STANDARD 5555555 -113.022
13 STANDARD -210.77 -18.11
14 STANDARD -1%8.118 -440.953
15 STANDARD -206.253 -55.495
16 STANDARD -2518.3 -784.497
17 STANDARD -29.49 -29.49
IMA STANDARD Infinity
INDEX OF REFRACTION DATA:
arf Glass 0.530660
0 SILICA 1.46076862
1 1.00000000
2 <MODEL> 1.51993000
3 1.00000000
4 <MODEL> 1.519361800
5 1.00000000
& <MODEL> 1.51918500
7 1.,00000000
8 1.00000000
9 MIRROR 1.00000000

Glass
SILICA

.519930, 0,000
.519618, 0.000

.519185, 0.000

MIRROR

.519185, 0.000
.519618, 0.000

.519930, ©.000

SILICA

_.le : D:\Mirror Projects\Magellan Primary\Null Lens\mmtvis 12-9-98 Jim meas melt data.zmx
Title: MMT NULL LENS 12/9/9%8
Date : MON JAN 4 1999

Diameter
0
8.530215
270

270

90

90

64

64
129.9059
6500
129.9023
27.73821
23.80224
24 .54979
28.85051
241,454%
237.1396
8.523776

0.004720699

[
o
=]
¥

COO00O0COODRPROoOCOLOOCCC

o]




10 1.00000000
11 <MODEL> 1.51918500
12 1.00000000
i3 <MODEL> 1.51961800
14 1.00000000
15 <MODEL> 1.51993000
16 1.00000000
17 SILICA 1.46076862
18 1.00000000

THERMAL CCEFFICIENT OF EXPANSION DATA:

Surf Glass TCE
1] SILICA ¢.00000000
1 G.00000000
2 <MODEL> G.00000000
3 G,00000000
4 <MODEL> ¢.00000000
5 0.00000000
[ <MODEL:> 6.20000000
7 0.000G00000
8 0.000000G00
9 MIRROR 0.00000000

10 0.00000000
11 <MODEL:> 6.20000000
12 0.00000000
13 <MODEL> 0.00000000
14 0.00000000
15 <MODEL> 0.00000000
16 0.00000000
17 SILICA 0.060000000
18 0.00000000
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CHAPTER 6

HOLOGRAPHIC MEASUREMENT OF NULL
CORRECTORS: THEORY AND DESIGN

6.1. INTRODUCTION

An optical test has been devised to test and qualify null correctors that are
used for measuring highly aspheric primary mirrors, The technique employs a
rotationally symmetric computer-generated hologram (CGH) that tests the null
corrector directly by synthesizing a wavefront that would be returned by a perfect
primary mirror. The test, which is quick and highly accurate, has been demonstrated
on null correctors for two 3.5-m primary mirrors.

Large primary mirrors for optical telescopes are interferometricaily tested
from center of curvature using null correctors, In fabricating a primary mirror, the
optical surface is polished to precisely match the wavefront generated by the null
corrector. There is always a possibility that the null corrector could be flawed,
resulting in the final shape of the mirror being incorrect. Two recent telescopes had
their primary mirrors made to the wrong shape because of errors in the null correctors
- the Hubble Space Telescope or HST (Allen et al. 1990) and the New Technology
Telescope or NTT (Wilson ef al. 1991). If accurate testing of the nuil correctors had
been performed, the errors would have been discovered and corrected in the shop.
Instead, the errors were not discovered until the finished mirrors were in their

telescopes on a mountain top or in orbit.
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The holographic test of null correctors fills an important gap in the fabrication
of highly aspheric optics. Because the null correctors introduce hundreds of waves of
asphericity, they are complex and sensitive to manufacturing errors. A small
manufacturing flaw or oversight may cause significant aberration in the nuil lens
resulting in a mirror finished to the wrong shape. For this reason the verification of
the test optics is viewed as a critical step in the fabrication of highly aspheric optics.
One method of verifying the optical test is to compare results from two independent
null lenses. This is expensive and can be inconclusive. (What if the two null lenses
do not agree?) Another technique is to perform an independent test on the completed
mirror such as a scarning pentaprism test. Accurate tests of this type are difficult and
expensive. These tests must be performed on a completed mirror, which involves
some risk to the surface. Also, if an error is detected in the finished mirror, either
the mirror or the telescope must be corrected.

This chapter gives a general description and analysis of this new method of
testing null correctors. The following chapter gives results and analysis from actual
measurements. Readers interested only in the results of this test should read the
description in Sec. 6.2 and skip to Ch. 7.

This chapter gives a complete description of the principles, design, and
analysis of the CGH test for null correctors. The test geometry and principles used
for the null lens test are described in Sec. 6.2. Section 6.3 gives a brief background
and history of optical testing with CGH. The emphasis is placed on techniques
similar to those used in the null lens test. The design and fabrication techniques used
for making the CGH are described in Sec. 6.4. The CGH phase function is explicitly
derived and analyzed in this section. Approximations that are used in the error

analysis are also given. The complete process of specifying and fabricating the CGH
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is summarized. Design considerations for optimizing the test to give maximum
contrast and complete rejection of stray orders are described in Sec. 6.5. A thorough
error analysis is presented in Secs. 6.5 - 6.7 that includes errors in the fabrication of
the CGH, errors in performing the test, and errors in the data analysis. These
sections show the derivation of the error terms and include little discussion of specific
applications. The following chapter uses the equations for error analyses of specific

tests with little discussion of the derivation.

6.2. DESCRIPTION OF HOLOGRAPHIC NULL LENS TEST

In the CGH null lens test, a computer-generated hologram of the mirror is
tested by the null lens. The hologram is made so it will appear to the test lenses as if
it were a perfect primary mirror. The test is insensitive to alignment errors and uses
no optics other than the hologram. Since the null corrector and CGH are fabricated
independently, agreement between the two indicates a high probability that both are
correct.

The hologram is simply a circular grating or zone plate. It is made of a
circular ring pattern fabricated onto a flat glass substrate. The CGH is fabricated
using electron beam lithography that has been developed for the production of
integrated circuits. The spacing of the grooves is determined by the mirror surface
that the hologram replaces. The groove depth and width are optimized to minimize
fabrication costs, while giving the correct intensity of the diffracted light.

A layout of the CGH null test, shown in Fig. 6.1, depicts the null lens and
CGH. No modifications are made to the null lens to perform this test. The null

corrector tests the hologram exactly as if a real mirror was being measured.
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SHACK CUBE
INTERFEROMETER

NULL CORRECTOR

: HOLOGRAM

Figure 6.1. Layout of CGH test of null lens. The use of the CGH in-
volves simply positioning the hologram at the correct location and
making the measurement as if the mirror itself was being tested.

The use of the hologram to test the null corrector is surprisingly simple. The
CGH is positioned in the light beam coming from the nuil corrector. Once the CGH
is near the correct position, the fringe patterns in the interferometer are used to align
the hologram. Since the CGH appears to the null corrector to be a complete primary
mirror with the correct shape, the alignment of the hologram is exactly like that of the
actual primary. When testing the primary mirror, the optician positions the nuil

corrector in lateral translation, tip/tilt, and vertical translation to eliminate tilt, coma,
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and focus from the interferogram (See 5.4). The alignment for the hologram follows
the same procedure.

The holograms are designed to give about 4% diffraction efficiency into the
desired order. This gives a high contrast interference pattern that maximizes the
signal-to-noise ratio of the measurement. A pinhole positioned near the Shack cube
rejects the stray orders of diffraction and lets only the desired order through. The
size of the pinhole is optimized so that the area corresponding to the entire tested

region of the mirror is free from spurious orders.

6.3. OPTICAL TESTING WITH COMPUTER-GENERATED HOLOGRAMS
BACKGROUND ON CGH AND OPTICAL TESTING

Optical testing of aspheric surfaces using computer-generated holograms has
been used for over twenty years. An excellent overview of CGH optical testing is
given by Loomis (1980a). Some more recent work in the field is given in a thorough
review by Creath and Wyant (1992).

A hologram is generally used to modulate the phase or amplitude of a
wavefront, causing it to propagate such that it forms a desired phase front or intensity
distribution. A photographically produced hologram may be used to store and play
back an existing wavefront (Leith and Upatnieks 1962). Synthetic holograms may
also be specified by a computer and written with an electronic plotter (Brown and
Lohmann 1966).

Computer-generated holograms fall into three classes -- Fourier, Fresnel, and
image holograms, depending on the propagation from the CGH (Bryngdahl and
Wyrowski 1990). The far-field or Fourier hologram, widely used in signal

processing, uses a modulating screen to create a desired pattern at the Fourier plane.
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The computation of the CGH pattern requires a Fourier transform of the desired field
distribution. There are numerous applications and methods for making this type of
CGH (Brown and Lowmann 1966, 1969; Lowmann and Paris 1967; Lee 1970;
Lesem, Hirsch, and Jordan 1969; Chu, Feinup, and Goodman 1973). The second
type of CGH, the Fresnel hologram, is seldom used because it is computationally
intensive to create and difficult to impiement (Bryngdahl and Wyrowski 1990). The
computation of the Fresnel CGH pattern requires a Fresnel transform of the desired
light distribution.

The third type of CGH, the image hologram, is created by plotting a ruling
similar to an interferogram (Wyant and Bennett 1972; Lee 1974). Because this CGH
only creates a phase distribution, the computation is direct. The ruling pattern
corresponds to the interferogram that would be created at the CGH plane if the
incident beam were interfered with the desired beam. Diffraction from the CGH also
creates several undesired wavefronts that must be filtered out. These multiple
diffracted orders can be separated at the Fourier transform plane, where a correctly
positioned aperture will pass only the desired wavefront. It is this type of CGH that
is commonly used in optical testing, so the following discussion will be limited to this
“interferogram-type” of CGH.

Pastor (1969) first suggested the testing of aspheres using a computer-
generated hologram. He described testing with a binary CGH as a moiré effect. The
first CGH testing was performed by MacGovern and Wyant (1971) using a Lohmann-
type CGH (Lohmann and Paris 1967) to test an F/5 paraboloid. They pointed out that
this type of hologram has apertures that lie along the fringe maxima of a conventional
film hologram. Wyant and Bennett (1972) abandoned the established Lee (1970) and

Lohmann encoding methods and used a vector plotter to trace the fringe positions.
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They give a detailed error analysis and results from testing wavefronts with aspheric
departures of up to 65 waves. Wyant and O'Neill (1974) demonstrated the value of a
CGH in combination with a null corrector for measuring more highly aspheric optics.
CGH optical testing is now used routinely for measuring aspheric surfaces (Larionov
et al. 1979, Smith 1981; Arnold 1989). Commercial interferometers specifically
designed to utilize CGH testing have been built (Emmel and Leung 1979; Arnold
1992).

The computer-generated hologram of the image- or interferogram-type may be
thought of as locally acting like a simple diffraction grating. The light diffracted from
this ruling splits into distinct orders given by the grating equation

OPD=d +d, =mi
or (6.1)
s(sin @, +sind Y=mAi
where the geometry is shown in Fig, 6.2 and the terms are defined as
OPD = optical path difference for light through adjacent slits
dy, d,, = incident and diffracted path length
6,, 6, = incident and diffracted angle

m = order of diffraction

§ == local ruling spacing.
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- oMorder

em

incident fight h
m"' diffracted order

Figure 6.2. Cross-section of a transmissive diffraction ruling.

The CGH is a diffraction grating that uses a spatial variation in ruling
frequency to create a desired change in wavefront. The CGH may be interpreted as
causing a change in ray directions according to the grating equation (6.1), or
equivalently as directly changing the wavefront phase. When used in m® order, the
CGH adds m waves of optical path to the wavefront for each ruling cycle.

Optical testing with a CGH is commonly performed using a configuration
similar to that shown in Fig. 6.3 (Wyant and Bennett 1972; Arnold 1989). The |
spatial filter is required to block the unwanted orders of diffraction. The diverger
lens need not be perfect, but only well known because the CGH can be designed to

correct for the mirror-lens combination (Wyant and Bennett 1972).
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i DIVERGER
BS LENS
A
LASER \ (
WITH EXPANDER
\%
BS \
CGH
LENS
MIRROR
BEING
SPATIAL FILTER TESTED
IMAGE PLANE

Figure 6.3. Modified Twyman-Green interferometer for testing an as-
pheric mirror with a CGH.

A large amount of tilt must be created by the CGH to cause the orders to fan
out, enabling the isolation of a pure reference and pure test beam (Loomis 1980b).
This wavefront tilt, which causes a carrier frequency in the ruling, must be three
times larger than the maximum slope of the aspheric wavefront to insure complete
separation of orders (Yatagai and Saito 1978).

Since the CGH is nothing more than a pattern drawn on film, its errors take
the form of spatial distortion in that pattern. The magnitude of the wavefront error
due to the distortion is given by Fercher (1976) as the scalar product of the wavefront

gradient and the vector distortion &(x,y). This leads to

AW (x,y)=~-VW,(x,y)- E(x, ), (6.2)
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where AW = wavefront phase error due to distortion
W, = wavefront CGH is generating (in waves)

&(x,y) = vector CGH position error (actual position - desired
position)

(x,y) = position at CGH.

One fringe represents m waves OPD, so Eq. (6.2) may also be written

AW (x, y):—mz,gs(x’y) , (6.3)
s(x,y)

where &(x,y) = CGH position error in direction perpendicular to
fringes

s(x,y) = local center-to-center fringe spacing.

Testing with a CGH may be thought of in terms of a moiré effect. The CGH
" is a binary representation of the expected fringe pattern formed by an aspheric test
beam and a reference beam. When the live interference pattern is superimposed on
the CGH, a moiré, or spatial frequency “beating” effect is observed. When properly
filtered in the frequency domain, these moiré fringes directly give the shape difference

between the two wavefronts, thus the shape error in the asphere.

CGH FABRICATION

To make a CGH for optical testing, the desired wavefront Wc(x,y) must be
calculated. This may be done using ray-trace software (Sweatt 1977; Chen 1980), or
in the case of the mull lens test, it is analytically derived. Methods for encoding this

into an interferogram-type CGH are described by Leung er al. (1980), Arnold (1988),
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and Logue (1988). To encode the CGH to be used at the mth order, the ah fringe is
drawn as a half-fringe wide contour with its edges specified by the locus of points

meeting the relation

'\\/\/C(x,y)=nxm></li%. 6.4)

This fringe contour must be approximated and digitized for the computer-controlled
writer. The resolution element used for digitizing the pattern must be chosen small
enough that it creates an acceptably small error in the wavefront (Chen and Osborne
1987).

The CGH may be fabricated using technology developed for making integrated
circuit masks. A large-scale master may be plotted and photographically reduced
(Lohmann and Paris 1967b; Lee and Casasent 1987). The accuracy of this method is
limited by the distortion in photo reduction and errors in the plotter (Wyant and
O'Neill 1974; Fercher 1976; Ono and Wyant 1984). The CGH may be optically
written full-scale using specialized equipment (Biedermann and Holmgren 1977,
Caulfield et al. 1981; Kajanto ef al. 1989; Baber 1989). Currently, the most accurate
method for writing IC masks and CGH's is electron beam lithography (Leung,
Lindquist, and Shepherd 1980; Leung, Arnold and Lindquist 1981; Arnold 1985;
1989).

Electron beam lithography uses a collimated electron beam to write the pattern
onto a resist coated glass plate. The electron resist changes chemical properties when
exposed to the electron beam enabling the resist to be dissolved in a developing
chemical. The electron beam is raster scanned over small cells ("1 mm) that are
stitched together by translating the workpiece using a computer-controlled stage. This

method can write patterns with features as small as 0.5 pum to an accuracy of
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4+0.15 um over areas as large as 150 mm square (Logue 1988). Since they are
written full-scale, these masters may be used directly or they may be replicated using
contact printing. The final holograms may use amplitude modulation, created by
opaque fringes drawn on clear glass. Alternatively, they may use phase meodulation,

created by etched grooves in the glass.

CIRCULAR HOLOGRAMS

Circular holograms have been used in optical testing and are used for the CGH
null lens test. Rather than using a tilt carrier to fan out the orders laterally, the
rotational CGH disperses the orders axiaily. The use of circular holograms for
optical testing was first demonstrated by Buynov ef al. (1971). Ichioka and Lohmann
(1972) discuss the use of a quadratic (focus) carrier to shift the longitudinal focus
position of the unwanted orders. They used a small aperture at the focus of the
desired order to restrict the interference of spurious orders to a small central area of
the optic. They also show that the actual number of fringes plotted may be less for a
circular hologram than for a linear hologram. Circular holograms with cone shaped
carrier wavefronts were discussed by Bryngdahl and Lee (1974). In this case, the
desired diffraction order was separated with an annular mask. Further comparisons
between circular and tilt carrier holograms are given by Mercier (1977), and Mercier
and Lowenthal (1980).

There are several advantages of using rotational holograms for testing
axisymmetric optics. By preserving the axial symmetry, the hologram design and
analysis are reduced from two dimensions to one. The alignment of the centered
system is straightforward using conventional techniques (Mercier and Lowenthal

1980). The symmetry also allows direct certification of the hologram by measuring



187

ring diameters (Lukin and Mustafin 1979). For testing optics with annular apertures,
the inability to test the central region is inconsequential (Aver'yanova et al. 1975).
For testing a mirror with no central obscuration, the central region generally has very
little asphericity and can be tested conventionally (Larionov et al. 1980).

The use of circular holograms is ideal for conditions when the desired order
comes to a sharp, unaberrated focus. At this point, a small pinhole will allow the
desired light cone through while blocking all other orders. Background light and
spurious fringes may be further reduced by physically masking off the inner region of

the light cone, corresponding to the center hole in the primary.

6.4. DESIGN AND FABRICATION OF CGH FOR NULL LENS TEST

The CGH ring pattern is computed assuming only on the shape of the primary
mirror and not any specific null lens. The radial ring positions are chosen based on
an exact analytical model of the rays normal to the primary mirror. Since the
wavefront created by the CGH has a cusp at the center, the common method of
designing the CGH by optimizing aspheric coefficients does not work well. For this
design, a model is constructed using basic algebra and trigonometry that has been
verified numerically. Fig. 6.4 below shows the geometry and the important
dimensions. The derivation of the CGH profile is given below for the general case,

but the CGH for null lens testing is optimized for use at paraxial focus (& = 0).

DERIVATION OF CGH PHASE FUNCTION
The phase function of the CGH is derived and specified using an exact
geometrical model. The parameters for this derivation are shown below in Fig. 6.4.

This model is constructed by computing the absolute path length, along the direction
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of propagation, between the mirror and the hologram plane. The variation in path
length across the mirror defines the wavefront that the hologram must create to appear

as a perfect primary mirror.

| .
y PARAXIAL CENTER OF CURVATURE
' HOLOGRAM PLANE

s3]

NORMAL RAY

OPTICAL SURFACE

A _~
\ il\ 4_%

Figure 6.4. Geometry for defining a CGH such that it returns the same
wavefront as a perfect primary mirror.

The variables shown in Fig. 6.4 are defined as

r = radial mirror position

R = vertex (paraxial) radius of curvature of mirror

K = conic constant of mirror

z(r) = mirror surface profile

h = hologram distance from paraxial center of curvature
x(r) = ray intercept position on hologram
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I(r) = distance from paraxial center of curvature to zonal center of

curvature (longitudinal spherical aberration)
&r) = slope of normal ray

AD, BD = distance between points.

The shape of the optical surface is given by

r2

A= R+|R —(K+1)r*

It is easily shown (Buchroeder ef al. 1972) for a conic of revolution,

[=-Kz.

Trigonometry and algebra provide the following useful relations:

tan = ——
R—(K+1)z
x=(h~Kz)tan @

AD =/ R ~Kr?

sin = ——
AD

DB=—_=-4DZ,
sin & ¥

6.5)

(6.6)

(6.7)

(6.8)

6.9)

(6.10)

(6.11)

These equations lead to the optical path length (OPL) from the surface of the

mirror to the hologram plane
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OPL= AD — DB. (6.12)

The OPL variation across the hologram is the wavefront function or optical
path difference (OPD). Choosing the arbitrary reference point as the center, the OPD
across the CGH is

OPD=OPL—(R~-h) (6.13)

The CGH is encoded by specifying a phase function for the diffraction to
create. For use in the mt order, this CGH will consist of one plotted fringe for every
m waves in the phase function. The CGH's for testing the null correctors are used in
reflection, so the phase functions must be twice the OPD given above. This gives

ring positions for every m X A/2 of the OPD. The radial spacing s of these rings is

easily calculated from the grating equation (6.1) as

s= A (6.14)
2sin &

The shape of the OPD function (see Fig 6.5) looks conical with little slope
change over most of the CGH. This fortunate shape allows the CGH to work with no
carrier at all. The radial slope in the wavefront itself is sufficient to act as a circular

carrier with ring spacing nearly constant over most of the hologram (See Fig. 6.6).
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Figure 6.5. Wavefront phase function required of a paraxial-focus
CGH to test a null corrector for a 3.5-m f/1.75 primary mirror.

The CGH function shown in Fig. 6.5 shows why the conventional method of
specifying CGH functions as a power series with even terms fails to converge for
designing this hologram. There is a cusp at the center that is poorly modeled using a

power series with a reasonable number of terms.
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center-to-center ruling spacing (um)
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radial position at CGH (mm)}

Figure 6.6. Center-to-center groove spacing for a paraxial-focus CGH
used in third order to test a null corrector for a 3.5-m f/1.75 primary

mirror,

The CGH is specified using a computer program to compute the above OPD
given the appropriate values for R, K, and . The software that digitizes the CGH
into machine language calls a subroutine to return the phase function given x, the
position at the CGH. The subroutine first calculates the corresponding position on the
primary mirror r using Newton's method (Arfken 1985). Having found r, the
computation of the OPD follows the equations above. Since the equations are exact
and no integration is performed, the calculation errors in the floating point operations
are negligible.

The common place to put a CGH is at the image of the optic under test to map

the optic uniformly onto the hologram. The CGH test of null lenses uses the
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hologram at the farthest possible point from an image of the test object, at its focus.
The resulting nonlinear mapping causes no problem in the test of the null lens because
the light diffracted from the CGH travels back through the null corrector and gets re-
mapped to create an image identical to that of a primary mirror. However, the CGH
is not focused onto the detector so it must be oversized to avoid edge diffraction.

For the CGH test of null correctors for primary mirrors, the ideal place to put
the hologram is at paraxial focus, where # = 0. The value of 72 must never go
negative because that would put the CGH in the caustic where the rays are crossing
and the mapping from x to r is not single-valued. For positive £, the CGH must

become larger with more rings, and thus it becomes more expensive.

20 T T Y T T T y

10 1 A

-10 -

radial position on CGH (mm)
(&
|

-20 : : - i - : -
-2000 -1000 0 1000 2000
radial position on mirror (mm)
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Figure 6.7. CGH mapping function showing the relationship between
mirror position and position on hologram. This plot is for a CGH used
in third order to test a null corrector for a 3.5-m f/1.75 primary mirror.

SERIES EXPANSION FOR ERROR ANALYSIS
For the error analysis, approximations were made by expanding the above
equations into power series in r and truncating. The relationship between the radial

position on the mirror  and the position on the CGH x(r) is

x(r)= %r

h+hK —KR
—F
2R
. 3(1+K)(:;ShK—KR)r5 .

(6.15)

Likewise, the OPD is approximated by a similar series

OPD(r) =

A 2
2]‘

2R
N =3h+ K(~:1h +3R) 9
8R
—~5h+K(-12h+5R)+ K*(-8h+7R)
+ 16R° A

(6.16)

As an end-to-end check of the technique, it is useful to create a CGH of a
sphere that can be accurately tested. This CGH can be specified and written in
exactly the same manner as a null lens CGH, only K = 0 and # must take a positive
value.

The truncated series representations used in the error analysis for both the

CGH null lens test and the spherical CGH are given in Table 6.1. The relative error
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due the series truncations are only a few percent for mirrors slower than f/1. Since

the error terms themselves are quite small, this error is negligible.




196

Table 6.1. Approximations to relevant functions for error analysis

CGH to test null lens Reference CGH of sphere
h=0 K=0
K=-1
x(ry= _;;’;3 x(r) = %(1 + 2’;2]
sm@si(l+§; smg:‘"%
spacing = l"g (1 - f; J spacing = m_z;/lg
tanGE% tan95§[1+2’;2]
OPD=- 3;;; : OPD = - h”i (1 + j:z J

It is interesting that this OPD for the null corrector test has minus three times

the aspheric deviation of the primary mirror,

4

Surface Asphere = K]’;J :
The surface aspheric departure represents the surface deviation from a

reference sphere centered at paraxial focus. The above OPD is the path difference for

a real normal ray that intersects the CGH plane.
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CGH FABRICATION

The fabrication of CGH's using electron beam lithography is now quite
common (Arnold 1989; Urquhart er al. 1989). There are firms that specialize in the
encoding and printing of CGH's. They have software that evaluates a phase function,
usually specified in terms of polynomial coefficients, to create a data file that will
drive the plotter. This involves approximating the continuous fringes as chains of
trapezoids that the plotter can write (Arnold 1988). The error in making this
approximation is negligible if small enough trapezoids are used.

The fabrication of the holograms for testing the null correctors at SOML uses
electron beam lithography to write a master, which is then printed to the final
substrate. This allows the usual practice of writing the master onto a thin, pre-coated
glass slide, while the final CGH transferred to a thick, optically flat glass substrate.
This method can severely limit the accuracy of the CGH if the printing is flawed. For
this reason, it may be preferable to have‘ the final CGH written directly by the e-beam
writer.

The CGH is contact printed by holding the master in direct contact with the
photoresist-coated blank and exposing with collimated light. The master can be
certified as accurate to +0.15 um, and the errors from well-controiled contact
printing are less than +£0.1 um (Everett 1993). Since it is difficult to verify the final
printing to sub-micron accuracy, an error in the printing could go undetected, leading
to an inaccurate optical test.

By using the CGH in third order, the number of rings required to test a null
lens is reduced and the smallest feature size is increased by a factor of three, making

the part easier to fabricate. To get the desired diffraction efficiency from the third
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order, the CGH is made into a pure phase element by etching grooves and coating the

entire surface with reflective aluminum.

The steps taken by the diffractive optics firm to produce the holograms for

testing null correctors are the following:

6.
7.

Encode the phase function into machine language that will drive the e-beam
writer.

Using electron beam lithography, write the grating pattern into electron resist on
the master.

Process the exposed master to result in a chrome ring pattern. The exposed
resist is dissolved leaving the pattern in resist. The unprotected chrome is then
etched.

Contact print onto an optically flat substrate and process to result in a A/20 flat
with the chrome ring pattern on it. The final substrate is coated with chrome
and photo resist. The master is held with its chrome pattern in close contact
with the resist on the substrate. The pattern is exposed by flooding UV light
through the master. The subsequent processing is identical to that in step 3.

Ton mill or acid etch to create A/4 deep grooves. The chrome bands protect the

glass under them.
Strip the chrome. This leaves only glass with concentric grooves etched into it.

Coat the glass with a thin layer of reflective aluminum.

Since no protective coating is applied, the aluminum will oxidize and is very

susceptible to damage.

6.5.

OPTIMIZATION OF DIFFRACTION EFFECTS

The holograms are designed to provide a 4% return into the Littrow order to

match the intensity of the reference beam. In the Littrow configuration, the diffracted
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light rays exactly retrace their path. A spatial filter is positioned at the focus from the
Shack cube to reject stray diffractive orders. The size of this pinhole is optimized to
provide adequate stray order rejection while passing all of the desired order.

The efficiency of the diffraction ruling is modeled using Fourier optics
(Gaskill 1978) based on scalar diffraction theory. Using this method, the far-field
diffraction pattern is found by taking the modulus squared of the Fourier transform of
the complex amplitude. The light incident onto the ruling is assumed to have uniform
intensity and phase, so the complex amplitude is given by the grating function. A
general square grating that modulates both phase and amplitude will produce light

with a complex amplitude shown in Fig. 6.8.

Figure 6.8. Complex amplitude of light modulated by diffraction
grating.

The amplitude modulation is given by the square root of the intensity
modulation. For example, reflective aluminum (R = 0.9) bands on bare glass (R =
0.04) would give 4, of J0.04 = 0.2, 4, of V0.9 =095, and ¢ = 0.

Ignoring the finite extent of the ruling, the complex amplitude z(x) is described

mathematically, using Gaskill's notation, as
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u(x) = 4, + (A.e"“’ ~ Ao)l comb(—{) * rect(%] , (6.17)

Ay §

where, as illustrated in Fig. 6.8,

Ay, 4 = amplitudes (square root of intensities) defined by the
reflectance of the ruling

@ = phase shift in radians defined by groove etch depth of the
diffraction ruling

b = width of a single line in the ruling

5 = ruling period or center-to-center spacing.

For an etched ruling that is coated in aluminum and used in reflection, 4, =
A; = /0.9 and ¢ = 2 x 2n/A X depth. The diffraction efficiency into the +1, £3,
etc. orders is maximized for ¢ = n, or A/4 etch depth.

The Fourier transform of the complex amplitude is

U(&) = 4,0(&) + (Ake"“’ — 4, )%s x comb(s&)x sinc(b&) (6.18)

where &, the spatial frequency, is related to the angle of diffraction o by

a=Af. (6.19)

The comb function gives non-zero values of U for discrete values of &, corre-
sponding to the multiple orders of diffraction. These orders occur at integral

multiples of 1/s,

m (6.20)
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The relative power » in each order is computed by integrating the squared
modulus of the function in Eq. (6.18) over ¢& for each order defined by Eq. (6.20).

Performing this integration and defining the duty cycle

p=2 (6.21)
Ay

the diffraction efficiencies are found to be

n=d4,(1-DV + 4>D* +24,4D(1-D)cosp (m=0)

n= [Aoz + A —24,4, co'sqg]Dz.s'inc2 (mD) (m #0) ’ (6.22)

Also, the ratio of the imaginary to the real part of the complex amplitude gives
the dependence of the phase y on duty cycle and amplitude and phase modulation.
These relationships, given in Eq. (6.23), are used in a later analysis of the hologram

€Irors:

A Dsin g

tan = =0
v A,(1=D)+ A Dcosg (m=0)
(6.23)
A sing
t =t #0
i ~A,+ A cosg (m0)

For a reflection grating with D = 0.5, quarter-wave deep grooves, and an aluminum

overcoat, the diffraction efficiency into several orders are given in Table 6.2.

Table 6.2. Diffraction efficiency for reflection CGH with Al coating, A/4 grooves,
and 50% duty cycle.

order + m diffraction efficiency 1 into order m

0 0.000




202

0.365
0.000
0.041
0.000
0.015
0.000
0.008

~1 O L B W N

The expressions in Eq. (6.22) were used to analyze the sensitivity of the
diffraction efficiency to fabrication errors. Figure 6.9 gives the variation in
diffraction efficiency with duty cycle and Fig. 6.10 shows the effect of errors in the

~etch depth.

0.10 — . : : . ,
0.08 +°
0.06 +

0.04

diffraction efficiency

0.02 +

0.00 . ' .
0.3 0.4 0.5 0.8 07
duty cycle (step width/spacing)

Figure 6.9. Variation in diffraction efficiency 7 as a function of duty
cycle D for a binary phase reflective CGH with an aluminum coating



203

and quarter wave etch depth. The first-order curve, peaking at 37%, is

not shown,
0.10 T I ; I T T . T

0.08 + 1 i .
0.06 1 : ; .

0.04 +

diffraction efficiency

0.02 +

0.00 e ' : L =
0.0 0.1 0.2 0.3 0.4 0.5
etch depth (waves)

Figure 6.10. Variation in diffraction efficiency # as a function of etch
depth for a binary phase reflective CGH with an aluminum coating and
50% duty cycle. All non-zero even orders have zero efficiency. The
first-order curve, peaking at 37 %, is not shown.

The size of the pinhole is optimized to reject the stray orders without limiting
resolution. The pinhole is positioned at the center of curvature of the Shack cube
where the light comes to a sharp focus. To find the relationship between pinhole size
and order rejection, the null test was analyzed using lens design software. The zero-
order diffraction from the CGH was simulated by placing a flat mirror at paraxial
focus, where the CGH goes. The ray intercepts at the pinhole plane give the position
of the zero-order ray. Since the angle of diffraction is proportional to the order

number for small angles and the third-order diffraction is known to cross the axis at
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the pinhole, ail other orders are easily calculated. This was done for several rays
corresponding to different radial positions on the mirror. The pinhole must be small
enough that it blocks all but the desired order for the clear aperture tested.

Figure 6.11 shows how a stray order is blocked by the pinhole. The light
from the desired order comes to a sharp focus at the pinhole. The unwanted orders
are out of focus and aberrated so they do not make it through the aperture. Since an
annular pupil is used, an out-of-focus stray order will cause an annular image at the
aperture plane. As long as the pinhole is smaller than the inner diameter of this

annulus, the light in this stray order will be completely blocked. -

unwanted order
(defocused from pinhole)\
mask with
aperture at focus
of desired order

desired order i )
image of mirror

from only the
selected order

Figure 6.11. Rejection of stray diffraction orders. The order rejection
relies on two principles. (1) The desired order comes to a sharp focus
where all other orders are out of focus, and (2) An annular pupil is
used. There is a central untested region that is blocked elsewhere.
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The pinhole may not be made arbitrarily small however because it acts as a
low-pass spatial filter with cutoff spatial frequency &, derived using Fourier optics

(Goodman 1968; Gaskill 1978) as

P _ NAx¢, (6.24)
¢ ap
where &, = spatial frequency of cutoff (cycles per meter at mirror)

¢ = pinhole diameter (um)
A = wavelength of light (zm)
D = diameter of primary (meters)

NA = final numerical aperture of converging light in which
pinhole is used (equals the sine of the light cone half-
angle).

For the null lens for the WIYN 3.5-m primary that uses a 0.332 NA beam, a
200-pm pinhole gives 30 cycle-per-meter resolution or 105 fuli cycles across the
mirror diameter. This frequency optimally matches the Nyquist sampling rate
determined by the digitization of 200 pixels across the mirror. This pinhole also
completely rejects all but the desired orders of diffraction in the clear aperture.

Several high-order diffraction effects were examined and shown to be
negligible. The CGH's are designed based on scalar diffraction theory, which is
known to be approximate. Rigorous analysis has shown that the diffraction efficiency
predicted by this approximation is accurate for rulings with spacings larger than
several wavelengths (Moharam and Gaylord 1986; Kok and Gallagher 1988). The
angle of the diffracted light predicted by the scalar theory is exact {(Gemaux and

Gallagher 1993). The phase retardation due to the angle of incidence and the complex
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index of refraction of aluminum was analyzed and shown to be negligible. The phase
retardation between the s- and the p- polarized light is 0.006) for the extreme ray for
a f/1.75 primary. The radial phase variation across the CGH due to the cosine effect
in the grooves was also shown to be negligible. For quarter-wave deep grooves, this

effect causes an error in Wy, of only 0.000013 for an f/1.75 primary.

6.6. ERROR ANALYSIS 1: ERRORS FROM FABRICATION OF CGH

The most obvious errors in the CGH null lens test come from the errors in the
CGH itself. All of the possible error sources are evaluated and added to estimate the
uncertainty in the CGH. The CGH errors can come from the substrate surface figure,
e-beam writing errors, printing to the final substrate, or phase etching. They are
separated as either figure or hologram errors depending on whether the phase error is
caused by the surface reflection or diffraction. The figure errors affect the wavefront
from all diffracted orders equally and the effects of the hologram distortion errors on
the wavefronts are proportional to the order number. The hologram distortion does
not affect the wavefront from the zero-order specular reflection. However, the
variations in etch width and depth have a strong effect on the zero-order reflection,

but a minimal effect on the other orders.

SURFACE FLATNESS

The figure error in the hologram surface adds a phase error to the diffracted
wavefront that is twice the surface error of the CGH. The wavefront phase errors due
to small-amplitude low-frequency figure errors are identical for all diffracted orders.
In the absence of other errors, this fact would enable the direct measurement of the

figure errors using a Fizeau interferometer with a flat reference. The measured figure
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errors could then be subtracted from the null lens measurement. However, variations
in the etch depth and duty cycle cause irregularities in the zero-order or specular
wavefront that are much larger than those in the non-zero-order diffracted wavefronts.
The flatness of the CGH substrate must be measured before the hologram is applied.

The flatness is measured using the real coordinates of the CGH, so a mapping
transformation must be performed to give the resulting error in the null lens test. The
nonlinear mapping between CGH and mirror coordinates is shown in Fig. 6.7 and de-
scribed in Table 6.1. The equation for x(r) in Table 6.1 may be used to transform the
figure data from CGH to mirror coordinates. An additional transformation must be
performed to correct for the imaging distortion in the null lens (See Sec. 4.6). This
remapped surface figure may be subtracted from the data obtained when measuring
the CGH with the null lens. An uncertainty in the hologram figure or in the mapping
causes an uncertainty in the test of the null lens.

Since the null lens test is performed with the CGH rotated to many azimuthal
orientations, non-axisymmetric errors in the CGH average out. The remaining
rotationally symmetric surface errors may be expanded in a series and remapped using
the relationship for x(r) given in Table 6.1.

If the CGH figure error is written as a polynomial expansion
AS =Y ax’
j

the wavefront error mapped into mirror coordinates is

~KRY( r\’
AW—Zg:aj( > ](Yij : (6.25)

So power (fj = 2) in the CGH surface AS gets mapped into sixth order spherical

aberration wavefront error. In practice, the series approximation is not made because
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it is more accurate and no more difficult to perform the transformation directly to the
data.

The error in the null lens test due to the CGH surface flatness is quite small.
The substrates are specified flat to A/20 at 546 nm and the majority of this error is
likely to be astigmatism that is removed from the null lens measurement by rotating

the hologram.

HOLOGRAM DISTORTION

The most severe errors in this test are the hologram errors consisting of
distortion in the ruling pattern. The distortion may be caused by limitations in the e-
beam writing or in the printing onto the final substrate. Distortion causes an error in
a diffracted wavefront given by Eq. (6.3). For the null lens test, this error is

approximated to be

2 r
AW = ; (6.26)

where.as before,
AW = wavefront error (twice surface error in measurement}
&, = radial CGH error (actual radial position of groove - desired position)
r = virtual radial position in mirror coordinates
R = radius of curvature of primary mirror.
The error due to distortion is independent of the order m and wavelength A.
The effect of the CGH error for the null lens test is analyzed by making the

approximations in Table 6.1. The most significant radial error in the CGH is the
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linear scale of the hologram which is the lowest-order distortion. A scale error C

gives a shift in the pattern g, proportional to radial position

g =Cx. (6.27)

This causes the diffracted wavefront to have an error of

3 4
AW = 3-’10[— Kr J _c&r (6.28)

R 2R? R

which is simply spherical aberration Wy,,. The conic constant change in the primary

mirror that would cause this W, is

4R°
= o XWIMO‘ (6.29)

=—4KxC

AK

This result is interesting; it is only the linear component of the CGH
distortion, which is a scale error, that causes an error in the measured conic constant.

For a more general case, &(x) may be expanded into a series in x,

g =y bx’
-
and the resulting wavefront error is

AW=Zij($J (%}j . (6.30)

The first-order (magnification) term was shown above to introduce spherical
aberration into the test. The zero order case is also interesting. If all of the rings are

shifted radially an amount b,, then the wavefront error would take a conical shape.
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The magnitude of the hologram errors is estimated from knowledge of the
encoding, writing, and printing process accuracy. The CGH encoding is performed
with sufficient resolution to insure digitization errors less than the e-beam pixel size.
The e-beam writers are verified to be accurate to +£0.15 um P-V. The accuracy of
the printing depends on the method used and the expertise of the technician. Contact
printing has been demonstrated to be accurate (o 40.1 um (Everett 1993) although
larger errors are expected without using careful control of the process.

The form of the hologram errors determines the type of wavefront errors in-
duced. Most of the encoding and writing errors occur over small spatial scales
causing high frequency errors that are filtered out (Kathman ef al. 1988). Since
azimuthal errors average out when rotating the CGH, the error budget must only
include spherical aberration. The magnitude of the third-order spherical aberration
(which has a fourth-order dependence or r) is estimated by assuming the distortion can
cause pure Wy, This translates into a scale error given by the maximum shift &
divided by the radius of the CGH. The resulting wavefront error is given by Eq.
(6.28).

The higher-order spherical aberration is assumed to be much smalier than the
low-order error described above. The holograms are written and printed using equip-
ment for making integrated circuits, so the higher-order writing and printing errors
should have no tendency to be axisymmetric. An upper limit on the magnitude of the
higher-order errors may be obtained assuming all of the grating error occurs where
period is minimal. Combining Eqs.(6.3) and (6.14) with the expressions from Table

6.1 and taking the worst case, the maximum wavefront error AW, is given by
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2
Ameax =_2'ﬁ’ 1+&La§ X Eax + (631)
R 2R

For the CGH null lens test for a 3.5-m f/1.75 primary mirror, a 0.2-pm maximum
hologram error can cause a maximum wavefront error of 56 nm.

Unlike most binary optics, these holograms require poor diffraction efficiency,
so they can be fabricated using a single step. Binary optics typically use several
masks sequentially to increase the diffraction efficiency (Swanson and Veldkamp
1988; Cox et al. 1990). With the use of a single mask, the difficulty and uncertainty

of the mask alignment are avoided.

ETCHING ERRORS

Variations in the depth of the etched grooves and the ruling duty cycle must
also be considered as potential error sources. The dependence of the wavefront phase
on these terms, given in Eq. (6.23), shows a strange result for the zero-order
diffraction. For diffraction into the zero order from quarter-wave deep grooves, very
small variations in duty cycle or groove depth cause large, even discontinuous phase
variations. Both the real and imaginary parts of the field amplitude are very small --
zero for the ideal case -- so the ratio of these terms, thus the phase, is poorly defined.
The discontinuity in phase for A/4 depth and 50% duty cycle is meaningless because
there is no energy in this order.

It is apparent from Fig. 6.12 that small fluctuations in duty cycle and etch
depth can cause a large diffracted phase variation for the zero-order light. This

precludes accurate measurement of the surface flatness using the zero order reflection.
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The substrate figure must be certified before the hologram is fabricated. The phase of

the non-zero orders is unaffected by variations in duty cycle.

015 L L T L i L) T 1
i D=0.56
04 4 D=0.54 i
I D=0.52 1
0.3 + -
D=0.50
0.2 1 -
D=0.48 i

0.1 - D=0.46

NON-ZERC ORDER

-0.2

diffracted phase shift in waves
(&)
o

0.3+

044

0.5 p——t—tt ] :

0.15 0.20 0.25 0.30 0.35
etch depth in waves

Figure 6.12. Dependence of diffracted phase variation on etch depth

and duty cycle variations for a pure phase grating centered around the

design values of D=0.5 and 0.25) etch depth. The zero-order terms

are shown as a set of curves with different duty cycles. The non-zero

orders have no dependence on duty cycle.

For grooves nominally A/4 deep, the wavefront variations are equal to the
variations in etch depth. Groove depth variation of +2% will give wavefront errors

of +4/200.
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6.7. ERROR ANALYSIS 2: ERRORS IN USE OF CGH

A CGH manufactured without figure or writing errors does not guarantee a
perfect null lens test. The test of the null corrector will only give a null result for a
flawless null lens and CGH that are designed for the same radius of curvature, conic
constant, and wavelength of light. Also, a change in the temperature of the CGH will
cause it to expand and induce spherical aberration. Since the CGH emulates a perfect
primary mirror, the alignment does not significantly affect the test accuracy. Noise in
the measurements due to vibration, seeing, random electronic noise, and digital round
off errors are negligible in the average of many measurements.

The analysis of these effects is handled by treating the CGH as a plane surface
that introduces a wavefront change of twice the single-pass OPD given in Table 6.1.
This is a sensible thing to do because the ruling is known to introduce three waves of
OPD per ring into the third order. Since the measurements are performed in terms of
surface variations, this OPD is treated using an effective surface function Sqg; which
is exactly half of the wavefront change. This surface function is equal to the single-

pass OPD given in Table 6.1,

§. = 3Kr*
c6H T g pt (6.32)

where r is the virtual position at the mirror.

The nuil lens is designed to measure a mirror with a given radius R and conic
constant K, but it will yield a null test for a family of surfaces. The actual shape of
the surface depends on the distance to the primary being tested. The CGH test
measures only the null corrector, so the measured errors must assume an R and K of
the primary mirror. Ideally, the CGH is fabricated for exactly the R and K of the

primary. If it is not, corrections to the data must be made for the known differences.
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CONIC CONSTANT ERROR

There is a direct relationship between an error in the conic constant and
spherical aberration in the nuil lens. Zernike polynomials are commonly used in
interferometric measurement and analysis programs, so the spherical aberration in the
surface will be represented by Zg, the coefficient on Zernike polynomial #8. This
polynomial equals 6p*-6p?+ 1 where p is the normalized radial position. The

equation for the surface asphere is differentiated, resulting in

_ lKr‘1
' 68K
1"4
dZ, =——dK
48R (6.33)
3
ax =4 47
Ia

where Z, = coefficient on Zernike polynomial #8 for surface asphere

dZ, = coefficient on Zernike polynomial #8 when measuring surface with null

lens.

For a 3.5-m primary mirror with R = 12250 mm tested using a HeNe laser,
dK = 9.408dZ; (with Zg in mm). If the mirror measurement shows dZ; = 32 nm, the
deviation of the conic constant is -+0.0003 from the desired value.

When analyzing data from a CGH null lens test, this relationship must be
treated carefully to correctly determine the sign of dK. The spherical aberration
measured with a CGH is the error in the nuil lens. If no spherical aberration is
present in a measurement of a primary mirror using the null corrector, the mirror

must have a figure error of the opposite sign that cancels out that of the null lens. So
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for the measurement of a CGH with AK = K

orimary - Kcor» the spherical aberration

expected is given by Eq. (6.33)

AZy =~ K. (6.34)

RADIUS OF CURVATURE ERROR

If the CGH and the null lens are designed for different values of R, the primary radius
of curvature, the CGH null lens test will show spherical aberration. The relationship
between the spherical aberration and R cannot be found directly from Eq. (6.32) since
r is actually a function of R.. However, the ratio of r/R is equal to the sine of a ray
angle coming from the null lens, so this ratio must not depend on R (since the null
lens is determined independently of R). Substituting this into Eq.(6.32) and

differentiating gives

3K sin* 4
SCGH ="TR
ﬁ_@_ ___d£ (6.35)
R K

So a CGH with dR = 0.0001R will cause spherical aberration that has the
same effect as a conic constant change of +0.0001 for a parabola. Using the above

relationships between AK and AZg, the expected spherical aberration AZ; due to a

small radius change in the null lens is

Krt
= AR,
SEVT-Y S

(6.36)

where AR is defined as R - R
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ERROR IN LASER WAVELENGTH

Since diffraction is a strongly wavelength dependent effect, a change in the
laser wavelength would cause an error in the measurement. The wavelength of the
laser light is dependent on the frequency of the transition for stimulated emission and
the refractive index of the air. Using an unstabilized, single-mode gas laser, the
frequency can take any value within the Doppler-broadened width of the gain curve.
The refractive index of the air is easily calculated based on the temperature and
pressure.

The function Segy is the effective surface corresponding to three waves per
cycle at the design wavelength. So S.4y in units of length is really a phase function
times the wavelength of the light used. A change in the wavelength must cause a

proportional change in Sqgy,

Ao = Soon ot = -2 B2 (6.37)
This leads to
| Ak =3k 24 (6.38)
A
and
AZ, =~ 1?; %& (6.39)

A +2°C temperature change, causing a refractive index change of -2Xx106

(Edlén 1966), causes AA/A of +2Xx106, For testing a nuil lens for a 3.5-m f/1.75

paraboloidal primary mirror, this change in wavelength will cause spherical aberration

with AZg = +0.633 nm.
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ALIGNMENT OF CGH TO NULL LENS

The procedure for aligning the CGH to the null lens is identical to the
alignment for the null test of primary mirrors. The lateral translation, axial
translation, and tilt of the null lens are adjusted to eliminate tilt, focus, and coma from
the interferogram. This is easily done to about an eighth of a fringe and the rest is
subtracted in software.

The relationships between the CGH position and the wavefront returned were
derived using the functions in Table 6.1 for the null lens test. Since the alignment is
performed accurately by nulling the fringes, a first-order analysis is adequate.

Tilt of the CGH about its center by an angle o causes a surface variation AS =
ax. This is mapped into coma, amounting to

_ —Kr’cosd (6.40)

AS > ,
2R

where @ gives the azimuthal angle from the direction of the tilt.

This tilt also causes a shift in the mapping between the CGH and the mirror,
but this is a higher order effect that has only 2% of the magnitude given in Eq. (6.40)
for an f/1.75 priméry.

The effect of a lateral shift of the CGH by Ax is analyzed by taking the

derivative

AS = Bcom py (6.41)
dx

This results in wavefront tilt corresponding to
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AS = —rcos@Ax. (6.42)

Axial motion Az of the CGH causes two changes: a change in the optical path
length (AOPL) and a change in the ray mapping onto the CGH. The path length
change is computed geometrically and the effect of the remapping is calculated by

differentiation of the CGH phase function. These two elements are given as

2

AOPL= -——Az
R
2 (6.43)
B o=l pn
dx R
The combination gives
AS = d—de — AOPL
dx
2 (6.44)
= - Az.
2R?

The amounts of tilt, focus, and coma that are caused by misalignment of the

nul] lens are identical for testing either the CGH or the primary mirror.

RANDOM MEASUREMENT ERRORS

The individual measurements of the CGH have small errors due to
environmental effects, electronic noise and digital sampling. These errors become
negligible in the average of many measurements since the errors are small in
amplitude and uncorrelated. The environmental effects, caused by air motion in the

optical path and vibration, are much smaller for the CGH test than they are for the
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test of the primary mirror since the path length is so much shorter for the CGH test.
For a null lens measurement consisting of 15 azimuthal rotations, 5 maps per angle,

and 0.02) rms random errors, the random component of error in the average is less

than 1.5 nm rms, which is negligible.

6.8. ERROR ANALYSIS 3: ERRORS IN DATA REDUCTION

The last remaining type of error is due to possible errors in the interpretation
of the data. This type of error is minimized for the null test -- a nuli result is absolute
and 'requires no interpretation. The actual errors in the null lens and the CGH result
in a non-zero figure measurement that must be evaluated. Also, known errors in the
CGH that are subtracted from the data cause an uncertainty in the final map from
uncertainties in the CGH errors and the mapping between these errors and the
measured data.

The errors in the CGH are calculated in the coordinates at the real mirror. To
subtract these from the data, the errors must be transformed into the data coordinates.
This transformation requires knowing the imaging distortion of the nuil corrector and
the exact relationship between the edge of the data and the edge of the mirror,

The imaging distortion of the null lens is measured to about +0.5% and the
edge is determined to within +1 pixel. A computer program was written to re-map
the CGH errors according to the imaging distortion and then fit Zernike polynomial
coefficients using least squares. The fitting error was directly assessed by simulating

errors in the mapping function. For a null lens with -6.7% + 0.5% distortion, AZg,

gets mapped into

AZ, =(0.989 % 0.002)AZ,

: (6.45)
AZ, =(0.092£0.008)AZ,
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where AZ; = coefficient of Zernike #8 in mirror coordinates from CGH errors
= coefficient of Zernike #8 in data coordinates from CGH errors
= coefficient of Zernike #15 in data coordinates from CGH errors
(Z,5 is fifth-order spherical aberration: 20p¢ - 30p* + 12p? - 1).
The position of the edge of the image is uncertain by 1 pixel, causing an addi-
tional uncertainty in the AZ, term. For a data map with 200 pixels across the mirror,
the relative uncertainty dr/r is 1%. This causes an uncertainty in Azg'of 4% and an
uncertainty in AZIS' of 6%. The uncertainty in mapping the CGH error is

independent of the uncertainty in the CGH error itself.

6.9. CONCLUSION

A null lens test using a computer-generated hologram is presented including a
background on CGH testing, a detailed déscription of the CGH null test design and
optimization, and a thorough error analysis. This new test works by using the null
corrector to test a small circular hologram or zone plate placed at the paraxial focus of
the null lens. The zone plate diffracts light back into the null corrector that precisely
matches the light that would be reflected by a perfect primary mirror many meters
away. An error measured when testing the hologram must be due to the null lens.

The CGH null lens test is used to certify a critical and precise instrument, so a
thorough error analysis has been performed. The test has three types of error
sources: errors in the CGH, errors in the implementation of the test, and errors in the
interpretation of the results. An effort has been made to understand and minimize all

three types of errors.
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APPENDIX C

VISIBLE NULL CORRECTOR FOR A 6.5-m f/1.25
PRIMARY MIRROR: OPTICAL PRESCRIPTION AND
TOLERANCE ANALYSIS

This appendix contains the optical prescription and error analysis for the null
corrector designed for testing a 6.5-m f/1.25 primary mirror using visible laser light.
The null corrector, shown in Fig. C.1 will be used to guide final polishing of the primary
mirror. The error budget for the null corrector is analyzéd using a structure function of
the mirror surface. The structure function contributions from the null lens tolerances,
after the removal of conic constant errors, are shown in Table C.1. The error analysis

.using rms wavefront is given in Table C.2.

RELAY LENS

BLANIC  #11312 EIELD LENS 1 FIELD LENS 2
DIAM: 270 mm BLANK: #4658 BLANK:  # 11287
THICK:  57.3 mm DIAM: 90 mm DIAM:  B4mm
R1; -2525.3 mm THICK: 18 mm THICK: 14 mm
R2: -208.,100 mm R1: -200.000 mm R1: flat
GLA: BSL7-3502 R2: -213. 110 mm R2: -579.010 mm
n=1.52172 GLA: B8L7-1301 GLA: BSL7-1302
SHACK CUBE CAl: 240 mm n=1.51974 n=1.52023
CA: 12 mm CAZ2: 245 mm CA: 68 mm CA: 45 mm
R: 40 mm
- %&
Q§ _HL“"_-:L_ -
U:‘_——K
SPACINGS
SHACK CUBE TO RELAY LENS: 761.893 mm 3‘—""1—-—' AME?QQ’?‘RV 6512 mm
RELAY LENS T FIELD LENS 1: 437.172 mm IAMETETE GURV:  —qasaa
FIELD LENS 1 TO FL 2 : 115,687 mm |
FIELD LENS 2 TO MMT PRIMARY: 16514.45 mm CONIC CONSTANT:  -1.0000
: : HOLE DIAMETER: 889 mm

Figure C.1. Layout of the visible null corrector for the 6.5-m f/1.25
primary mirrors.
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Table C.1. Table of tolerances showing the structure function for the null corrector

STRUCTURE FUNCTIONS
Design spatial scales in mm
units | value tolerance | 3256 1628 814 407 204 102 51
rms wavelront difference in nm

Shack Cube mm 12
Radius mm -40 0.005 0.30 0.26 0.12 0.23 0.20 012 0.06
Surface (rms) nm 6.328 1780 1858 1228 8.35 519 278 1.28
Runout Hm 5.000 1.98 1.64 211 1.14 0.89 0.62 0.34
Airspace mm | 761.893  0.020 1.21 1.04 0.47 0.50 .80 0.48 0.26
Relay Lens : mm 270
Radius 1 mm [ -25253  0.500 1.20 0.94 0.46 0.93 0.85 0.51 0.27
Thickness mm 57.3 0.010 0.78 0.70 0.53 0.83 0.49 0.29 0.18
Radius 2 mm | -206.1 6.010 2.50 235 1.05 1.61 1.83 0.93 0.50
Surface 1 {ms) nm 7.994 10.87 1025 759 516 3.21 1.72 0.79
Surface 2 (fms) nm 7.594 1087 1025 7.59 5.16 3.21 1.72 0.79
Index of refraction 1.52172  1.00E-5 1.13 0.99 0.12 0.74 0.76 0.46 0.25
Index Inhomeogen rms 1.72E-7 | 2779 13.90 6.95 3.47 1.74 0.87 0.43
Runout surface 1 Hm 10.000 1.68 1.54 2.24 1.21 0.96 0.67 0.36
Runout surfaga 2 Hm 10.000 2,67 2.21 27 1.56 0.87 0.64 035
Alrspace mm | 437.172  0.020 1.86 0.47 1.46 1.73 1.77 1.07 0.56
Field Lens 1: mm a0
Radius 1 mm -200 0.005 7.68 7.92 5.52 4.81 393 2.36 1.29
Thickness mm 18 0.005 1,48 328 363 1.36 2.12 1.31 Q.68
Radius 2 mm | -213.11 0,005 3.30 4.96 4,85 0.66 227 1.41 0.71
Surface 1 (rms) nm 7.504 10.87 1025 7.59 5.16 321 1.72 0.79
Surface 2 (rms) nm 7.594 10.87  10.28 7.59 5.16 321 1.72 0.79
Index of refraction 1.51974 1.00E-5 0.28 0.18 0.49 0.26 0.24 0.16 0.08
Index [nhomogen rms 1.20E-7 6.09 3.05 1.52 0.76 0.38 0.19 0.10
Runout surface 1 Hm 5.000 3875 27.06 2012 13.98 8.28 4,57 2.41
Runout surface 2 Hm 5.000 3366  24.31 1829 1277 7.66 4.24 223
Airspace mm | 115.667 0.010 1.77 1.28 095 1.3 1.34 0.81 0.43
Field Lens 2: mm 64
Curvature 1 /mm 0 1.25E-7 6.46 8.31 7.45 283 202 1.32 0.60
Thickness mm 14 0.010 1.51 1.23 0.41 1.08 1.08 0.64 0.34
Radius 2 mm | -578.01 0.010 1.86 0.64 1.69 1.56 1.89 1.03 0.54
Surface 1 (rms) nm 7.504 1087 1025 7.59 5.16 3.21 1.72 0.79
Surfaca 2 (rms) nm 7.594 10.87 1025 7.59 5.16 s | 1.72 0.79
Index of refraction 152023 1.00E-5 4,00 3.94 2.3t 2.53 2.24 1.36 0.73
Index Inhomegen rms 1.20E-7 4.74 237 1.18 0.59 0.30 0.15 0.07
Runout surface 1 Hm 5,000 2073 14.64 10.82 8.05 5.25 3.03 1.65
Runout surface 2 pm 5.000 2475 1662 1153 8.02 4.99 2.81 1.49
Airspace mm [ 165144  1.000 1.07 0.94 0.37 083 0.70 0.43 0.23
MMT Primary mm 6512
Radius mm | 16256 1.000
Design Residual A 0 0.008 8.77 6.64 7.84 6.26 4.22 2.35 1.20
Worst Case 29085 23147 17499 12094 8395 47.92 2435
RSS WVFRONT 78.77 56.37 41,86 28.78 18.44 10.34 $5.30
RSS SURFACE 37.89 28.18 20,93 14,29 9.22 5.17 2.65
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Table C.2. Table of tolerances showing the dependence of the rms wavefront and
conic constant on the fabrication tolerances.

Conic Wavefront
Dasign ) Constant rms
unlts value tolerance arrar at 5614.5
nm
Shack Cube mm 12 :
Radius mm -40 0.005 0.000005 0.0006
Surface Irreguiarity (rms) wv HeNe 0.010 0.0246
Runout um 5.000 0.000000 0.0013
Airspace mm 761.893 0.020 0.000018 0.0017
Relay Lens : mm 270
Radius 1 mm -2528.3 0.500 0.000019 0.0016
Thickness mm 57.3 0.010 0.000008 0.0011
Radius 2 mm -206.1 0.010 0.000011 0.0030
Surface 1 Irregularity (rms) wv HeNe 0.012 0.0154
Surface 2 lrregularity (rms) wv Hele 0.012 0.0154
Index of refraction 1.52172 1.00E-5 0.000025 0.0013
Index Inhomogeneity rms dn 1.72E-7 0.0383
Runout surface 1 pm 10.000 0.000000 0.0026
Runout surface 2 Hm 10.000 0.000000 0.00619
Airspace mm 437172 0.020 0.000071 0.0045
Field Lens 1: mm 90
Radius 1 mm -200 0.005 0.000034 0.0108
Thickness mm 18 0.005 0.000025 0.0079
Radius 2 mm -213.11 0.005 0.000029 0.0101
Surface 1 Irreguiarity {rms) wv HelNe 0.012 0.0153
Surface 2 lrregularity (rms) wv HeNe 0.012 0.0153
index of refraction 1.81974 1.0QE-5 0.000001 0.0002
index Inhomogeneity rms dn 1.20E-7 0.0084
Runout surface 1 um 5.000 0.000000 0.0300
Runout surface 2 pm 5.000 0.000000 0.0308
Alrspace mm 115.667 0.010 0.000036 0.0032
Field Lens 2: mm 64
Curvature 1 /mm o} 1.25€-7 0.000009 0.0147
Thickness mn 14 0.010 0.000023 0.0023
Radius 2 mm -578.01 0.010 0.000002 0.0046
Surface 1 Irregularity {rms) wv HelNe 0.012 0.0154
Surface 2 Irregularity (rms} wv HeNe 0.012 0.0154
Index of refraction 1.62023 1.00E-5 0.000002 0.0051
Index Inhomogeneity rms dn 1.20E-7 0.0065
Runout surface 1 Hum 5.000 0.000000 0.0140
Runout surface 2 Hm 5.000 0.000000 0.0184
Airspace mm 16514.45 1.000 0.0000860 0.0011
MMT Primary mirror mm 6512
Radius mm 16256 1.000
Null Corrector residuat waves 0 0.008 0.000000 0.0079
Worst Case 0.000377 0.3503
RSS 0.000121 0.0815
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APPENDIX D

INFRARED NULL CORRECTORS USING ASPHERIC
SURFACES: OPTICAL PRESCRIPTION AND
TOLERANCE ANALYSIS

This appendix contains the optical prescriptions for two IR null lenses that each
use a single aspheric surface. The first optical design, shown in Fig, D.1, is of limited
practical value because of its extreme sensitivity to manufacturing errors. The second
null corrector, shown in Fig D.2, will be used to test the MMT primary mirror. A

complete tolerance table for this null corrector is given in Table D.1.

[—
i
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ASPHERIC CORRECTOR FIELD LENS aspherle polyaom !

DIAM: 54 mm DIAM: 64 mm

THICK: 158 mm i 128 mm a, = 0.00972 mm-! ay4 = 1.6108E-18 mm-13

o Tl asphers R2 | -57.043mm 24 = -5.9033E-6 mm-3 84 = -1.3862E-21 mm-15

GLA:  ZnSe ga zSe ag = -7.1969E-8 mm'S 8yg= -1.4780E-27 mm-17

A 46 mm 8y = 2.8834E-10 mm-7 850 = -2.0868E-31 mem-1?
a3 = -4.8717E-13 mm® a5, = -2.1209E-32 mm-2!
ay2= 2.0807E-18 mmT? 8y, = 2,0586E-35 mm B

L_—E)}‘\‘“W
i ————

INTERFERQOMETER
COLLIMATED CO,
% =10.8 pm)
DIAM: 45 mm
MMT PRIMARY
DIAMETER: 8512 mm
SPACINGS RADIUS OF CURV:  -16266 mm
CORREGTOR LENS TO FIELD LENS: 88,682 mm CONIC CONSTANT:  -1.0000
FIELD LENS TO MMT PRIMARY: 16449.2 mm HOLE DIAMETER: 888 mm

Figure D.1, Layout with prescription of an interesting infrared null
corrector for a 6.5-m f/1.25 primary mirror,

ASPHERIC DIVERGER

DIAM: 50 mm RELAY LENS
THICK: 12.007 mm DIAM: 200 mm
R1: 77.964 mm THICK: 28.088 mun FIELD LENS
R2: -60.560 mm R1: FLAT DIAM: 80 mm
+ potynomial terms R2: -355.808 mm THICK: 13.852 mm
GlA: ZnSe GlLA: Ge R1: -8.027E8 mm
n=2,4022 n=4.0028 R2: -625.800 mm
CA: 38 mm CA: 184 mm GLA: ZnSa
n=2.4022
INTERFEROMETER CA: 72 mm
COLLIMATED CO, -
(A #10.6 ym) |~
DHAM: 38 mm
P P —_"_'*‘_“'%w-ci
=
aspheric pelynomial coedficiends :/7,/4//

a, = 1.79540£-5 mm?
ag = -7.16810E-8 mm3
ag = 3.00260E-10 mm-’

ay, = -9.68870E-13 mm®
MMT PRIMARY

84y = 1. T440E-15 mm-!! SPACINGS DIAMETER: 8512 mm

a,, = -9.300B0E-19 mm-13 DIVERGER TO RELAY LENS: 140.513 mm RADIUS OF CURV:  -16256 mm
RELAY LENS TO FIELD LENS; 429,683 mm CONIC CONSTANT:  -1.0000

845 = -6.9%160E.22 mm-15 FIELD LENS TO MMT PRIMARY: 16625.5 mm HCLE DIAMETER: 889 mm

Figure D.2. Layout with prescription of the infrared null corrector that
will be used for testing the 6.5-m f/1.25 primary mirrors.



Table D.1. Table of tolerances for the MMT IR null corrector.
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Conic Wavefront
Dasign Constant rms 7
units value toierance 8rror {at 10.6 um}
Interferometer mm 38
Power um 0 0.000 0.000000 0.0000
Reference surface (rms) wv HelNe 0.01 (.000000 0.0012
Alignment w/null deg 0.100 ¢.000000 0.0018
Aspheric Diverger mm [5]0)
Radius 1 mm 77.984 0.06 0.000020 0.0032
Thickness mm 12.007 0.04 0.000000 0.0018
Radius 2 mm -60.58 0.025 0.000012 0.0028
Surface 1 frregularity {rms} wv HeNe 0.6 0.000000 0.0837
Surface 2 lrregularity {rms) wv HelNe o1 0.000000 0.0167
Index of refraction (ZnSe) 2.4022 0.0006 0.0000086 0.0031
Index Inhomogensity rms dn 3.00E-06 0.000000 0.0068
Runout surface 1 Hm 50 0.000000 0.0014
Runout surface 2 um 50 0.000Q00 0.0056
Decenter surface 2 um 50 0.000000 0.01863
Airspace mm 140,513 0.060 0.000068 0.0088
Relay Lens : mm 200
Curvature 1 /mm 0 5.00E-07 0.000030 - 0.0034
Thickness mm 28.069 0.050 0.000023 0.0026
Radius 2 mm -355.906 0.100 0.0000386 0.0069
Surface 1 lrregularity (rms) wv HeNe 0.1 0.000000 0.0369
Surface 2 Irregularity {rms) wv HeNe 0.1 0.000000 0.0359
Index of refraction (Germaniumj 4.0028 1.00E-3 0.000038 0.0066
Index Inhomogensity rms dn 5.00E-5 0.2648
Runout surface 1 um 50 0.000000 0.0220
Runout surface 2 um 50 0.000000 0.0337
Airspace mm 429,983 0.100 0.000062 0.0056
Field Lens : mm 80
Curvature 1 fmm 1.25E-07 1.00E-6 0.000077 0.013%9
Thickness mm 13.852 0.020 0.0000056 0.0005
Radius 2 mm -625.8 0.100 0.000020 0.0037
Surface 1 Irregularity (rms) wyv HeNe 0.1 0.000000 0.0167
Surface 2 lrregularity {rms)} wv HeNe 0.1 0.000000 0.0167
Index of refraction {ZnSe) 2.4022 0.00086 0.000044 0.0081
Index Inhomogeneity rms dn 3.00E-06 0.000000 0.0078
Runout surface 1 gm 50 50 0.000000 0.0086
Runout surface 2 um 50 50 0,000000 0.0147
Airspace mm 16625.5 1.000 0.000060 0.0000
MMT Primary mirror mm 8512
Radius mm 16256 1.000
Null Corrector rasidual waves 0 0.008 0.000000 0.0076
Worst Case 0.000500 0.6686
RSS 0.000158 0.2888
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Null test optics for the MMT and Magellan 65-—m f/'i.ZS pi'imﬁry ﬁlirrors

J. H. Burge, D. S. Anderson, D. A, Ketelsen, and S. C. West

Steward Observatory Mirror Lab
University of Arizona
Tucson, Arizona 85721

) ABSTRACT -
The instruments used to interferometrically measure the optica! surfaces of the 6.5-m f/1.23
primary mirrors for the MMT conversion and Magellan Telescopes must compensate over
800 um surface departure from the best fitting sphere. The errors in the optical test must not
contribute more than 0.04 arc seconds FWHM to the final image and the conic constant must '
be held to 0.01%. This paper presents the design, analysis, fabrication, and certification of
the instruments used to measure these giant mirrors to such high accuracy. .

1. INTRODUCTION

Primary mirrors for modern telescopes are tested interferometrically from the center of curvature using null correctors (see Fig.
1). The null corrector, or null lens, compensates for the asphericity of the mirror surface. Interferometric testing with a null
lens allows an accurate, high-resolution measurement of the entire surface that can be made in several minutes. Two instru-
ments are being built for interferometric measurements of the 6.5-m

mirrors at the Steward Observatory Mirror Lab (SOML). An infrared

interferometer with a germanium and ZnSe null corrector will test the INTERFEROMETER
ground surface to monitor loose-abrasive grinding. The polished sur- WITH

face will be measured with green laser light using a Shack cube inter- NULL CORRECTOR
ferometer co-aligned with a BK7 null corrector. Both the infrared and

visible systems have been carefuily designed to give excellent perform-

ance in terms of wavefront correction, alignment sensitivity, imaging

of the mirror to the detector, diffraction effects, ghost reflections, and RAYS OF

ease of use. The lenses for these instruments are fabricated and meas- LASER

uwred precisely, The accurate alignment and stable support of these LIGHT

lenses require a well designed and constructed mechanical system, The

mounting and alignment methods used for the new null correctors fol-

low from the experience of building similar, smaller instruments at

Steward Observatory.'

PRIMARY
An optical test for measuring null correctors has been developed that MIRROR
uses a rotationally symmetric computer-generated hologram {CGH) to ‘
synthesize the wavefront that would be reflected by a perfect primary Fi L. Schematic drawing of null test
mirror. The test of a null lens is performed by measuring the CGH igure 1. Schematic Crawing o=
through the null corrector. Since the CGH is made independently from the null corrector, agreement between the null lens and
the CGH indicate that both the null lens and the CGH are correct. This test is planned for both null correctors for the 6.5-m
IMirrors.

in ddvanced Technology Optical Telescopes V, L. M. Stepp, Editor, Proc. SPIE 2199, in press (1994).



2 INTERFEROMETRIC METROLOGY USING NULL CORRECTORS

2.1 DESCRIPTION OF NULL TEST ‘ . ! .

The interferometric null test uses interference between light that has been reflected from the mirror, and light from a reference
surface. The interferometer creates a spherical wavefront of laser light that is split into a reference and a test beam. The test
beam travels through the null corrector, reflects off the mirror under test, and travels back through the null corrector into the
interferometer. The test is autostigmatic -- the light retraces its path to form 4 point image coincident with the source point.
The reference beam is reflected off a high-quality spherical or plano surface. The test beam is recombined with the reference
beam causing an interference fringe pattern that corresponds to the difference between the two wavefronts, The fringe pattern is
imaged onto a detector for analysis. By simultaneously shifting the reference beam and measuring the change in intensity at
each pixel of the image, the phase difference, which is proportional to the surface error of the mirror, is calculated at each sam-
pled Iocation.

The null corrector is designed to modify the spherical wavefront from the interferometer to produce a wavefront that matches
the desired aspheric shape of the mirror. If both the null lens and the mirror are perfect, this test wavefront will exactly match
the reference wavefront. The resulting interference pattern will show no variation, giving a “null” result (no surface error). If
the mirror does have figure errors, they will be imparted to the reflected wavefront and show up in the interference pattern. Er-
rors in the reflected wavefront are exactly twice the size of the errors in the mirror. It is important to note that any error in the
null corrector will cause a shape change in the test wavefront that will be interpreted as a figure error in the mirror, The null
test simply measures how well the mirror fits the template

created by the null corrector. It requires additional testing ‘
to determine the absolute accuracy of this template. Couder ?

Of the several types of nuil correctors shown in Fig. 2, the
Offner null lens is most commonly used for large modern
primary mirrors because it allows the measurement of fast
primaries to high accuracy and with reasonable manufac-
turing tolerances. This null corrector consists of a large
relay lens and a smaller field lens. The design principle of
the null corrector uses the field lens to image the primary
mirror onto the relay lens, The power and shape of the
relay lens are chosen to introduce spherical aberration that
compensates the asphericity of the primary mirror. The 4 .
optimization of the two-element Offner null corrector is Ross st <
discussed by Offner®, Holleran®, Puryaev and Shandin’, (1943)

Moya and Landgrave®, Sasian’'®, DeVoe'!, Offner and
Malacara!'?, and Shafer'®.

Offner 3

The design of the null test requires more than an accurate {1963)
null corrector. The instruments are complex optical sys- )
tems with illumination, wavefroat correction, and imaging 8,1 4”-,-}.
. L L .
optics. The wavefront correction is performed by the null  RELAY (NS HIELD LENS

lens. The illumination optics project a laser beam through
a spatial filter to give a well-conditioned wavefront. The
imaging optics project the interference pattern as a scaled
image of the primary mirror onto the detector plane.

2.2 IMAGING REQUIREMENTS
During grinding and polishing, the data from the infrared and visible interferometers are used to direct the figuring. 1t is impor-

fant to minimize the mapping distortion of the mirror through the null lens. The imaging distortion causes two problems in the
data analysis; it causes small surface defects to appear shifted radially and it re-maps low order errors from alignment (focus,
and coma) into higher order errors. A discussion of interferometric measurement errors introduced by small amounts of distor-
tion is given by Selberg'® and the details of the effects of distortion in the null test are given by Burge!. The infrared null lens

Figure 2. Types of refractive null correctors used for testing
primary mirrors.? 2% These drawings are schematic and not
to scale.




was designed to have minimal mapping error and the visible system uses relay optics to correct the distortion introduced by the
nul! lens. o
Improper imaging causes diffraction “ripples” in the measured phase and causes the edge of the mirror to appear flawed.  This
effect, and other errors from diffraction, are minimized by focusing the mirror onto the detector array. Both of the interferome-
ters use apertures at intermediate images of the primary to help define the focus. . Also, a rotating ground glass disk correctly
positioned in the visible system eliminates Fresnel noise, which is caused by scatter of the coherent laser light from dust on the
lens surfaces. Both null correctors were designed to avoid ghost reflections that can cause troublesome spurious fringes.

2.3 ALIGNMENT OF TEST OPTICS WITH PRIMARY MIRROR

Since this is an autostigmatic test, the shape of the wavefront created by the null corrector defines the shape of the mirror. For a
given null lens and spacing to the primary mirror, the shape of the mirror is fully determined by the shape of the wavefront. It is
easy in practice to align the null lens with respect to the mirror because the different alignment degrees of freedom cause distinct
changes in the interference pattern. To find the correct null lens position and orientation with respect to the mirror, the null
lens is first positioned approximately to get the light to reach the detector. Fine adjustments are made to eliminate the fringes of
tilt, focus and coma. Interferograms of these characteristic aberrations are shown in Fig. 3. Lateral translation of the null lens
causes straight tilt fringes in the interferogram. Vertical translation along the axis causes focus in the interferogram. Rotation
of the null corrector about the paraxial center of curvature causes coma in the interferogram. Since it is easy to differentiate tilt,
coma, and focus in an interferogram by inspection, the alignment is done quickly and easily.

TILT FOCUS X COMA Y COMA

Figure 3. Interferograms showing alignment errors of tilt, focus, and coma. Some tilt has been added to the focus and coma.

A small amount of residual alignment error always exists and must be removed in the data analysis. About a tenth of a fringe of
tilt, focus, or coma often remains after alignment. Any small mechanical instabilities will also cause smal variations of these
aberrations. Since tilt, focus, or coma measured in the mirror comes from test misalignment and because these aberrations do
not affect the telescope operation, they are always removed in the data analysis. These low-order terms are easily removed by
first fitting Zernike polynomials to the raw data and then subtracting the appropriate terms from the data.

A tolerance is imposed on the primary radius of curvature to insure that the null lens is used at the correct distance from the
primary mirror. The null corrector creates a wavefront that propagates to fit the desired shape of the mirror. Since the wave-
front changes as it propagates, there is a family of different surfaces that will give a nuil test, only one of which has the desired
shape. Each member of the family can be described to fourth-order in radial position » by specifying a radius of curvature R and
conic constant K. In practice, the null lens is moved axially to eliminate power in the reflected wavefront. The distance at
which this condition is satisfied depends on R. Therefore the conic constant of the surface matching the wavefront depends on
R. The change in X is related to the change in R by
AK AR (1)
K R’



The radius of curvature R is inferred from a direct measurement of the distance between the null corrector and the primary mir-
ror. The optician monitors this distance and designs the grinding and polishing strokes to keep the radius within tolerance,

The null test is also insensitive to optical surface decentration and tilt with respect to the axis defined by the null corrector.
These pose no real problem as long as the decentration and wedge of the optical surface with respect to the 6.5-m blank are less
than 1 mm, which can be accommodated in the telescope.” The wedge is measured by rotating the mirror about the mechanical
reference axis, and measuring runout in the optical surface. The decentration is determined from the amount of coma seen in
the nuil test when the mirror is rotated about is mechanical axis. The centration and wedge of the optical surface are largely
determined during generating. Since little material is removed during grinding and polishing, only small changes are made in
the mechanical properties of the mirrors.

2.4.  ENVIRONMENTAL EFFECTS

Since the measurements of the optical surfaces are performed using instrurents many meters away, environmental effects can
cause significant errors. Variations in air density can cause both random and systematic errors. Motion of the interferometer or
the mirror due to vibration makes phase shifting interferometry difficult and introduces random errors in the measurement. The
random errors are reduced to an acceptable Ievel by averaging many measurements, but systematic errors remain and degrade
the test accuracy.

The random testing errors are minimized by the design of the test facility and further reduced by averaging. Vibration and air
motion (seeing) are the dominant sources of random variations in the testing of large optics. These errors are kept as small as
possible by using a large, well-controlled lab and vibration-isolated test tower. The remaining random measur¢ment errors are
reduced by averaging large numbers of measurements. The error in the average due to the random, uncorrelated effects de-
creases as the square root of the number of measurements in the average.

Measurement erroxs due to vibration are minimized
by using an isolated test tower, short integration
times, and testing on a nul! fringe. The testing of
primary mirrors at Steward Obscrvatory is per-
formed on a rigid test tower that is isolated from
ground vibrations by pneumatic supports (see Fig.
4). This test tower is 24 meters tall and weighs 400
tons. It moves as a rigid body with a resonance of
about 1.2 Hz, and lowest internal mode is at 9.5
Hz. The tower isolation reduces the vibration
problem to a level that allows phase shifting

interferometry, although with some difficulty. The T ;
use of a shuttered CCD camera that captures

images using very short exposures freezes out

fringe vibration during each frame. However, the

relative motion between the mirror and the inter-

ferometer  between frames introduces a

measurement error. The error in the phase com-

putation due to vibration is roughly proportional to i

the spatial phase variation of the surface under test. :

For a good surface with the system aligned on null SIDEVIEW  PNUEMATIC  FRONTVIEW
fringe, the test surface shows very little spatial SUPPORT

variation so the effects of vibration are minimized.
A great attribute of the null test is that the testing
becomes more accurate as the figure of the mirror
improves.

ENCLOSURE

Figure 4. Isolated test tower at Steward Observatory Mirror Lab. The
entire 400-ton concrete and steel structure is supported by 40 air-filled
isolators. Drawing by E. Anderson.

The atmospheric seeing, or wavefront distortion due to air motion, causes random errors in the surface measurement. Air has
refractive index varations proportional to density, thus temperature fluctuations. If a mass of cold, dens¢ air floats over the mir-




- ror during a test, the test wévefront will be distorted and the measurement of the surface will indicate a low area on the mirror.

The tendency to form these air masses is minimized by using 2 large lab with ‘well-mixed air and minimal heat (or cold) load-
ing. Eliminating the seeing problem by performing the test in a vacuum chamber'’+'® would be extremely expensive and diffi-
cuit to implement for large mirrors. :

An important point demonstrated by Martin et al."” is that the random testing errors are distributed where the mirror specifica-
tion has room for them. The mirror specification allows larger errors at low spatial frequency than high frequency. The random
testing errors tend to have mainly low frequency variatiomr while the final mirror surface has very little large-scale variation.
The combination of the surface errors at small scales and the measurement errors at large scales easily meets the telescope re-

quirements.

The random seeing averages out, but there may also be systematic density variations that would lead to erroneous measurcments.

_Once the air handlers in the room are turned off, any warm air rises creating a stable vertical gradient. Also, a heat source on

one side of the room will cause a stable horizontal density gradient. The effect of the horizontal gradient is measured by rotat-
ing the mirror, but there is no such test for the vertical gradient.

The vertical stratification of the air causes a focal length change and a small amount of spherical aberration or change in conic
constant. To quantify the effect of a vertical gradient, a computer simulation of the null test was performed, modeling the re-
fractive index gradient of the air using discrete steps. The null test for the 6.5-m £/1.25 primary was simulated, setting the
number of steps to be large enough that a further decrease in step size did not change the result. Assuming a perfect null correc-
tor at the correct spacing, the resulting power and spherical aberration cause a change in the primary radius R and conic con-
stant X of : ' '

@

where An = total refractive index difference (mirror to null lens).

The temperature at SOML was measured to have a variation of about 0.5° C from the tower to the shop floor. Since the refrac-
tive index of air changes by 1.0x10° per ¢! the temperature gradient at SOML causes a conic constant error of less than 2
ppm (parts-per-million) and a radius error of less than 0.3 ppm. Even if this effect was several times more severe, it would re-
main negligible compared to the null corrector uncertainty of 80 ppm.

A different thermal effect is possible where the deep dish formed by the fast primary mirror holds a stable layer of cool air. A
ray-trace simulation of this effect leads to

AK = —-4An

(3)
AR _\p
R

where An is the refractive index of the air held in the mirror. This effect is minimized by allowing air to flow through the center
hole of the mirror. '

3. NULL CORRECTOR FOR FIGURE MEASUREMENTS USING INFRARED LIGHT

An infrared null corrector has been fabricated that uses germanium and ZnSe lenses with a single diamond-turned aspheric sur-
face, The null corrector, shown in Fig. 5, consists of three lenses: an aspheric ZnSe diverger, a plano-convex germanium relay
lens, and a plano-convex ZnSe field lens. The optical design uses the aspheric surface to give a near-perfect wavefront error of
0.0014 A rms and mapping error less than 1.3%. The aspheric surface for this null corrector was diamond turned and measured
with a profilometer. The surface deviates from the best-fit sphere by 160 um and was determined to be correct to +0.2 pum. The
null corrector will be mounted horizontally and aligned to the collimated output from a Twyman-Green interferometer. The
interferometer uses a CO, laser operating at 10.6 um, a PZT-shifted reference mirror, and a pyroelectric vidicon detector.'”” The



- relative alignment between the system and the primary mirror will be performed by translating the interferometer-null corrector
in three directions and steering the beam with a fold flat.- The fold flat is positioned 2/3 of the distance from the paraxial to the

marginal focus, so tilting the mirror causes a change in pure Zernike coma.

APERTURE
IR INTERFERCMETER
'FOLD FLAT

DWERGER i FiELD LENS
50 mm diam 80 mm dlam
12 mm thick 14 mm thick
ZnSe ZnSe
bl-convex RELAY LENS plano-convex
(one asphere) 200 mm diam

28 mm thick

Germanium

plano-convex TO PRIMARY MIRROR

Figure 5. Infrared null corrector for the testing of a 6.5-m f/1.25 paraboloidal primary mirrors. This design is optimized
for wavefront correction, imaging distortion, alignment tolerances, and ghost reflections.

This null corrector was designed to give excellent imaging performance with no troublesome ghost reflections. In order to avoid
the diffraction problems associated with infrared interferometry, the image of the primary mirror is carefully focused onto the
vidicon detector. To facilitate this, the null corrector creates a real image of the primary mirror very near the large relay lens,
where a circular aperture will be accurately placed to provide a sharp aperture to define the focus. To minimize ghost reflec-
tions, the null lens was designed to avoid surfaces with near-normal ray incidence.

The elements in this null lens are the smallest that will work when aligned to machine tolerances (30 pm over 200 mm). The
lenses were carefully made free of wedge so that they can be mounted in a simple accurately machined cell for alignment and
spacing. A thorough tolerance analysis of the system indicates that the null lens will contribute surface measurement errors of
1.5 pm rms. Most of this error is due to refractive index inhomogeneity of the large germanium lens. The uncertainty of the
conic constant in this null lens due to the manufacturing tolerances is £0.00016, nearly meeting the final telescope specification
of 00001, We plan to check the quality of the entire null lens assembly with a computer-generated hologram.

4. NULL CORRECTOR FOR FIGURE MEASUREMENTS USING VISIBLE LIGHT-

4.1 OPTICAL DESIGN

A visible null corrector with a sophisticated imaging system is be-

ing built for measuring the 6.5-m f/1.25 primary mirrors. The

interferometer uses a frequency doubled YAG laser operating at

532 nm, a PZT-shifted Shack cube interferometer, imaging optics, PINHOLE
and shuttered CCD detector. The Shack cube, null lens, and imag-

ing optics will be precisely aligned on a single rigid truss. The

laser light will be fed into the system through a single mode optical

fiber.

LASER LIGHT
FOCUSING OBJECTIVE

BEAMSPLITTER

/ aperture

SPHERICAL
TEST BEAM

TO DETECTOR

- , N REFERENCE
The Shack cube interferometer® is used because of its simplicity SURFACE

and ease of alignment. The Shack cube, shown in Fig. 6, is fabri-
cated with a small pinhole at the center of curvature of the refer-
ence surface. The mechanical alignment of the cube to the nuil TONULL LENS
corrector requires only that this one spherical surface be in the cor- Figure 6. The Shack cube interferometer.




rect place. The interferometer is phase shifted by driving the cube and objective with PZT actuators.? The Shack cube and null
corrector are easily integrated into a single rigid unit.

The null corrector shown in Fig. 7 consists of the Shack-cube and three BK7 lenses: a relay lens, and two field lenses. The op-
tical design gives a wavefront error of 4 nm rms (Fig. 7) and maximum mapping error of almost 5%. The null corrector will be
mounted vertically to precise tolerances using the method described by West et al.? The relative alignment between the system
and the mirror will be performed by translating the entire unit in three directions and rotating about two flex-pivot axes. Asin
the IR test, the lateral rotation is performed about an axis 2/3 of the way from paraxial to marginal focus to decouple wavefront

tilt from the alignment. The test alignment will be controlled from a remote testing station,

GROUND GLASS —\

LASER
ZOOM LENS 3 :
ceo L] F=—lit-ty SHACKCUBE
DISTORTION- RESIDUAL WAVEFRONT OPD
CORRECTING 0.03 A(at 532 nm)

RELAY

RELAY LENS ' NULL LENS
270 mm diam
57.3 mm thick

APERTURE

FIELD LENS 1
90 mm diam
18 mm thick

FIELD LENS 2
64 mm diam
14 mm thick

PRIMARY MIRROR
TO PRIMARY MIRROR

Figure 7. Optical layout of the visible null lens for 6.3-m f/1.25 primary mirrors with Shack cube interferometer and dis-
tortion-correcting relay. The insets show the residual wavefront and the scale of the null fens with the 6,5-m mirror.

The imaging distortion induced by the null lens is corrected with the relay optics that are shown in Fig. 7. A plot of the map-
ping error is shown in Fig. 8, This two-lens relay not only corrects the mapping error, but it projects the image of the primary to
infinity. This allows the use of a standard zoom lens to re-image the pupil at varying magnification. The re-imaging system
consists of a 6X zoom lens fixed to the CCD camera that is mounted on a tip-tilt stage. All of the controls will be operated re-
motely to allow the optician to magnify the image and to look with increased resolution anywhere on the mirror. High resolu-
tion (~6 mm pixels at the mirror) will then be attained for sub-aperture testing without increasing the array size.
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Figure 8. Mapping error for the null lens for testing the 6.5-m f/1.25 primary mirror,

4.2 FABRICATION OF VISIBLE NULL CORRECTOR

The lenses, which are made from H5 quality BK7 glass (from Ohara and Schott), are being figured to high quality at Steward
Observatory. The spherical surfaces are measured using phase shifting interferometry and the radii are measured using a Fizeau
interferometer and lens bench. The lenses are fabricated and measured to a few microns, then the spacings are re-optimized
based on the as-fabricated lens dimensions. .

The fast surface of the relay lens is measured using a test plate with.an interesting illumination scheme shown in Fig. 9. The
concave test plate is measured using a Fizeau interferometer with an £/0.6 diverger. The diverger reference surface quality is
determined by measuring a precision ball at many rotation angles. The convex surface of the relay lens is then measured with
this test plate using the Fizeau and diverger only for illumination and imaging. An imaging element is fit to the relay lens with
the outer surface nearly concentric with the test plate. For the relay lens measurement, there are four nearly concentric surfaces.
To avoid spurious fringes, the Fizeau reference and the imager surface are tilted and the reflections from these surfaces are
blocked. The test plate is pushed and phase shifting interferometry is used to ailow a high resolution measurement.

a) Measurement of test plate b) Measurement of relay lens

Flzeau intarferomater
with f/0.6 diverger .

Imager
2
Relay lan: SN\ N
270 mm diam 3
710.84 GA ‘ ‘s, A
Tast plate ~ N
AN NN
RN NN

Figure 9. Measurement of the fast convex surface on the relay lens using a test plate, a) The concave test plate is measured using a Fizeau
interferometer. b) The fast convex surface (3) is measured against the test plate (4). For this measurement, surfaces 1 and 2 are tilted so the
reflections from these surfaces can be blocked.




~The ‘performance of the null test requires
accurate and stable alignment of the
lenses. The alignment procedure used at
Steward Observatory for null correctors for
highly aspheric mirrors is described by
West et al. (1992). Using this method, the
null lens is aligned onto an Invar frame
that provides stability and rigidity. The
entire null lens is rotated about a precisely
maintained axis and the runout (or wob-
ble) of each surface is mechanically meas-

ured and reduced to less than 5 pm. The -

spacings between the elements are meas-
ured using special metering rods and set to
an accuracy of about 3 pm. The rigid as-
sembly is mounted to a set of stages that
provide translation in x, y, and z and rota-
tion about the lateral axes for alignment to
the primary mirror. A layout of a previ-
ously built null corrector for a 3.5-m mir-
ror is shown in Fig. 10.

The null corrector for the 6.5-m mirrors
will be much stiffer that those for the 3.5-
m mirrors to reduce problems with
vibration. It will be supported at a stiff
point in the test tower for the same reason.
Additionally, we are also pursuing two
methods of testing in the presence of
vibration: using a fast camera to take the
data quickly encugh to freeze out the
vibration, and an active fringe tracker.

t

4.3 TOLERANCE ANALYSIS

Since the null corrector is used as a reference for fabricating the primary mirrors, a thorough tolerance analysis is required to
determine the expected accuracy of the test. In this analysis, a table of sensitivities is created showing the performance degra-
dation for small null lens errors, as determined by computer simulation. The effects of the surface figure irregularity and re-
fractive index inhomogeneity are calculated directly (See Table 1). For small errors, the system degradation is assumed to vary
linearly with the errors. The sensitivities are then muitiplied by expected errors to compute the degradation in system accuracy.
This information was used to adjust the tolerances based on the fabrication and alignment process and the required system per-

formance.

HeNe
Laser

i Focusing objective
K+ . PZT Drive =
~* "Shack Cube Interferometer

sl

Imaging Lens
CCD Camera

/ Invar Frame

Pl

Relay Lens
in kinematic support

Fleld Lens
In Kinematic support

5-Axis Positioner

Figure 10. Optomechanical layout of an integral null lens with laser source, phase
shifting Shack cube interferometer, imaging system, and 5-DOF positioner. Draw-

ing by D. Murguic.

Table 1. Contribution to wavefront from surface figures and index inhomogeneity.

Source Amount Typical value Wavefront contribution (rms)
Shack cube rms surface irregularity ASg- 6 nm 2 ASge
Lens rms surface figure ASy 8 nm 2 (n-1} AS;
Lens rms index inhomogeneity An 0.12 x 106 2 An X thickness




Since the specification on.thé primary mirror is
in terms of structure functions,”

ferometric test was performed by computing
structure functions for all of the independent
parameters in the system and adding them!.
Structure functions derived from direct dimen-
sions (spacings, curvatures, refractive index,
misalignments, etc.) were computed by ray-
trace simulation and analysis of the system.
Structure functions from the surface figures of
the optical elements were estimated using data
from finished optical surfaces. Refractive index
inhomogeneity structure functions were esti-
mated for H5 quality glass using melt data and
assuming. a linear dependence of rms phase
difference on point separation. The structure
functions from all parameters in the null test
are added to give the total test optics structure
function. The analysis does not take into ac-
count the ability to0 measure and remove errors

>, fur the error - -
analysis of the null-corrector also uses the
functions. The tolerance analysis of the inter- =

rms surface difference {nm) '

10 1

100 ¢

........... entire talescope budget

——  primnary testing budget
=0~ nulliens tolarances

10

100

separation of polnts {em)

Figure 11. Structure function from the error analysis of the visible null cor-
rector for the 6.5-m f/1.25 primary. The telescope and test optics specifica-
tions are based on a tilt-corrected Kolmogorov model of the atmosphere with

in the null lens using the CGH null lens test.  relaxation at small spatial scales.

The telescope error budget allots primary mirror testing a structure function corresponding to 1, of 270 cm with 0.04 arc-sec
FWHM atmospheric seeing. The tolerance analysis shows that the null corrector will meet this at ail spatial scales, with a net
uncertainty in the measurement of 21 nm rms. The resulting structure function for the null lens optics is shown in Fig 11.

Distinct from the structure function requirement is a tolerance on the conic constant of the primary. The null lens described
introduces an uncertainty of the conic constant of +0.00009. Also, the analysis does not take into account the ability to measure
and remove errors in the null lens using a rotation test or the CGH null lens test.

5. NULL CORRECTOR CERTIFICATION WITH COMPUTER-GENERATED HOLOGRAMS

However apparently well made, there is always a smail possibility that the null correctors can be flawed. If undetected, a nuil
corrector error would result in the final shape of the mirror being incorrect. Two recent telescopes had their primary mirrors
made to the wrong shape because of errors in the null correctors -- the Hubble Space Telescopve:24 and the New Technology Tele-
scope.”® If accurate testing of the null correctors had been performed, the errors would have been discovered and corrected in

the shop. Instead, the errors were not discovered until the finished mirrors were in their telescopes on a mountain top or in or-
bit.

An optical test using computer-generated holograms is planned to test and qualify the null correctors for the 6.5-m primary mir-
rors. The technique employs a rotationally symmetric computer-generated hologram (CGH) that tests the null corrector directly
by synthesizing a wavefront that would be returned by a perfect primary mirror. The test, which is quick and highly accurate,
has been demonstrated on null correctors for two 3,5-m primary mirrors!?, '
5.1 DESCRIPTION OF CGH TEST OF NULL LENS :
In the CGH null lens test, a custom manufactured hologram is illuminated by the laser light from the null lens. The hologram is
made o it will diffract light back into the null corrector to appear as if it were a perfect primary mirror. The test is insensitive
to alignment errors and uses no optics other than the hologram. Since the null corrector and CGH are fabricated independently,
agreement between the two indicates a high probability that both are correct.




The holog}'am fi‘sbSi‘mIt)g a circulatxi %r:;ing SHACK CUBE

or zone plate fabricated onto a flat glass

substrate. The CGH for the visible null test INTERFEROMETER
is fabricated using electron beam lithogra-
phy that has been developed for the pro-
duction of integrated circuits, The final
hologram will be a relief grating with
quarter-wave deep grooves and will be used |
at third order. The infrared hologram will
be made using a less accurate and less-ex-

pensive optical writer. This CGH will use NULL CORRECTOR
chrome rings on bare glass and be used at
first order. For both tests, the required
spacing of the rings is determined by the
mirror surface that the hologram replaces
and the laser wavelength. The groove
depth and ring width are optimized to
minimize fabrication costs, while giving the
correct intensity of the diffracted light.

A layout of the CGH null test, shown in HOLOGRAM

Fig. 12, depicts the null lens and CGH. No '

modifications are made to the null lens to Figure 12. Layout of CGH test of nuil lens. The use of the CGH invoives simply
perform this test. The null corrector tests positioning the hologram at the correct location and making the measurement as if
the hologram exactly as if a real mirror was the mirror itself was being tested.

being measured.

5.2 HOLOGRAM FABRICATION ‘

The CGH null lens test is ptanned for all of the telescope projects at Steward Observatory, The computer-generated hologram
for visible testing will be 136 mm in diameter and will consist of 12797 grooves, spaced as small as 4 pm, This is within the
realm of existing lithographic technology, but it will be difficult and expensive to fabricate. This hologram will be directly e-
beam written on the final substrate that is 7 inches square and 0.25 inches thick. This substrate will be polished flat to A/10 as it
is supported on a master flat. An error budget for this test indicates a measurement accuracy of +40 ppm for the conic con-
stant.!

A prototype of this hologram will be fabricated before the full CGH is made. This prototype, consisting of only a narrow dia-
metrical slice across the circular hologram, will atlow a test of the fabrication technique that requires only a small fraction of the
cost of the full hologram. This diametrical slice will be useful for measuring spherical aberration in the null lens.

The accuracy requirements on the infrared hologram are not so severe, allowing it to be written on an optical writer. The infra-
red hologram will consist of 1928 chrome rings, with spacing as small as 13 pm. The pattern may be written using a writer
developed at the Optical Sciences Center (University of Arizona) for the fabrication of chrome-on-glass zone plates for measur-
ing convex aspheres up to 12 inches across.

6. CONCLUSION

The null correctors for the 6.5-m f/1.25 primary mirrors represent a significant advance in the field of metrology for large as-
tronomical optics. The ability to fabricate null correctors, even for mild aspheres, is questioned by many astronomers. We have
developed the techniques for designing, analyzing, fabricating, and certifying instruments for interferometric measuring large,
fast primary mirrors. These null test instruments will provide rapid, accurate surface measurements to enable efficient stressed-
lap figuring of the most challenging primary mirrors in the history of astronomy.
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1. Substrate:

MMTHeNe Hologram

Ve o

(Description of fabrication process)

Diameter - 151 mm
Thickness - 21 mm
Quality - see Figure 1

SUBSTRATE # 1

Wﬂ“ W H”
&cb w“ "’ij
Y b M

Figure 1. Interferograms (Zygo) of 145 mm working field of substrate with chromium film.

- 3.

2
I
2
3.
4
5
6

. Hologram composition.
. Test rings for centering:
. Zone plate structure (MMTHENEDAT):

Mark of ruler direction, sce letter "R":
. Test 1 pm ring (MMTRING.DAT):
. Caption (MMTHENE.TXT):

. Power tests:

#1 (usual, rings)
#2 (photoelectric)

Writing conditions.

Rinin =0 pr, Rinax = 30 pm

Renin =51.08 pm, Rinax = 67996.28 um

Rpnin = 68100 um,  Rypy = 68200 pm

Rinin =68500pm, Rinax = 68501 um

Rmin =69000 pm, Rinax = 70000 pm

Rinax =70150 pm (Prmax=1000, Pyeep=20, Pitch=1.6 pm)
Rimax =703001m

Iaser interferometer wavelength (in vacuum) - 632.990989 nm /tested by Iodine sell/
Temperature - 17.9 C°.
Air pressure - 1003 Pa.



Time of main zone plate writing - 6 hours.

4, Center.

Ring with 30 pm diameter was used for aligning all structures of hologram.
5. Ruler,

A ruler was written directly before of the main zone plate wriing. Value of a scale division is 5
mm. The size of ruler graduation lines areas- 10 x10 pm. Time of ruler writing was about 1 min.

Ruler Mark of ruler direction ("R") Direction of writing

Place of correction Ruler zones
a. b.
Figure 2. Ruler location (a) and fragment of microphotograph (b) of graduation lines arca

6. Periodical correction of radial coordinate at main zone plate writing.

Periodical corrections were made each 5 mm of writing on radial direction. Corrections were made
after writing the ruler graduation lines areas.

Periodic correction data (pm):

Center shift=-0.106104 R=64998.70896

Center shift=-0.090036 R=59998.245427
Center shift=-0.039557 R=54997.940098
Center shift=-0.085879 R=49997.634769
Center shift=-0.047216 R=44997.448054
Center shift=-0.074193 R=39997.221867
Center shift=-0.034966 R=34998.063524
Center shift=-0.032385 R=29997.006722
Center shifi=-0.023705 R=24997.373764
Center shift=-0.085339 R=19997.661704
Center shift=-0.027825 R=14997.751887
Center shift=-0.006127 R=9995.192138

Center shift=-0.048754 R=4996.5479061



 Center shift=-0.026891 R=0
7. Trajectory of-rofation.

Trajectory of spindle rotation was measured before writing process.
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Figure 3. Trajectory of spindle rotation. Radial errors are no more 0.04pm.
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