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INTRODUCTION

In a mechanical servo system, the type of actuator selected will have a strong effect on the
system dynamics and the servo performance. This report examines a specific case in which
a secondary mirror is servo controlled. We consider the use of two types of actuators: one
inherently stiff, such as a piezoelectric device, and the other inherently soft, such as a voice
coil. The results show that there is a bandwidth limit introduced by a stiff actuator that
can be avoided by the use of a soft actuator.

DYNAMIC MODEL

The model in Figure 1 is used to generate the analytical results. It embodies the essential
dynamics involved in controlling a secondary mirror suspended from a flexible support
structure, which in turn is supported by the relatively massive center section of the
telescope.
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Figure 1.
Model of secondary support and control used to generate the analytical results of the report.

This model is of course a simplified version of the physical system. The important
approximations are the following:

The massive center section is modeled as ground since its inertia is orders of
magnitude larger than any other inertia under consideration.

The resonant support structure is modeled as having one significant mode of
vibration, m, in combination with k,. Other modes would not affect the qualitative



results of this analysis,

The mirror is represented by a single mass, m,, controlled in translation. Since the
angular motion of a controlled secondary mirror is quite small, the linear {small
angle) approximation for this inertia is sufficiently accurate. Roughly speaking, the
single mass in the model is that fraction of the secondary mirror supported by one
actuator,

The actuator is modeled as a spring, k,, in parallel with a source of an actuating force.
The spring is assigned one of two stiffnesses, depending on whether a stiff or soft actuator
is under consideration. The actuator then provides a force that moves the mirror mass
while extending or compressing k,. The position of m, is measured relative to inertial
ground (or equivalently in this case, the telescope center section). This is essentially the
measurement provided by a guide camera.

For the purposes of this report, a servo controller was designed to suit each of the two
types of actuators with the constraint that they be of comparable complexity; otherwise,
it would be possible to artificially favor one actuator over the other. The equations of
motion for the model plant are given in Appendix A, and the controller equations are in
Appendix B. The performance of the actuators with their controllers are evaluated for
rejection of a wind disturbance applied at m, and for response to an input transient.

RESULTS

Figure 2a shows the magnitude responses for the plant with a stiff and soft actuator. Aside
from the low-frequency resonance at 0.5 Hz, the soft-actuator case is relatively featureless.
On the other hand, the stiff-actuator case shows a resonance-antiresonance pair near 10
Hz, and this is a bandwidth limiting feature. The phase responses in Figure 2b confirm
these observations, with the soft actuator having one negative step in the phase and the
stiff actuator showing a sharp negative spike near 10 Hz. It is really this negative spike
combined with the resonance peak in the magnitude response that is troublesome.

In Figure 2a, the mode shape corresponding to the 0.5 Hz resonance peak is dominated by
motion of the secondary mirror against the compliance of the soft actuator (m, and the soft
k,). At frequencies above this resonance, the secondary is decoupled from the support
structure, and the system output behaves like a rigid body. For the resonance near 50 Hz,
the mode shape is again almost entirely motion of the secondary mirror, but this time it
is working against the stiff actuator (m, and the stiff k,); the secondary is again decoupled
from the structure above this resonance. The mode shape of the antiresonance near 10 Hz
is primarily the resonant mode of the secondary support alone (m, against k,). The
resonance peak just below it is very nearly the combined masses of the secondary mirror
and support structure on the support structure compliance (m; and m, on k;}). The actual
parameters used to calculate these responses are at the beginning of the program listing
in Appendix C.
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Figures 2a,b.

Plant magnitude and phase responses for the soft (solid line) and stiff (dashed line)
actuator cases. The resonance-antiresonance pair near 10 Hz in the stiff acruator case is
particularly important since it is a bandwidth limiting feature. 10 Hz corresponds roughly

to the resonant mode of the support structure.



The information in Figure 2 is already enough to justify use of a soft rather than stiff
actuator. However, to make this justification more concrete, servo control loops are closed
around each of the actuators, and the input responses and disturbance rejection are
calculated. The derivations of the appropriate transfer functions are in Appendix B.

Figure 3 shows the closed-loop magnitude response for the stiff and soft actuators with
their respective controllers. The responses show the usual features of a magnitude of 1 at
low frequencies with a decreasing magnitude after some point. The soft actuator shows
a bandwidth of more than 10 Hz. The stiff actuator shows a usable bandwidth of about
4 Hz', reflecting the limiting effect of the resonance near 10 Hz. The prominent 10 Hz
resonance also indicates that there should be noticeable oscillations in the transient
response.
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Figure 3.

Closed-loop magnitude responses for the soft (solid line) and stiff (dashed line) actuator
cases. Note that the 3 dB bandwidth (4 Hz) of the stiff actuator case is considerably less
than that of the soft actuator case (13 Hz).

'. Closed-loop bandwidth is distinct from the open-loop
crossover frequency, the former being a rough measure of input
response and the latter being a rather good indication of
disturbance rejection as well as input response.
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Figure 4 shows the step responses corresponding to the magnitude responses of Figure 3.
The stiff actuator has a slower rise and a longer settling time than the soft actuator due
mostly to its lower crossover frequency. The stiff actuator also shows some 10 Hz
oscillation in the output. Both actuators show about 40% overshoot, but this is a minor
concern. The overshoot can be eliminated by a prefilter or with a more sophisticated servo

controller.
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Figure 4,

Responses to a step input. Note that the soft actuator case (solid line) rises and settles
faster than the stiff actuator case {dashed line). The considerable overshoot in both cases
is a minor concern. It can be eliminated with a prefilter or with a more sophisticated

controller than was used in this report.

The disturbance transmission magnitude for the two closed-loop systems is plotted in
Figure 5. In this figure, the transmission is defined as the ratio of the amplitude of motion
at m, to the force applied at m,. This models the effect of the wind disturbing the
secondary mirror support. As seen in the plot, disturbance transmission for the stiff
actuator is greater (has worse disturbance rejection) than the soft actuator at all
frequencies. The reasons for this result are the soft actuator’s inherently good rejection of

disturbances above about 1 Hz and its wider control bandwidth.
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Figure 5.

Disturbance transmission in the frequency domain. This plot shows the ratio of the
amplitude of motion at x, to the force applied at m,. This models the secondary mirror
motion due fo wind blowing on the support structure. Note that the transmission for the
soft actuator (solid line) is orders of magnitude less than that for the stiff actuator (dashed
line).

Figures 6a and 6b illustrate the disturbance rejection in the time domain. For these plots,
the systems were subjected to a wind disturbance with a 1/f velocity spectrum (or
equivalently, a 1/f* force spectrum). Figure 6a shows the results for the uncontrolled
(open-loop) system with the wind disturbance scaled to result in about 1.5 arcseconds of
error®. Figure 6b show the results for the controlled (closed-loop) systems subjected to
the same disturbance,

For the soft actuator, the errors are effectively reduced to zero. For the stiff actuator,
considerable high-frequency disturbance remains.

There are several effects at work here. In the uncontrolled case of Figure 6a, the stiff
actuator transmits much more motion at 10 Hz and the soft actuator transmits disturbances
most noticeably at 1/2 Hz. Below 1/2 Hz, the two systems are subject to the same errors.

2, The scaling is really somewhat arbitrary since we are only
interested here in the ratio of the initial to residual error.
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Figures 6a,b.

Wind disturbance transmission in the time domain. With the loop open in Figure 6a, the
transmitted errors for the soft actuator case (solid line) exceed those for the stiff actuator
case (dashed line). The motion for the soft actuator is primarily at about 0.5 Hz; for the

stiff actuator, about 10 Hz. For lower frequencies, the motions for the two cases are similar.

In Figure 6b with the loop closed, the low frequency motion for the stiff actuator case has

been effectively removed, but the 10 Hz motion largely remains. For the soft actuator case,

closing the loop effectively reduces the error to zero.
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With the loop closed in Figure 6b, the stiff actuator still transmits at 10 Hz since its servo
is ineffective at that frequency. The soft actuator, however, can strongly attenuate the 1/2
Hz disturbance. The 10 Hz oscillations are not a problem for the soft actuator since they
are not transmitted in the first place.

DISCUSSION

Notably, it is the resonant mode of the secondary support structure that proved
troublesome (in this case at 10 Hz), and not the resonance of the mirror on the actuator
(at 1/2 Hz and about 50 Hz for the soft and stiff actuators, respectively). This illustrates
that it is not just the frequency of the resonant modes that is important, but also how they
enter the system dynamics (the mode shapes).

Given the results of this analysis, we might simply strive for an infinitely stiff support and
infinitely soft actuator. Unsurprisingly, this approach is too simple and we would soon
reach a point of diminishing returns in servo performance for two reasons. First, the
filtering effect of the system inertia causes the wind induced position disturbances to fall
off as 1/f* (neglecting resonances), and they quickly become insignificant at the higher
frequencies. This makes wideband servo control of lesser value. Second, we would find
that the lowest bending mode of the secondary mirror is another servo bandwidth-limiting
frequency. This bending frequency would be difficult to closely approach regardless of the
rest of the structure.

In a practical case then, a servo crossover frequency of 8 Hz is most likely sufficient for
disturbance rejection. It is also a reasonable goal in view of the anticipated telescope
dynamics. This crossover frequency could be achieved with a 5 to 10 Hz support, a soft
actuator, and a 25 to 30 Hz secondary mirror. If a wider bandwidth is needed for fast
guiding, a correspondingly stiffer secondary mirror would be required.

Not addressed in this report is the feedback sensor for the systems under consideration.
A guide camera may not produce measurements fast enough to allow an 8 Hz Crossover,
since a suitably bright guide star may not be near the object of interest. However, the
combination of a guide camera with an accelerometer on the secondary mirror (and
perhaps also on the telescope center section) would in fact provide the necessary
information. These sensors would allow the secondary to be slaved to the primary mirror
to reject disturbances in addition to steering the field of view to correct tracking errors.

CONCLUSION

For the control of a secondary mirror, a soft actuator is preferred over a stiff actuator.
Since use of a stiff actuator results in the vibrational modes of the supporting structure
limiting the servo bandwidth, a stiff actuator would be suitable only if the support



structure mode frequencies began at 25 to 30 Hz.

A NOTE ON A PRACTICAL ACTUATOR DESIGN

Figure 7 shows a conceptual design for a secondary mirror actuator. It is based on a voice
coil and a flexured linkage. Such an actuator could be designed to comfortably provide 0.5
mm of motion and 125 N of force at the output. Fatigue of the flexure is not a problem
at these levels. The actuator concept assumes that the static weight of the mirror is carried
by a vacuum in the cell or by some other counter-balancing system.

The design includes a load cell in the output to measure the applied force. Strictly
speaking, this may not be necessary depending on the linearity of the voice coil. It may
nonetheless be desirable for monitoring the forces on the support points.

The design also includes a position sensor capable of resolving 0.01 um (0.002 um at the
output). This is needed for maintaining the low-frequency position of the mirror in the
cell. It can also be used with the load cell in a compound feedback arrangement to tailor
the output impedance of the actuator to the dynamics of the controlled system--an
especially useful technique when the utmost in performance is desired.
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APPENDIX A

PLANT TRANSFER FUNCTION
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Equations of Motion:

Frk(x,-x)-mx =0 (A.1)
—Frky(x,-x))-kyx,~m,X,=0  (4.2)
Taking the Laplace tranforms of (A.1) amd (A.2) and combining yields the transfer function

X 2
g2 fyrmys “3)
F o lky+[km,+(k, +kym Js%+m m,s*

(A.3) is the plant transfer function for the purposes of controller design. k, represents the
actuator stiffness and is varied accordingly. For the models in this report, the parameters
amrf:= 100 kg

m2 = 1000 kg

k, =397x 10° &

k; soft = 1000 T

o 7£
k, stiff = 10 M




APPENDIX B

COMPENSATORS, WIND INDUCED DISTURBANCES, DISTURBANCE
TRANSMISSION, AND INPUT RESPONSE
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k1 % ¢ G Secondary Mirror
Compensator (m1) Dynamics
m1 - * ‘lC + G F H %1
Y, %1 -
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Simplified Model Block Diagram

Compensators
Compensator transfer function for soft actuator:

G - 2n)(s+3)(s+0.44))

v 36y ( <3 2 (B.1)
(1.8x10%(s° +32ns%)
Compensator transfer function for stiff actuator:
G - (s+1.57) (B.2)

P (2.8x10"%(s3+6752)

The compensators above are used with the appropriate plant transfer function (from
Appendix A) to determine the response of the system to various inputs.

Wind Induced Disturbances

For a disturbing wind force, W, introduced at m,, the equations of motion are

k(x,-x)-mx;-0  (B.3)



Wk, (x,~x) ~k,x,-m¥,=0 (B.4)

Taking the Laplace transform of (B.3) and (B.4) and combining yields the transfer function
X of _ k,
W stmim,+s¥(m (k,+ky) +k,m)+k,k,

(B.3)

The magnitude of this expression gives the ratio of the amplitude of motion at x, to the wind
force W as a function of the complex frequency, s, under the condition that the loop is open.

Disturbance Transmission

Referring to the block diagram at the begining of this appendix and using block diagram
algebra, we find that the attenuation (closed loop vs. open loop) of a disturbance introduced
at x, is

de' 1

—Lw——  (B6
X, 1+GH (B.6)

of

Where G is given by (B.1) or (B.2) depending on the actuator stiffness, and H is given by
(A.3).

To find the residual closed-loop wind disturbance at x,, we can multiply (B.5) by (B.6) to
arive at

XI e kl
W [s*mn,+s*(m,(k,+k)+km,) +k k,)[1+GH]

(B.7)

The magnitude of this expression gives the ratio of the amplitude of motion at x; to the wind
force, W, as a function of the complex frequency, s, under the condition that the loop is
closed.

Input Response

Referring to the block diagram at the begining of this appendix, and using block diagram
algebra, we find the input-output transfer function

X 1 GH

X, 1+GH

<

(B.8)




APPENDIX C

$Calculates the dynamics of a closed-loop secondary actuator system
%with actuators of varying stiffnesses.

if ~(exist(’‘ml’))
s=(* ', 7};
%¥Plant parameters.
ml=100;
m2=1000;
k2=(2*pi*10)~2%n2;
ksft=1000;
kstf=1le7; %Actual piezo stiffness = 1le6 N/m.
f=logspace(-1,3,200);

%Calculate plant transfer function for soft spring.

pnunsft=fm2 0 k21;

pnrootssft=roots (pnumsft) ;

pnrootssft=pnrootssft-0.0025%abs (pnrootssft); %Add a small amount of dam
pnunsft=poly (pnrootssft);

kpnumsft=K2/pnumsft(3};

pnunsft=kpnumsft*pnumsft;

pdensft={ml*m2 0 (ksft*(ml4+m2})+(k2+ml) 0 ksft*k2};
pdrootssft=roots(pdensft);
pdrootssft=pdrootssft~0.0025*%abs (pdrootssft) ;
pdensft=poly(pdrootssft);

kpdensft=ksft+k2/pdensft{5);

pdensft=kpdensft*pdensft;

$Calculate plant transfer function for stiff actuator.

pnumstf={m2 0 k2];

pnrootsstf=roots (pnumstf) ;

pnrootsstf=pnrootsstf-0.0025*%ahs (pnrootasstf); %Add a small amount of dam
pnumstf=poly (pnrootsstf);

kpnumstf=k2 /pnunstf (3} ;

pnumstf=kpnumstf*pnumstf;

pdenstf=[ml*m2 0 (kstf*(ml+m2))+(k2*ml) 0 kstf*k2];
pdrootsstf=roots (pdenstf);
pdrootsstf=pdrootsstf-0.0025*%abs (pdrootsstf);
pdenstf=poly(pdrootsstf);

kpdenstf=kstf*k2/pdenstf(5);

pdenstf=kpdenstf*pdenstf;

¥Calculate and plot plant transfer functions.
[pmagsft,pphasesft]=bode (pnumsft, pdensft,2*pi*f);
[pmagstf,pphasestf]=bode (pnumstf, pdenstf, 2*pi*f);
nstf=1/pmagstf(1);

nsft=1/pmagsft(1);

%Calculate compensator and open-loop transfer functions.
chumsft=poly (2*pi*[-3; -.4+3*%1; -.4-9%1));
cnumsft=(1/1.8e-6) *cnumsft;

cdensft=[1 2*pi%*i6 0 0];

olnumsft=conv(cnumsft, pnumsft);
oldensft=conv({cdensft,pdensft);

cnumstf={1 2*pi*.75];
cnumstf=(1/2.8e~10) *cnumstf;
cdenstf=[1 2*pi*3 0 0};
olnumstf=conv(cnumstf, pnumstf) ;
oldenstf=conv(cdenstf,pdenstf);



{olmagstf,olphasestf}=bode(olnumstf,oldenstf,2*pi*f);

sCalculate closed-loop transfer functions.
cldensft=[0 0 olnumsft]+oldensft;

clnunsft=olnumsft;
[clmagsft,clphasesft]zbode(clnumsft,cldensft,2*pi*f);
cldenstf=[{0 0 ¢ 0 olnumstf]+oldenstf;
clnumgtf=olnunstf;
_[clmagstf,clphasestf]=bode(clnumstf,cldenstf,2*pi*f);

%calculate wind transmission to ml. System is uncontrolled.
dtnumsft=ksft;

dtdensft=pdensft;
[dtmagsft,dtphasesft]=bode(dtnumsft,dtdensft,2*pi*f);
dtnumstf=kstf;

dtdenstf=pdenstf;
[dtmagstf,dtphasestf]=bode(dtnumstf,dtdenstf,2*pi*f);

$Calculate disturbance rejection transfer functions.

3This is really the transmission of wind induced position errors
$to ml with the system uncontrolled.

drnunsft=conv({pdensft, cdensft);
drdensft=conv(pdensft,cdensft)+[0 0 conv(cnumsft,pnumsft)];
[drmagsft,drphasesft]=bode(drnumsft,drdensft,2*pi*f);
drnumstf=conv{pdenstf,cdenstf};
drdenstf=conv(pdenstf,cdenstf)}+[(0 0 0 0 conv {(cnumstf, pnunstf) };
[drmagstf,drphasestf]=bode(drnumstf,drdenstf,2*pi*f);

s$calculate the overall transfer function from the wind to the
terror in the position of ml with the system controlled.
wtnumsft=conv(dtnunsft,drnumsft);
wtdensft=conv(dtdensft,drdensft);
[wtmagsft,wtphasesft]=bode(wtnumsft,wtdensft,2*pi*f);
wtnumstf=conv (dtnumstf,drnunstf)} ;
wtdenstf=conv{dtdenstf,drdenstf);
[wtmagstf,wtphasestf]=bode(wtnumstf,wtdenstf,z*pi*f);

$Form the wind spectrum.

$yfm=1 ./ £.°2; %Forms 1/f.”2 force spectrum.
gyfa=2*pi*zeros(yfm); %Form a phase function.
gyf=yfm.*exp(j*yfa); %Wind force spectrum {(complex) .
wnum=[ (2*pi)~2]; %Normalized to 1 at 1 Hz.

wden={1 ¢ 0];

(vEm,yfa]=bode (wnum,wden, 2*pi*f)

sconvolve the wind with the system dynamics. Uncontrolled case.
ucwerrnumstf=conv (dtnumstf, wnum)} ;

ucwerrdenstf=conv(dtdenstf,wden) ;
[ucwerrmagstf,ucwerrargstf]=bode(ucwerrnumstf,ucwerrdenstf,z*pi*f);
uvewerrnumsft=conv(dtnumsft,wnum) ;

ucwerrdensft=conv(dtdensft,wden) ;
[ucwerrmagsft,ucwerrargsft}=bode(ucwerrnumsft,ucwerrdensft,2*pi*f);

%yucwerrstf=(polyval(dtnumstf,z*pi*j*f)./polyval(dtdenstf,z*pi*j*f)).*yf
$ucwerrmagstf=abs (yucwerrstf) ;
%ucwerrmagstf=ucwerrmagstf*(1.5/max(ucwerrmagstf)); $Normalize te 1.5 ar
%yucwerrsft=(polyval(dtnumsft,z*pi*j*f)./polyval(dtdensft,z*pi*j*f)).*yf
fucwerrmagsft=abs (yucwerrstt);
%ucwerrmagsft=ucwerrmagsft*(1.5/max(ucwerrmagstf));
fyf=yf*(1.5/max{ucwerrmagstf});

$Convolve the wind with the system dynamics. Controlled case

' {werrmagstf,werrargstf}=bode(werrnumstf,werrdenstf,z*pi*f);
werrnumsft=conv{whum,wtnunsft) ;

werrdensft=conv(wden,wtdensft);
[werrmagsft,werrargsft]=bode(werrnumsft,werrdensft,2*pi*f);
%ywerrstf=(polyval(wtnumstf,2*pi*j*f}./polyval(wtdenstf,z*pi*j*f)).*yf;
swerrmagstf=abs (ywerrstf) ;
%ywerrsft=(polyva1(wtnumsft,z*pi*j*f)./polyval(wtdensft,2*pi*j*f)).*yf;
$werrmagsft=abs(ywerrsft);



end

pack

$Calcualte a “wind".

t=0:.006:20; :

t1=t(1:1000);

t2=t (1000:2000);

£3=t(2000:3000) ;

t4=t(3000:4001);

t=[tl t2(2:length(t2)) t3(2:length(t3)) t4(2:length(t4)});
rand{’normal’) ;

wraw=rand(length(t),1l); %Generate "broadband" wind.

wnum=1;

wden=(1 0];

wfilt=1sim(wnum,wden,wraw,t}; %Filter random sequence for 1/f wind veloc
wfilt=wfilt/max(abs(wfilt)); %Extremum normalized to 1.

w=real ((wfilt.~2).*sign{wfilt)); %Wind forces are proportional to veloci
wl=w(1:1000);

w2=w(1000:2000);

w3=w({2000:3000) ;

wi=w(3000:4001};

%¥Calculate uncompensated wind errors (no control).
[adtsft,bdtsft,cdtsft,ddtsft]=tf2ss(dtnumsft,dtdensft);

[adtstf, bdtstf,cdtstf,ddtstf)=tf2ss (dtnumstf,dtdenstf);
[uewerrsftl,xdtsftl)=1sim(adtsft, bdtsft,cdtsft,ddtsft,wl, t1);
[ucwerraft2 , xdtsft2]=1isim(adtsft,bdtsft,cdtsft,ddtsft,w2,t2,xdtsftl (leny
[ucwerrsft3,xdtsft3)=1sim{adtsft, bdtsft,cdtsft,ddtsft, w3, t3,xdtsft2(leng
[uewerrsft4,xdtsft4)=lsim(adtsft,bdtsft,cdtsft,ddtsft,wq,tq,xdtsft3 (leng
[ucwerrstfl,xdtstfl}=1lsim{adtstf, bdtstf,cdtstf,ddtstsf,wl, t1);
(ucwerrstf2,xdtstf2]=1sim(adtstf, bdtstf,cdtstf,ddtstf,w2,t2,xdtstfl (leng
[ucwerrstf3, xdtstfi]=lsim({adtstf, bdtstf, cdtstf,ddtstf, w3, t3,xdtstf2 (leng
[ucwerrstf4,xdtstf4]=lsim(adtstf,bdtstf,cdtstf,ddtstf,wd,t4, xdtstf3 (leng

tNormalize the wind induced errors.
ucwerrstf=[ucwerrstfl; ucwerrstf2(2:length(t2));
ucwerrsftl=real(i.5%ucwerrsftl/max(abs(ucwerrstf)
ucwerrsft2=real (1.5%ucwerrsft2/max(abs (ucwerrstsf)
ucwerrsfti=real {1.5%ucwerrsft3/max(abs(ucwerrstrt)
ucvwerrsft4=real (1.5*ucwerrsftd4/max(abs (ucwerrstf)
ucwerrstfl=real (1.5*ucwerrstfl/max(abs (ucwerrstf)
)
)
)

errstf3(2:1length(t3)

ucvwerrstf2=real (1.5*ucwerrstf2/max({abs (ucwerrstf
ucwerrstfi=real (1.5*ucwerrstf3/max(abs (ucwerrstf
ucwerrstf4=real (1.5*ucwerrstf4/max(abs (ucwerrstf
ucwerrsft=[ucwerrsftl; ucwerrsft2(2:length(t2)); ucwerrsft3{2:length(t3)
ucwerrstf={ucwerrstfl; ucwerrstf2(2:length(t2)); ucwerrstf3(2:1length(t3)

uc
))
))
))
))
)}
)}
))
))
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fAttenuate the errors by the disturbance rejection transfer function.
[adrsft,bdrsft,cdreft,ddrsfti=tf2ss (drnumsft,drdensft) ;
[adrstf,bdrstf,cdrstf,ddrstfj=tf2ss (drnumstf,drdenstf);
[werrsftl,xdrsftll=1sim{adrsft,bdrsft,cdrsft,ddrsft,ucwerrsftl,tl);
[werrsft2,xdrsft2]=1lsim(adrsft, bdrsft,cdrsft,ddrsft,ucwerrsft2,t2, xdrsft
[werrsft3,xdrsfti)=1sim(adrsft,bdrsft,cdrsft,ddrsft,ucwerrsft3, t3,xdrsft
(werrsft4,xdrsftd4)=1sim(adrsft,bdrsft,cdrsft,ddrsft,ucwerrsfts, td,xdrsrt
[werrstfl,xdrstfll=lsim(adrstf, bdrstf,cdrstf, ddrstf,ucwerrstfl, tl);
[werrstf2,xdrstf2]=lsim{adrstf,bdrstf,cdretf,ddrstf,ucwerrstf2, t2,xdrstf
[werrstfl,xdrstf3]=1sim(adrstf,bdrstf,cdrstf,ddrstf,ucwerrstf3,td,xdrstf

Clear xdrstf4 xdrstfl xdrstf2 xdrstfl xdrsft4 xdrsft3 xdrsft2 xdrsftl
clear xdtstf4 xdtstf3 xdtstf2 xdtstfl xdtsft4 xdtsft3 xdtsft2 xdtsftil

werrsft=[werrsftl; werrsft2(2:length{t2)); werrsftld (2:length{t3)); werrs
werrsti=[werrstfl; werrstf2(2:length(t2)); werrstf3(2:length(t3}); werrs

loglog(f,pmagsft*nsft,f,pmagstfsnstf,’--7) ,grid
title{’Plant Magnitude Responses (DC Normalized teo 1)7)
xlabel (/Frequency (Hz)')

ylabel(/Normalized Magnitude’)

pause



A=input(’Save the plot? Y/N [N]:/,’s’);
if isempty(A)

A=’N’;
end
if A~='Nf

meta d:\matlab\secact\plotl
end

semilogx(f,olphasesft,f,olphasestf,’--/),grid
title(’Open-loop Phase Response’)
xlabel (' Frequency (Hz)’)

ylabel ('Phase (degrees)’)

pause

A=input(’Save the plot? Y/N [N}:’,’s’);
if isempty(A)

A='N';
end
if A~='N/

meta d:\matlab\secact\plot2
end

axis{[~1 2 -5 5]);
loglog(f,olmagsft,f,olmagstf, ——'),grid
title(’/Open-loop Magnitude Response’)
xXlabel ('Frequecy (Hz)’)

ylabel (‘Magnitude’}

axis; %aAxes free-ranged.

pause

A=input(/Save the plot? Y/N [N]:’,’s’);
if isempty (A)

A:lNl;
end
if A~='N/

meta d:\matlab\secact\plot3
end

loglog (f,clmagsft, f,clmagstf, =~} ,grid;
title(’Closed-loop Magnitude Response’)
Xlabel(’Frequency (Hz}’)

Ylabel (‘Magnitude’)

pause
A=TN"’ ;
end
if A~='Nf
meta d:\matlab\secact\plot4
end

semilogx(f,clphasesft,f,clphasestf,’ —-),qgrid
title(’Closed-loop Phase Response’)
xlabel(’Frequency (Hz)‘)

ylabel(’Phase (degrees)’)

pause

A=input(‘Save the plot? Y/N [N]:’,’s’);
if isempty(A)

A=INI';
end
if A~=’N’

meta d:\matlab\secact\plot$
end

loglog(£f,yfm) ,grid
title(’Wind Force Spectrum’)
xlabel (’/Frequency (Hz)')
ylabel (‘Normalized Amplitude’)
pause



A=input(’Save the plot? Y/N {N}:7,’s’);
if isempty(A)

AglNl '0
end
if A~='NY

meta d:\matlab\secact\ploté
end

loglog(f,dtmagsft, f,dtmagstf, /-~7) ,grid

title(’Wind Disturbance Transmission, Uncontrolled System’)
xlabel (' Frequency (Hz) ‘)

ylabel {’Transmission’)

pause

A=input(’/Save the plot? Y/N [N}):’,’s?’);
if isenmpty(A)

A-_,_-INI;
end
if A~=’N’

meta d:\matlab\secact\plot?
end

loglog(f,ucwerrmagsft, f,ucwerrmagstf, ' --*),grid
title{'Uncorrected Wind Error Spectrum’)

xlabel (“Frequency (Hz)’)

ylabel(’Transmission’}

pause

A=input(‘’Save the plot? ¥Y/N [N]:/,’s);
if isempty(A)

A='N’ :
end

if A~=rN’

loglog(f,drmagsft,f,drmagstf, ~-'),grid

title(‘Position Disturbance Transmission, Controlled System’)
xlabel (*Frequency (Hz)'’)

ylabel(’Transmission’)

pause

A=input(/Save the plot? ¥Y/N [N]:’,’s’);
if isempty(A)

A=’N’;
end
if A~='N‘

meta d:i\matlab\secact\plot9
end

loglog(f,werrmagsft, f,werrmagstf, --),grid
title(’Residual Wind Error Spectrum’)
®label (’Frequency (Hz)’)
yliabel{/Transmission’}

pause

A=input (‘Save the plot? ¥Y/N [N]:’,'s’);
if isempty(d)

A=I’Nl‘-
end
if A~='N’
meta d:\matlab\secact\plotio
end
loglog(f,wtmagsftt, £,wtmagstf, '--") ,grid

title(’Overall Disturbance Transmission, Controlled System’)
xlabel (fFrequency (Hz) ')

ylabel (Transmission’)

pause



A=input(’Save the plot° Y/N [N):',’s');
if isempty(A)

A-—lNl -
end
if A~=NY

meta d:\matlab\secact\plotll
‘end

plot{t,wfilt),grid

title(’Wind Velocity vs. Time’)
xlabel('Time (seconds)’)

yliabel(’Wind Velocity (arbitrary units)’)
pause

A=input(’Save the plot? Y/N [N}):’,’s’');
if isempty(A)

A:lNl;
end
if A~='N’

meta d:\matlab\secact\plotlz
end

indices=[1:2:1length(t})]}; %Used to decimate the large data. .
plot{t(indices),ucwerrsft(indices),t(indices) ,ucwerrstf(indices),’--7), grid

ylabel (‘Error (arcseconds)’)
pause

A=input(’Save the plot? ¥Y/N [N]:‘,’s’);
if isempty(a)

A=’N’}
end
if A~='N*

meta d:\matlab\secact\ploti3
end

plot(t(indices),werrsft(indices),t(indices) ,werrstf(indices),’--"), grid
title({’Residual Error, Controlled System’}

xlabel(‘Time (seconds)’)

ylabel ('Error (arcseconds)’)

pause

A=input(’save the plot? Y/N [N]):',’s’});
if isempty(A)

A=INI;
end

if A~=N’
meta d:\matlab\secact\plotl4
end






