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CAVEAT: Throughout this report [ consistently use the word "bandwidth" to mean the
frequency at which the response of the system passes the -3 dB point (half-power) for the
last time. This is not the same as saying that the response never goes below -3 dB until
the bandwidth has been exceeded; i.e., there may be a temporary dip in the response at
a frequency below the bandwidth. The result is that the term "bandwidth" gives an
indication of the frequency up to which the closed loop servo "does good". The full
performance of the system, however, can only be judged by looking at the full response.

If you find all this baffling, you may disregard it for now. It is important for the more
rigorous aspects of this report, but it is not vital to getting the gist of the material.



INTRODUCTION

When using a motor to drive a load, it is common practice to close an inner servo loop
around a tachometer signal generated directly from the motor shaft. Frequently, an outer
loop is then closed around the position of the driven load. The key to the popularity of
this strategy is that each of the two loops can be implemented with very simple dynamic
compensators, usually consisting of nothing more than a proportional gain. Furthermore,
the inner tachometer loop can be unconditionally stable up to very wide bandwidths,
making its implementation somewhat foolproof.

This sort of two-loop strategy will provide satisfactory performance only under certain
conditions. To work well, it is necessary for the motor shaft to be comparatively stiff,
otherwise the resonance of the load on the drive shaft (often called the "locked-rotor”
resonance) will prove to be a limiting factor in the system bandwidth. In many small
mechanical systems, it is possible to make this resonant frequency sufficiently high. In
other mechanical systems such as the main drives of large telescopes, this may not be
possible. Fortunately, it is possible to avoid this difficulty through the use of a different--
and in some ways simpler--control scheme which causes the system to display more
favorable dynamics.

This report illustrates the potential problems in a system with tachometer feedback and
compares it to system in which no tachometer is required.

ROAD MAP

This report uses the deceptively simple
mechanical model shown in Figure 1. One

inertia represents the rotor of a driving

motor, the other inertia represents the I
driven load, and the intervening spring L
represents the compliance of the motor

shaft. With proper bookkeeping of the

gear ratios and inertias, this model could

also represent a system with a gear train;

up to the first resonance, the dynamics are

identical.

The model parameters--listed in Appendix Figure 1

A-have been selected to make the  1he model system consists of two inertias and a spring.
illustrations in this report clear and to Torque is applied at the lower inertia (the 'trotox"") and
represent a general system. The selected  positions and rates can be measured at both inertias.

parameters do not represent the mass
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properties of any particular telescope. For this analysis, the fundamental features of
interest are the frequencies of the resonances and antiresonances, and not so much the
masses and spring rate.

The model permits position or rate measurements at both the rotor and load inertias. Rate
measurement at the rotor represents the use of a tachometer, and measurements at the
load are the feedback used to close an outer loop. The input to the system is the torque
applied by the motor at the rotor, and the output of primary interest is the position of the
load inertia.

The analysis will proceed in three steps. First, we will show that wideband rate
(tachometer) feedback is possible for an inner loop around the motor rotor. In fact, we
will show that in our simplified model, the inner-loop bandwidth can be made arbitrarily
large using nothing more than a proportional gain,

In the second step, we will show that with the inner loop closed, the outer loop around the
load shows a resonance at the frequency of the load on the shaft compliance (the "locked-
rotor" resonance), and that this resonance will limit the outer loop bandwidth in a practical
system.

The third and last step of the analysis considers the dynamics of the system when motor
torque is used as the system input and feedback is taken only from the load. This
configuration will also show a bandwidth limiting resonance, but this time it will be at the
“free-boundary” resonance of the system--a more favorable condition.

STEP ONE.
TACHOMETER FEEDBACK: WIDEBAND CONTROL IS POSSIBLE.

Figure 2 shows a sketch of the model we are analyzing with feedback on the motor rate,
and Figure 3 shows the corresponding block diagram. The transfer functions corresponding
to the blocks in Figure 3 are derived in Appendix A.

We first turn our attention to the transfer function from torque to rate at the motor rotor.
In the block diagram of Figure 3, this is the block labeled "G". Figure 4 shows the
magnitude and phase response of this transfer function, and it reveals an important fact:
the phase of this transfer function never makes a steep transition to large negative phase
angles. This fact is also apparent in the magnitude plot in that the resonance peak is
preceded by the antiresonance valley. Note that the antiresonance appears at the relatively
low locked-rotor frequency.

Since the phase of this system never goes below -90 degrees, we conclude that it is possible
to close the loop using only a proportional gain, and that in principle, this gain could be



arbitrarily high. In Figure 3, the gain is
represented by block "A". (In any physical
system there would be other elements that
would contribute to the phase delay, and
the phase would in fact eventually go
below -180 degrees. It is however possible
for this transition to be in the many-
kilohertz range, which is almost infinity for
our considerations here.)

Figure 5 shows now the closed-inner-loop
magnitude and phase response for
increasing values of the gain A. Note that
the antiresonance valley continues to
appear in the closed-loop response and will
degrade the servo performance until A--and
the bandwidth--is made extremely large.
This means that in a practical system we
should expect poor disturbance rejection
near the locked-rotor frequency. Neither
the antiresonance nor the resonance shown
in the open-loop response (Figure 4) has
limited the bandwidth in this case.

SRC + A

T

Figure 2.
Sketch of the model system showing a closed tachometer

loop.

Figure 3.

S

Block diagram corresponding to Figure 2 showing a closed tachometer loop.

STEP TWQO.

QUTER-LOOP DYNAMICS WITH INNER-LOOP TACHOMETER FEEDBACK:
THE MOTOR SHAFT HAD BETTER BE STIFF OR ELSE...

Figure 6 shows a sketch of the system which we will now analyze. This system includes
the rate (tachometer) feedback from the previous step and also includes position feedback
from the load. Figure 7 shows the corresponding block diagram. This block diagram is the
same as that in Figure 3 with the addition of block "B" in the outer loop.

We turn our attention now to the open loop transfer function that takes the rate input to



Open Loop Magnitude Response, Torgue to Rotor Rate
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Figure 4.

Open-loop magnitude and phase response of the model system with torque at the rotor as
the input and the rotor rate as the output. Note that there is an antiresonance near 1 Hz,
the locked-rotor frequency, and a resonance near 20 Hz, the free-boundary frequency.
Notice also that the phase response shows a region of phase lead and shows no sharp

transitions to large negative phase angles.



Closed Inner Loop Magnitude Response, Rate Command to Rotor Rate
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Figure 5.

Magnitude and phase response of the model system with the tachometer loop closed and
with varying values of the loop gain. The input is the rotor rate command and the output
is the rotor rate. Note that as the loop gain increases, both the magnitude and phase
responses become flatter. The antiresonance that was present in the open-loop response
(Figure 4) is also present here and will degrade the system disturbance rejection. At the
highest gain, the antiresonance is nearly gone, but the closed-loop bandwidth is weil
beyond 100 Hz. This is unrealistic for most practical systems.



the second summing junction in
Figure 7 to the resulting position
at the load. This is the open-
loop response of the outer loop
with B=1, and is derived in
Appendix A. The magnitude and
phase response of this transfer
function are shown in Figure 8.
The notable--and annoying--
features in these responses are
the resonance peak at the
locked-rotor frequency, and the
accompanying steep phase
transition from -90 to -270
degrees. Short of rather
extreme measures, the frequency
of the resonance is a strong limit
on the bandwidth of the outer

Figure 6.

loop. Sketch of the model system with loops around both the
. rotor rate (the inner tachometer loop) and the load
We can estimate that the closed- position (the outer loop).

loop bandwidth with a simple

controller could be about a factor of ten below the frequency of the resonance. In reality,
this value is dependent on the damping in the system (here assumed to be rather small, a
conservative assumption). Referring to Figure 8, we see that the resonance is near 1 Hz,
and so the closed loop bandwidth might be 0.1 Hz. It is probably possible to do better
than this by maybe a factor of 2 with a more sophisticated controller, but a factor of 10
would be achievable only with much kicking and screaming.

Ole = + A.E..G eR-—H

Figure 7. .
Block diagram corresponding to Figure 6 showing both the inner tachometer loop and the

cuter position loop.
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Open outer loop/closed inner loop response of the model system. Note the resonance near
1 Hz. and the accompanying steep transition to lage negative phase angles. These features
are obstacles to closed-loop bandwidths of much more than 0.1-0.2 Hz.



If this model system is taken to represent the simplified dynamics of a large telescope, a
closed-loop bandwidth of 0.1 Hz is nothing to be proud of, and we would look for ways
to improve the performance. Note that this bandwidth is governed (through the resonance
peak) by the stiffness of the motor shaft. One approach, then, to raising the bandwidth
is to simply make the shaft stiffer. This solution will work, but will be more or less
attractive depending on the size of the load inertia. Generally, for small mechanical
systems, stiffening the shaft is a feasible approach. For large systems, this approach can
lead to components that are unrealistically oversized,

Fortunately, there is another solution.

STEP THREE., :
SYSTEM DYNAMICS WITH ONLY AN OUTER LOOP: A MIRACLE OCCURS.

Figure 9 shows a sketch of the
system with only rate feedback
from the load, and Figure 10 is
the corresponding block
diagram, To investigate the
dynamics of this system, we first
consider the open-loop transfer
function from torque at the
motor rotor to rate at the load.
This transfer function is derived
in Appendix A, and the
magnitude and phase responses
are shown in Figure 11.

As in the previous case with

tachometer feedback, the

frequency response shows a

resonance peak with an

associated transition to large Figure 9.
negative phase angles. There is Sketch of the systeqt'showmg only a single closed loop
an important difference however around the load position.

that should be immediately

obvious. This time, the resonarce peak is at a much higher frequency, and the frequency
is given by the free-boundary vibrational mode. This frequency is higher than any other
frequency that the system can display. [n that sense, this is the best you can do.

As before, this resonance is a bandwidth-limiting feature because of the steep transition to
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large negative phase angles. Also as before, we can estimate the achievable closed loop

S B_E_G_G_R—He‘-—

Figure 10. N
Block diagram corresponding to Figure 9 showing the single loop around the load position.

bandwidth in the system by taking it to be a factor of ten below the resonance frequency.
Referring to Figure 11, this indicates that a closed loop bandwidth of about 2 Hz should
be possible.

To verify this, Figure 12 shows the closed-loop magnitude and phase response for the
system with a simple, practical compensator selected for the block B. Note that the actual
bandwidth is about 3.2 Hz--a bit better than our estimate (but, then of course this is just
an analysis, and [ knew what the answer would be),

It should be noted that in this system, even better performance (in some regards, orders
of magnitude better) is possible with a more sophisticated controller, but that is not the
point of this report. The point here is that with a simple control system of the last
example, we get performance is that could hardly be hoped for in the system considered
in Step Two above. For the type of mechanical system considered in this report, this result
indicates that tachometer feedback can be a source of serious trouble.

SUMMARY

Stabilizing an inner tachometer loop presents no special problem. Control of the outer
position loop can be a difficult task however since the inner loop causes the locked rotor
resonance to appear in the outer loop dynamics. This predicament can be avoided if the
outer loop is stabilized directly using the motor torque as the input to the system and the
load position as the output. In this case the tachometer is not needed.

The implications for telescope design are straightforward. If you can make the coupling
between the drive motor and the telescope stiff enough, tachometer feedback as described
above can give adequate performance and is easy to implement. "Stiff enough” means that
the locked-rotor frequency is a factor of ten above the desired bandwidth. If the coupling
is not stiff enough, abandon the tachometer and encode near the output of the drive
system. In any case, wider bandwidth will be possible by encoding near the output.
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EPILOGUE

So why then does anyone use tachometer feedback at all? The answer is the simplicity
with which such a system can be stabilized. The inner tachometer loop can be stabilized
at very high bandwidths using only a proportional gain as the feedback compensator. In
practice, you have only one pot to turn (or one constant to change, for the digital folks)
when adjusting the system performance. Setting up this inner loop is nearly foolproof.
The outer loop is just as easy to stabilize provided that the bandwidth is kept sufficiently
far from the locked-rotor resonance. In smaller mechanical systems, this is usually an
attractive solution. In larger systems, this solution may be unacceptable due to the
excessively low bandwidth that is available. The determining factor is simply the frequency
of the locked-rotor resonance; if this frequency is low, poor disturbance rejection and slow
speed of response will be the results.

There is another thing that tachometers are good for, and it has to do with tailoring the
output impedance of the actuator to suit the driven plant. The electrical analog is a well
known topic in electrical engineering, but this strategy is somewhat unconventional in the
field of feedback control of mechanical systems. Real gains can be made with this
technique, but this should be the subject of another report.



APPENDIX A

DYNAMICS ANALYSIS

Equations of Motion:
T4k, (0,0 5) - I8 =0 (1)

k(0 ,-8,)~1,8,-0 (2)
with

I,=316 kg.m?

L

I,=1 kg.m?
k,=15791 Nm/rad

Taking the Laplace transform of (2) and rearranging:
eL kD

H--"-r--

—_——e 3
8 s(ky+I s?) )

This transfer function shows a resonance at

k
s-ijw-fg-thnfk
L

where £, is the locked-rotor resonant frequency.
Combining (3) and (1) in Laplace transform space yields
G.jiﬁ- kp+I,;s?
T s(I,I,8%+k,(I,+I;))

(4)

-



This transfer function shows an antiresonance at

k
S-ijw-fg-ijZth
L

where f, is again the locked-rotor resonant frequency.
The transfer function ¢ also shows a resonance at

8=47 M =tj200F
IRIL K

where this time f, is the free-boundary resonant frequency.
Combining ¢ and H into one transfer function, we find

kp
S (II, 8% +kp(Ip+I,))

eL
GH=—

This transfer function shows a resonance at

Smg Kp(Ip+I,)
’ eIy

~+J2mL,

where again, f, is the free-boundary resonant frequency.



APPENDIX B

PLOT GENERATING PROGRAMS

Motenc.m

This file runs in matlab.

First bit calculates response for a two body system. Torque is applied
at Ir, and rate is measured at Ir. Simulates the open loop response

of a system with tach feedback on the motor shaft, a shaft compliance

and a substantial lcad inertia. Shows that crossover frecquency of a rate
loop is not necessarily limited by the shaft compliance.

e IO IO I IP e oP

%Calculate the model parameters.

Il=sqrt(10) *100; %Load inertia.

Ir=1; %Bottom inertia,

fr=20; %Frequency of bottom inertia on the shaft compliance.
kd=(2*pi*fr)~2+Ix; %Calculate shaft compliance.

%¥Calculate the poles and zeros.

obdtnum=[0 Il 0 Kd); %¥Open loop numerator.
obdtden=[Ir*I1 0 kd*(Ir+Il) 0 ]; %Cpen lcop dencminator.
zeros=roots {okdtnum) ;

poles=roots{obdtden) ;

zeros=zeros-(0.01l*abs (zeros)};

poles=poles-(0.0l*abs (poles)};
{A,B,C,D]=zp2ss(zeros,poles,l);

f=logspace(-1,2,250);

$Calculate the frequency response.
[mag0,phased]=bode(A,B,C,D,1,2%pi*f);

loglog (£f,mag0) ,grid

title{’Open Loop Magnitude Response, Torque to Rotor Rate’)
xlabel (/Frequency (Hz)')

ylabel (‘Magnitude (Nms}’)

pause

¥YN=input(’Save the plot? Y/N [N]:7,’s’);

if isempty (¥YN) :

YN=?N’;
end
if YN~='N’

meta d:\matlab\encpos\motenc
end

semilogx(f,phase0),grid

title(’Open Loop Phase Response, Torque to Rotor Rate’)
xlabel (’Frequency (Hz)’}

ylabel (Phase (Degrees)’}

pause

YN=input (/Save the plot? ¥/N [N1:’,'s’);:
if isempty(¥N)

YN='N’;
end
if YN~=/N’

meta d:\matlab\encpos\motenc
end

%Calculate the closed inner loop response as a function of the loop gain.
gA=1/mag0 (1) ;

obdocdnun=gA*ocbdtnum;

obdocdden=obdtden+gAtobdtnus;

otdocnum=gA*kd ;

otdocden=(obdocdden 0];

zeros=roocts (obdocdnum) ;

poles=roots (obdocdden) ;

zeros=zeros—-{0.0l*abs{zeros)) ;

peles=poles-(0.0l*abs(poles));

k=abs (deconv {conv (ohdocdnum, pely (poles) ) ,conv (obdocdden, poly(zeros)))) ;
k=k(length(k)) ;

[A,B,C,D])=zp2ss(zeros,poles k) ;

[magl,phasel]=bode(A,B,C,D,1,2*%pixf);



gA=10*gl;

obdocdnum=gA*obdtnum;
obdocdden=obdtden+gA*obdtnum;
otdocnum=gA*kd;

otdocden=[obdocdden 0];

zeros=roots (obdocdnum) ;

poles=roots (obdocdden) ;
zeros=zeros-(0.0l*abs (zeros));
poles=poles-(0.0l*abs(poles));

k=abs (deconv (conv (obdocdnum, poly(poles)),conv(obdocdden,poly(zeros}}})
k=k (length(k}):
[A,B,C,D]=2zp2ss(zeros,poles,k);
[mag2, phase2]=bode(A,B,C,D,1,2*pi*f);

gh=10*gh;

cbhdocdnum=gA*obdtnum;
ocbdocdden=obdtdent+gA*obdtnum;
otdocnum=gA*kd;

otdocden=[obdocdden 0]

zeros=roots (ocbdocdnun) ;

poles=roots {ocbdocdden) ;
zeros=zeros-(0.01*%abs(zeros));
peoles=poles-(0.0l*abs{poles));

k=abs (deconv (conv (obdocdnum, poly (poles}) ,conv(obdocdden,poly(zeros)})):
k=k(length(k)):
[A,B,C,D]=zp2ss(zeros,poles, k)’
[mag3,phasel)]=bode(A,B,C,D,1,2*pi*f);

gA=10%*gA;
obdocdnun=gA*obdtnum;
obdocdden=obdtden+gaA*obdtnum;
otdocnum=gaA*kd;

otdocden={obdocdden 0};

zeros=roots (obdocdnumn) ;

poles=rcots (obdocdden) ;
zeros=zeros—(0.01*abs(zeros)) ;
poles=poles—-(0.0l*abs(poles)});

k=abs (deconv (conv {obdocdnum, poly (poles) ) ,conv (cbhdocdden,poly (zeros)) )} ;
k=k(length(k)};
[(A,B,C,D]=zp2ss(zeros,poles,k) ¢
[(mag4,phase4 )=bode(A,B,C,D,1,2*%pi*f);

zeros=roots (otdocnum) ;
poles=roots (otdocden) ;
zerog=zeros-{0.01*abs(zeros)):
poles=poles-{0.01*abs{poles));
[A,B,C,D)=zp2ss(zeros,poles,k);

fd=logspace(-1,2,200);
{magd, phased]=bode (A,B,C,D,1,2%pi%*fd) ;

magn={magl mag2 mag3 mag4];
phasen=[phasel phase2 phase3 phased];

loglog (f,magn, £{1) ,mag4 (1) *2)

title(’Closed Inner Loop Magnitude Response, Rate Command to Rotor Rate’)
xlabel (’'Frequency (Hz)’)

ylabel (‘Magnitude Ratio’)

pause

¥N=input(’Save the plot? ¥/N [N]:’,’s’);
if isempty(¥YN)

YN='N';
end

if ¥YN~='N’
meta d:\matlab\encpos\motenc
end



semilogx(f,phasen)

title(’Closed Inner Loop Phase Response, Rate Command to Rotor Rate’)
xlabel {/Frequency (Hz)’}

ylabel (‘Phase (degrees)’)

pause

YN=input(‘Save the plot? Y/N [N}]:’,’'s’};
if isempty(¥YN)

YN='N';
end
if YN~='N‘*
meta d:\matlab\encpos\motenc
end
magl= magd;

phasel= phased;

loglog (£fd,magl), grid

title(’Open Outer Loop Mag. Response, Rate Command to Load Position’)
xlabel (’Frequency (Hz) ')

ylabel (‘Magnitude Ratio {(1/sec.)’)

pause

¥YN=input(’Save the plot? ¥/N {N]:’,’s’};
if isempty (YN}

¥YN='N’;
end
if YN~=IN‘

meta d:\matlab\encpos\motenc
end

semilogx{fd,phasel), grid

title(’/Open Outer Loop Fhase Response, Rate Command to Load Position’)
xlabel (’Frequency (Hz)')

ylabel ('Phase (degrees)’)

pause

¥YN=input(’Save the plot? Y/N [N]:’,’s’};
if isempty (¥YN)

YN='N’;
end

if ¥N~='N’
meta d:\matlab\encpos\motenc
end



twobod.m

This file runs in Matlab.

Two body dynamics. Torque in at cne, position ocut at the other.
Looks for model parameters. If don’‘t exist, runs motenc.m to
establish them in the work space.

0 I N P e

if ~(exist(’kd’) & exist(’Il’) & exist('Ir’})
motenc?;
end

% Form the undamped plant numerator and denominator.
GHnum={0 0 0 0 kd];
GHden={Ir*I1 0 kd*(Ir+Il} 0 ©O]:

% Set the zerc, pole, and gain of the compensator.
% This set is a simple lead-lag.

cpole=-2%pi%4;

czero=—2&pi%xl;

cgain=300;

% Zeros, poles, and gain for a compensator with a free integrator.
% Not used in the report.

% Permits zero DC error.

$cpole=[0 -2*pi*2];

Yczero=[—1*pi*l ~1*pi*1);

$cgain=300/1.5;

% Damp the plant pecles just a bit.
poles=roots (GHden) ;
poles=pocles-{0.01*abs(poles})};
GHden=poly(poles} ;

% Form the compensator numerator and denominator.
cnum=pcly(czero) ;
cden=poly(cpole);

% Form the open loop numerator and denominator.
olnun=cgain*conv{cnum, GHnhum) ;
olden=conv({cden,GHden) ;

% Form the closed loop numerator and denominator.
clnum=olnum;
clden=olnum+clden;

% Form the disturbance rejection numerator and dencominatox.
3 Disturbance is a torque at the drive motor.

drden=clden;

drnum=conv (cden,GHnum} ;

% Plot the results.

f=logspace(~1,2,200);

[magp, phasep]=bode (GHnum, GHden, 2*pi*f) ;
logleg(f,magp},grid

title(’Plant Magnitude, Rotor Torgue to Load Position’)
xlabel (’Frequency {Hz}’)
ylabel ( ‘Magnitude (1/Nm)’)
pause

:

¥N=input(’Save the plot? ¥Y/N [N]:’,’s’);

if isempty(¥YN)
YN='N‘;
end

if ¥YN~='N*
meta d:\matlab\encpos\twobod
end



semilogx(f,phasep-360) ,grid

title{‘Plant Phase, Rotor Torque to Load Position’)
xlabel {‘Frequency (Hz)'’)

ylabel {*Phase (Degrees)’}

pause

YN=input(‘Save the plot? ¥/N [N]}:’,’s’};
if isempty(YN)

YN='N’;
end
if YN~=’N’

meta d:\matlab\encpos\twobod
end

[(magol,phaseol J=bode (olnum,olden,2*pi*f) ;
loglog(f,magol) ,grid

title(’Open Loop Magnitude, Rotor Torque to Load Position’)
xlabel (' Frequency (Hz)')

ylabel { ‘Magnitude (1/Nm) ‘)

pause

¥YN=input(’Save the plot? ¥Y/N [N]:’,’s’);
if isempty (YN} :

YN='N*;
end
if YN~='Nf

meta d:\matlab\encpos\twchod
end

semilogx(f,phaseol) ,grid

title(’Open Loop Phase, Rotor Torque to Load Position’})
xlabel (’'Frequency (Hz)’)

ylabel (’Phase (Degrees)’)

pause

YN=input(’'Save the plot? Y/N [N]:’,’s’):
if isempty (YN)

YN='N’;
end
if ¥YN~='N’

meta d:\matlab\encpos\twobod
end

(magcl,phasecl]=bode{clnum,clden, 2*pi*f};

loglog(f,magcl) ,grid

title(’Closed Loop Magnitude, Command Position to Load Position’)
xlabel (/Frequency (Hz)’}

ylabkel {Magnitude Ratio’})
pause

yYN=input (’Save the plot? Y/N {N]:’,’s’};
if isempty(¥YN)

YN='N’;
end
if YN~='Nf

meta d:\matlab\encpos\twobod
end

semilogx(f,phasecl),grid

title(’Closed Loop Phase, Command Position to Load Position’}
%label (’/Frequency {Hz)’)

ylabel {/Phase (Degrees)’)

pause



¥YN=input(’Save the plot? Y/N [N]l:’,’s'}:
if isempty(YN)

YN='N"';
end
if ¥YN~=’N‘

meta d:\matlab\encpos\twobod
end

[magdr,phasedr)}=beode (drnum,drden, 2%pi*f) ;

loglog(f,magdr) ,grid

title(’Disturbance Transmission Magnitude, Motor Torque to Load Pos.’}
xlabel (' Frequency (Hz)'’)

ylabel (‘Magnitude (1/Nm)‘}

pause

YN=input{’Save the plot? ¥Y/N [N]:’,’s’);
if isempty(YN)

YN='N';
end
if ¥YN~=/N’

meta d:\matlab\encpos\twobod
end

semilogx(f,phasedr),grid

title(’Disturbance Transmission Phase, Motor Torgue to Load Position’)
xlabel (‘Frequency (Hz)'’)

ylabel (Phase {Degrees)’)

pause

¥N=input(’Save the plot? Y/N [N]:’,’s’):
if isempty(¥YN)

¥YN='N';
end

if YN-='N'
meta d:\matlab\encpos\twobod
end



