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INTRODUCTION AND SUMMARY

This report examines a three-body mechanical system in order to determine how the
natural modes of vibration enter into the system dynamics. The results outline the impact
of the various modes on servo performance when applied to a practical telescope.

The analytical model used in this report represents a generic drive system with significant
flexibilities in the driven load and in the driving "gearbox". Position measurement is made
at the load, with torque at the motor as the controlled input. The system exhibits locked
rotor, locked encoder, and free boundary modes of vibration when the corresponding
boundary conditions are applied. Additionally, the frequency response between the input
torque and the output position is derived.

Overall, the system’s frequency response from input to output provides the best measure
of both the obtainable servo crossover frequency and the disturbance rejection in the
completed system.

The results indicate that the obtainable servo crossover frequency is most strongly affected
by the compliance in the "gearbox", that is, the compliance between the point where the
torque is applied and where the position measurement is made. This mode is capable of
driving a servo system unstable. The importance of this mode is seen directly in the
frequency response. The mode also appears in the free boundary modes of vibration.

The results also show low frequency modes which do not necessarily limit the servo
crossover frequency, but which do however degrade disturbance rejection. Again, these
modes show up directly in the frequency response. A bit more indirectly, the effect of
these modes can be estimated from the locked encoder or free boundary modes.

The locked rotor modes are of no concern for the type of servo system considered in this
report.

As a special warning, the results developed in this report do not apply to systems in which
there is closed loop control around the drive motor position or velocity.

DESCRIPTION OF THE MODEL

Figure 1 shows the three-inertia, two-spring model used in this analysis. The two largest
inertias simulate the first flexible mode of a telescope structure. The smallest inertia
simulates the flexible mode that primarily involves the motor rotor and the drive
compliance. The drive is assumed to have a gear ratio of N:1.
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Figure 1: A three-body, two-spring model is used to simulate the first flexible mode of a
telescope and the dominant drive compliance. A drive ratio of N:1 is included. For
frequency response analysis, torque at I, is the input variable, and the position of I, is the
output.

This analysis uses parameter values that could represent a large telescope such as the
Magellan Project 8-m. The values are as follows.

Model Parameters

I, 2x10° kg*m?

I, 2x10° kg*m?

L 1 kg*m?

k, 7.896x10° N*m/rad
ky 2.467x10° N*m/rad
N 40 |

This model is analyzed to find the natural modes of vibration under the conditions of
locked rotor (I, grounded), locked encoder (I, grounded), and free boundaries.
Additionally, the input-output frequency response is derived.



RESULTS

Using the parameters above, the model exhibits the following frequencies of vibration.

Condition First Mode Second Mode
Locked rotor (I, grounded) 0.1250 Hz 14.1427 Hz
Locked encoder (I, grounded) 10.0 Hz 250.0 Hz
Free boundaries 14.1393 Hz 250.10 Hz

The calculation of these frequencies is given in Appendix B, The fact that several of the
listed frequencies are very nearly but not quite equal is not a general result. This result

is particular to this case and is due to [, and k, being orders of magnitude smaller than I,
and k,.

Figure 2 shows the magnitude response for the same system with an input torque at I and
output position taken at I,. The frequencies of the features shown in Figure 2 are seen to
be the same as some of the frequencies listed above. The calculation of the frequency
response is given in Appendix A.

Referring to Figure 2 and going from low to high frequencies, the first feature is an
antiresonance at 10 Hz and corresponds to the first locked encoder mode. The next feature
is a resonance at 14.1393 Hz which corresponds to the first free boundary mode. The last
feature is a resonance at 250.10 Hz, which is the second free boundary mode.

Figure 3 shows the phase response associated with this system, and there are two notable
features in this plot. The first is the region of phase lead occurring just after 10 Hz, the
frequency of the first antiresonance. The second is the transition to a large phase lag just
after 250 Hz, the frequency of the second resonance.

For the type of system considered, the locked rotor mode frequencies only coincidentally
resemble any of the other frequencies. The mode near 14 Hz is close to one of the free
boundary frequencies because k, is orders of magnitude smaller than k.. In general, this
similarity does not exist. The mode at 0.125 Hz is truly meaningless for the servo system
and telescope performance since it does not enter into the servo frequency response.

IMPLICATIONS OF THE RESULTS

Perhaps the most significant result is that neither the locked rotor, locked encoder, or free
boundary modes show all the features necessary for the accurate design and evaluation of
a servo control system. Only the frequency response with the proper input and output (in
this case torque and position of the load) gathers all the important features into one place
and shows how they enter into the system behavior.
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Figure 2: The magnitude response of the model system shows one antiresonance followed
by two resonances. This response was calculated using the model parameters given in the
text with a small amount of damping added to keep the peaks and valley finite.
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Figure 3: The phase response of the model system shows a small area of phase lead
followed by a steep transition to negative phase angles. This response was calculated using
the model parameters given in the text with a small amount of damping added. This plot
has been shifted 180 degrees to remove the effect of the rigid body mode and center the
plot around O degrees.



Referring to the magnitude and phase responses shown in Figures 2 and 3, the results
indicate that the frequency of the third mode near 250 Hz is of notable importance. It is
at this frequency that the phase makes a steep transition to large negative values. This
phase lag combined with the sharp peak in the magnitude response tends to drive the servo
unstable and make wideband servo control rather difficult.

The two remaining modes near 10 and 14 Hz are important in that they will degrade the
disturbance rejection ability of the system. By themselves however, these two modes do
not have any strong implications for the servo crossover frequency. From the standpoint
of the dynamic stability of the closed loop servo system, the crossover frequency could be
higher than either of these two frequencies.

Considering now the implications of the locked rotor, locked encoder, and free boundary
modes, it is fair to start by dismissing the locked rotor modes as unimportant in this
system. The lowest locked rotor frequency does not appear in the servo system, and the
higher frequency is only coincidentally near a frequency of significance.

With knowledge of the mode shapes, the locked encoder modes will yield useful
information about the system. This is especially true in the specific case of telescope design
with its particular distribution of inertias and compliances. First, the mode shape which
involves k, (the 10 Hz mode) is an indicator of the disturbance rejection capability of the
final system. Since the magnitude response drops (as shown in Figure 2), there will be less
feedback, and the servo will be less able to reject disturbances at that frequency.

The locked encoder mode near 250 Hz which involves k, is a good indicator of the
obtainable servo crossover frequency. Note that this frequency is the frequency of
resonance of the motor rotor with the drive compliance when the drive output is grounded.
Considered rigorously, this frequency is only an approximation of the frequency of
importance which shows up as a free boundary mode slightly higher than 250 Hz.
Nevertheless, in the case of a reasonable telescope design, this approximation will be very
good and slightly conservative.

In the absence of a frequency response, the free boundary modes give the most reliable
indicator of the obtainable servo crossover frequency and a moderately good indication of
the disturbance rejection capability of the final system. First, by identifying the mode in
which there is a large phase lag between the point where the controlled input is applied
(torque at the motor rotor) and the output is taken (position of the load), the crossover
limiting frequency can be found. In this instance, this is again the mode near 250 Hz.

Next, the free boundary frequencies lower than this limiting frequency will give some
indication of the disturbance rejection degradation of the final system. For every free
boundary mode lower than the crossover limiting frequency, there will be a preceding
antiresonance with a resulting disturbance rejection degradation.



CONCLUSIONS

The influence of the various vibrational modes is best found from a frequequency response
with the proper variables as inputs and outputs,

In general, the lowest frequency mode in a frequency response does not limit the
obtainable servo crossover frequency. The crossover frequency will be limited by the first
mode which introduces a large phase lag between the point where the servo input is
applied and the output is measured. Still, any modes at frequencies lower than this mode
will degrade the disturbance rejection capability of the system at those frequencies.

With proper interpretation, the free boundary modes can indicate which modes degrade
disturbance rejection and which mode limits the servo crossover frequency. The locked
encoder modes can also approximate this information with sufficient accuracy when the
drive inertia and stiffness are small compared to the inertia and stiffness of the driven load.
This is the case for any reasonable large telescope design.

Locked rotor modes should not be used in evaluating the performance of a system where
torque is applied on one side of the drive compliance and position is encoded on the other
side.



APPENDIX A

Frequency Response Derivation
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The equations of motion for this system are
kt (eb"e t) _Ite. t""O

k(O -0,) +ky(NO,-N?©,) 1,0 -0
k (N0 ,-0,) -I,8,+t-0
Taking the Laplace transform and combining the equations of motion yeilds

S, Nkd(I,s?+k,)

T 82 (I, I1,I,5% (kT (Ip+N?I,) +k I, (I,+I.))8%+k k(NI +T,+1,)]

Where e,and T are the transformed time functions 8, and T, and s is the transform
variable. This transfer function shows zeros (zeros of the numerator) at
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a=I I, T,
b=k, I (I, +N°I,)+k I, (I,+I.)
c=kk, (NI +I,+I,)

The magnitude response of this system is
I
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where the asterisk denotes the complex conjugate. The phase response of this system is
0,
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APPENDIX B

Mode Frequencies for Various Boundary Conditions

Free Boundary Frequencies:
The frequencies of the free boundary modes of vibration are simply the poles of the

transfer function found in Appendix A. Repeated here, the roots are
]

2
N
s=0,0, i( bitb 4ac)

2a

where s=2njf, and

b=k I (I, +N*I,) +k I (I, +I.)

C=kyk (N*T +T,+1,)
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Locked Encoder Frequencies:
The locked encoder condition effectively grounds I, and removes it from the system. As
a result, I, and I, are isolated, and the Laplace transformed equations of moticn become

&, (k,+I.82)=0

@, (ky+I,82) =0

|k .|k
S'*J\’T“' I\ T,
t d

where g=2njf

These equations have roots at

Locked Rotor Frequencies:
The locked rotor condition effectively grounds [, and removes it from the system. The
Laplace transformed equations of motion become

B,k -0 (k+I,8% -0

0 k,-O, (k +k+I,5%) =0

The characteristic equation (determinant) for this system is

I, I,8% (k (I,+I,)+k,I,)s?+ksk, =0

which has its roots at
L

2
s -1( —bi\/bz—z;ac)

24

where

s=2njf

a"Ith
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APPERDIX C

. 13
Plot Generating Program

This file runs in Matlab.

calculates the dynamic response of a three-inertia, two-spring system.
Intended to simulate the first flexible mode of a driven load, and the
first important compliance of the drive mechanism. For the transfer
function, torque is applied to Im and cutput position is taken at Ib.

o 4° 00 oP ov

N=40; %Drive ratioc

Ia=4e6;

Ib=Ia/2; %Bottom inertia.

It=Ia/2: %Top inertia.

Im=1; $Motor inertia.

ftle=10; %Locked encoder frequency (It on kt).
fdls=250; $Locked encoder frequency (Im on kd).

kt=(2%pi*ftle) "2 * It;
kd=(2*pi*fdls) "2 * Im;

num=(N*kd)*[It 0 kt]; %Numerator polynomial.
den=[ (Im*Ib*It) O ((KA*It*(Ib+(N 2*Im))) + (Kt*Im)*(Ib+It))
0 (kd*kt)*((N"2%Im)+Ib+It) O 0]; %Denominator polynomial.

[zeros,poles,kl=tf2zp(num,den); %Solve for Zeros, poles, and gain of system.
zeros=roots (num) ;

poles=roots(den);

poles=poles - (0.0l*sqrt(conj(poles).*poles)); %Add some damping.
zeros=zeros - (0.0l%*sgrt{conj(zeros).*zeros));

f=logspace(0,3,500);
[@num,dden]=zp2tf(zeros,poles,K); %Form damped transfer function.
[mag, phase]=bode (dnum,dden, 2*pi*f); %Calculate frequency response.

loglog(f,mag) ,grid %Generate the plots.

title('Magnitude vs. Frequency (torgue input, base position output)')
xlabel ('Frequency (Hz)')

ylabel( 'Magnitude (rad/Nm)?')

pause
A=input{'Save the plot? ¥/N [N]:','s');
if isempty (A)
=IN";

end
if A"='N'

meta d:\matlab\wiyn\threebdplot
end

semilogx (f,phase+180) ,grid

title({'Phase vs. Frequency (torgue input, base position ocutput)')
xlabel ('Freguency (Hz)'}

ylabel ('Phase (degrees)')

pause

A=input('save the plot? ¥/N [N]:','s'):
if isempty(A)

A=tN';
end
if A™='N"?

meta d:\matlab\wiyn\threebdplot
end

%rFind the locked rotor roots.
lrroots=roots ([ It*Ib 0 (kt*Tbh+kt*It+kd*It) 0 kd*kt ]):





