MAGELLAN PROJECT

University of Arizona

Carnegie Institution of Washington The Johns Hopkins University

Dynamics for Two-Motor, One-Encoder Drives

J. Alan Schier
The Observatories of the
Carnegie Institution of Washington
Pasadena, California
February 1991
No. 28




INTRODUCTION AND SUMMARY

This report analyzes some of the dynamics involved in using two motors to drive the axes
of an alt-az mounted telescope. A significant flexibility is considered to exist between the
two motors as might be the case for the altitude axis. A simple control scheme is
investigated wherein the torque applied by one motor is a constant multiple of the other,
and the position is encoded near one of the motors.

The results show that there is a critical value (a singularity) for the multiplying constant.
At the critical value, the flexibility of the structure becomes (mathematically) unobservable
and does not enter into the dynamics. At less than the critical value, the system displays
the relatively benign condition in which an antiresonance is followed at a higher frequency
by a resonance’. For a multiplier greater than the critical value, the system becomes much
more difficult to handle, with the resonance preceding the antiresonance. This condition
necessarily involves a large phase lag near the frequency of resonance, which is the
frequency of the "free-boundary” mode of vibration.

In practice, the multiplying constant would be determined through measurements made on

the finished structure and would be made slightly less than the critical value. This would
result in acceptable phase behavior.

DESCRIPTION OF THE MODEL

A model is used consisting of two inertias connected by a spring as shown in figure 1.
Two input torques are applied to the

system, and the output position is taken at

one inertia. The model is a simplified

representation of a wide range of

mechanical systems and allows the

important frequency domain features to be

examined. This model neglects other

resonances that would be present in the z ""\?-1\*

structure.

The size of the inertias and the value of

the spring constant are not constrained to

any particular values, although for the sake

of clear illustration all these values have

been set to unity. The variable parameter %

in the model is alpha, the ratio of the two ——
torques applied to the structure. As this Figure 1:

ratio is varied, the qualitative behavior of  ope spring and two rotational inertias comprise the
the system changes as will be described in  model system. Torque is applied to both inertias with

the next section. the torque applied to !, being a constant multiple of
the torque applied to I,. The outpur variable is the
position of 1,.

* A resonance appears as a peak in the frequency response, whereas an antiresonance appears as a valley.



DESCRIPTION OF THE RESULTS

Figures 2 and 3 show the magnitude and phase responses of the system as the torque ratio,
alpha, is varied. The mathematics behind the generation of these curves is detailed in the
Appendix A.

The important feature is the change in the phase characteristics as the antiresonance goes
from preceding to following the resonance. The phase plot in figure 3 shows an area of
phase lead when the antiresonance precedes the resonance, and an area of phase lag when
it follows. This occurs as the value for alpha goes from smaller to larger values. For the
illustrated system, the critical value for alpha is unity. At this value, the resonance and
antiresonance coincide (and disappear).

The magnitude plot in figure 2 shows another interesting feature. As alpha is varied and
the frequency of the antiresonance changes, the frequency of the resonance remains fixed.
This fixed resonant frequency is the natural frequency in which the two masses are
unconstrained (free boundaries) and simply "bounce against each other”. This fact is
apparent directly from the magnitude plot given the assumed values of unity for the
inertias and spring rate. It is also apparent in a more general fashion in the mathematics
in, Appendix A.

IMPLICATIONS OF THE RESULTS

It is hard to overstate the importance of the phase in determining the system performance.
If the phase makes steep transitions to large negative values, the problem becomes
particularly vexing. In such a case, a practical system can be made stable only if the
bandwidth is well below the frequency of the sharp phase transition or if the servo
controller is considerably more complex (i.e. expensive and touchy). It is for this reason
that the case in which an antiresonance follows a resonance is a significant concern.

A low frequency antiresonance well before the resonance is also undesirable, but the
consequences are not nearly as adverse. As a practical matter, it would result in
disturbance rejection that is a bit poorer than it would otherwise be. The antiresonance
itself will not however limit the servo bandwidth nor will it drive a closed-loop servo
unstable. -

Given that the free-boundary resonance frequency is fixed, there may be other lower
natural frequencies in the real structure that limit the servo performance. If this is the
case, this resonant mode is less important regardless of whether it precedes or follow the
antiresonance.



CONCLUSIONS

If the free-boundary mode of vibration is well above the desired servo bandwidth--say, by
at least a factor of ten--then it is of very little concern.

If this mode is close to the desired servo bandwidth, then the ratio of torques applied by

the two motors must be set to insure acceptable behavior of the gain and phase
characteristics.

SUGGESTIONS FOR FURTHER CONSIDERATION

Additional position feedback combined with a more complicated servo controller would
permit better control of the flexible mode addressed in this report. This means of servo
control should be the topic of a separate report.



Magnitude vs. Freguency with Alpna as Parameter
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Figure 2:

As the torque ratio alpha, is varied from low to high values, the antiresonance passes through the resonance
as it moves from left to right. At alpha = 1, the peak and valley coincide and cancel. This represents a
system in which the flexible modes could not be excited. Note also that the frequency of the resonant peak
stays fixed. Only the frequency of the antiresonance changes. These plots have been offset in the vertical
direction in order to make them more distinct. A small amount of damping has also been added to keep
the peaks and valley finite.
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Phase vs. Freguency, Alpha as Parameter
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Figure 3:
As the torque ratio alpha is varied from low to high values, the system displays a region of phase lead that
gives way to a region of phase lag. At alpha = 1, the area of phase lead or lag is zero. Important here are

the sharp transitions to large negative phase angles at the frequency of the resonant peaks (shown in Figure
2).



APPENDIX A

Supporting Analysis

Ty
Let o = a7;. The equations of motion are: e—

T1 +"7(32 — 91) — Ilég =0

at + &(6; — 82) — Iofy =0
Taking the Laplace transform of (1) and (2) and combining yields

01 _ L'+ s(atl)
Tl - 32(11I282 + K-(Il +I2))

where ©; and T are the transformed time functions §; and 7y, and s is the

transform variable. ©,/T; has zeros (zeros of the numerator) at

sz =24 f ____fi(af;{— D

and has poles {zeros of the denominator) at

K,(Il + Iz)

5= 0,0,j4/ =

Note that Sp is not a function of &. Neglecting the two poles at 0 (which
correspond to rigid body motion) and considering only the poles and zeros that

result from flexible modes, if

(I; +Ig)

(1) = 1



then

lsz] = |sp]

and the resonant modes cancel exactly. If

I I
(a+1)< 1t iz
I
then
[S:] < |5yl

and the system will show a region of phase lead. Finally, if

I + I

(e +1) > T

then

151 > |55

and the system will show a region of phase lag.
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APPENDIX B

Plot Generating Program

This file runs in matlab,

Calculates and plot freguency responses for a two-inertia, one-spring system
that is driven at both masses with a torque and encoded at only one position.
Alpha is the variable ratioc of the noncolocated torgue to the colocated
torque. JInertias and spring rate are unity.

if exist('mag') =1
alpha=( 0.2415 0.598B2 1 1.4468 1.9385]";
zeros=[i¥*sqrt(alpha+l}) =-i*sqgrt(alpha+l)]';
zeros~=zeros-(0.005}*(zeros .* conj(zeros));
poles={0 0 i*sgrt(2) =-i*sgrt(2)}’';
poles=poles-(0.005)*(poles .* conj(poles));
galn=ones(zeros(l,:)}:
w=linspace(l,2,400);
{num,den]=zp2tf({zeros,poles,gain);
{mag, phase)=bode(num,den,w) ;
end
senilogy(w,mag(:,1)*4,w,mag(:,2)*2,w,mag(:,3),w,mag(:,4)/2,w,mag(:,5)/16)
title('Magnitude vs. Frequency with Alpha as Parameter!')
[f1,mli=ginput (1}
text(fl,ml,{'alpha=',num2str(alpha(l))]), pause
[f2,m2]=ginput (1) ;
text(f2,m2,['alpha="',num2str{alpha{2))]), pause
{£3,m3)=ginput(l};
text(£3,m3,['alpha=',num2str{alpha(3}}]}, pause
[f4,m4)=ginput(1):;
text(f4,md4, [ 'alpha="',num2str{alpha(4})]}, pause
[£5,m5]=ginput (1) ;
text (£5,m6, [ 'alpha="',num2str(alpha(5}}]}
xlabel ('Frequency (rad/sec)')
ylabel ('Normalized Magnitude!')
pause

A=input('Save the plot? Y/N [N]):','s'):
if isempty(A)

A='N';
end
if AT=THN!

meta d:\matlab\two-drvitwodrvir
end

plot(w,phase(:,1:2)+180,w,phase(:,3:5)~180)
(£1,pl)=ginput(l);
text(fl,pl,{'alpha=',num2str{alphaf{l))]), pause
(£2,p2}=ginput(1):

text(f2,p2,[ talpha=',nun2str(alpha{2)})}), pause
[£3,p3)=ginput(l);

text (£3,p3, [ 'alpha=',num2str(alpha(3))}), pause
[f4,p4)=ginput(1};:

text(f4,p4,['alpha=' num2str(alpha(4))}), pause
(£5,p5)=ginput(1);

text(£5,p5,{ 'alpha="',num2str{alpha(5))])
title('Phase vs. Frequency, Alpha as Parameter')
xlabel ( 'Frequency (rad/sec)')

ylabel ( 'Phase (degrees)?')

pause

A=input ('Save the plot? Y/N [N]:','s'):
if isempty(A)

and

: cang
if A N
meta d:\matlab\two—drv\twodrvfr

end





