Embedded Netsock™

An Introduction

MICRO/SYS, INC.
3730 Park Place
Montrose, CA 91020
Phone (818) 244-4600
FAX: (818) 244-4246
www.embeddedsys.com

DOC 1238

1/1/99

Micro/sys Technical Support

Micro/sys offers the best technical support in the business — and it’s free!

Our application engineers are ready to assist you in getting your Embedded Netsock
project up and running as quickly as possible. You can contact us as follows:

Micro/sys Technical Support

Phone: (818) 244-4800

FAX: (818) 244-4246

Email: techsupport@embeddedsys.com
Web: www.embeddedsys.com

We can also upload and downioad programs by modem whenever that will assist you.

Thanks for specifying Micro/sys products. We'll be glad to be a part of your teamn as you
use our products.

RUN.EXE, Flash Setup, and Embedded Netsock are trademarks of Micro/sys, inc.

DOC1238
© 1999 Micro/sys, Inc.
All rights reserved.

2 ‘ Micro/sys Embedded Netsock — An Introduction

Embedded Netsock™ - An Introduction

Introduction

As networking becomes an important requirement for more and more embedded
systems, a basic understanding of network technologies is becoming more and
more important during the definition phase of embedded system design.

To that end, this document provides an overview of networking. However, the
overview is slanted towards those aspects of networking that most affect
embedded system design. The traditional ‘file and printer sharing’ provided by
the network that you probably use in your design work is not necessarily
applicable to the network requirements of the embedded systems that you
design. There are networks and there are networks.

The Micro/sys Embedded Netsock™ technology specifically addresses and
implements the philosophy embodied in the following description of networking.

Issues such as routing and fragmentation may be trivialized, understated, or

ignored in this overview. This is done with the goal of simplifying the networking
world.

_If your system will need more rigorous features and capabilities of some of the
networking protocols discussed here, please refer to one of the many excellent
books on the subject.

Networking basics - with an embedded systems slant

Computer networking has become as important as the computer itself.
Computers cannot be islands unto themselves, and networking has become the
primary avenue through which data is shared between computers.

Traditional computer networks concentrate on a workstation using network
resources, such as a network disk drive or printer. The network is mostly
transparent to the application running on the workstation. A word processor does
not know if the file is stored on its local hard drive, or on a network server’s hard
drive. It doesn't matter. Similarly, the application does not care if the selected
printer is connected to a local port, or is on the network.

This transparency to the application software is so complete that the network
driver on the workstation is often called a ‘redirector’ The redirector driver
merely redirects disk or printer access to the network server. The application has
no idea that this is going on.

Micro/sys Embedded Netsock — An Introduction 1

However, things are different (as always!) with embedded systems. When a
network is involved, it often means that applications on more than one computer
need to work in tight coordination. They cannot be unaware of each other.

For instance, if an embedded computer is inside a conveyor belt controller, and it
must be monitored and controlled by a supervisory Windows NT computer, both
application programs will need to know about the other. The data to be
transferred is not merely a disk file or a printer file, it is customized information
that only has meaning within the context of conveyor belt monitoring and control.

Consideration #1: In embedded networks, the
typical case is a custom program on both ends
of the network cable. Shrink-wrapped software
is probably not applicable to either side.

There are so many technical issues involved with interprocessor communication
over a network cable that the probable loss of ready-to-run software as an option
can be daunting. Programming to the lowest level network adapter software
driver requires extensive expertise in computer networks, and is very difficult to
debug.

Consideration #2: Embedded systems should
try to ‘borrow’ as much networking as possible
from traditional computers in order to reduce
development time. Careful decisions at this
point can significantly reduce development
time.

One networking technology that demands to be considered is the TCP/IP
protocol suite that defines hundreds of solutions to hundreds of networking
issues. Originally developed with government funds, these TCP/IP solutions are
in the public domain. Their full specifications are openly available and can be
used free-of-charge. And because TCP/IP protocols are the foundation upon
which the Internet is built, their continued growth and suppotrt are assured.

The TCP/IP protocols, however, are fairly low-level. Programming directly to
them requires large amounis of programming to fill in headers for transmit
packets, and to decode packet headers when they are received. More levels of
technology need to be ‘borrowed’ from somewhere else for use in embedded
systems.

2 Micro/sys Embedded Netsock — An Introduction

To address the challenges associated with custom programs on multiple
computers transferring data with TCP/IP protocols, the sockets model was
created. Again, because this model was created with government funds at the

University of California, Berkeley, it is well documented and available for use at
no charge.

Consideration #3: Public domain, well
documented, well supported networking
technologies are available. Their use provides
extensive benefits to embedded systems.

TCP/IP and sockets standards are extremely general and exiremely flexible.
This is both a curse and a blessing. On the plus side, their flexibility and
extensibility have fueled an explosive, global growth of networking - the Internet
today vs. the Internet 5 years ago.

But the down side is that, being all things to all people, there is a bewildering
alphabet soup of acronyms and concepts you must assimilate. It takes a long
time to learn 250 different protocols, procedures, acronyms, and architectures -
just so you can pick the 25 that make the most sense to your embedded system

needs. 90% of what you learn is just to be able to eliminate that same 90% from
your consideration.

Consideration #4: Simplify. Look for a pre-
selected subset of TCP/IP and sockets
technologies that targets embedded systems
specifically.

Embedded Netsock from Micro/sys, based on careful analysis of just what an
embedded system typically needs, creates a limited view of networks. Butitis a
view that is relevant to the task at hand - transferring data between embedded
systems and other computers.

Issues of ‘academic purity’ or ‘universality are purposely downplayed with
Embedded Netsock. We have let the needs of the embedded system world
override the needs of general, global computing.

Micro/sys Embedded Netsock — An Introduction 3

TCP/1P basics

Some Terms Defined

Transport Control Protocol/Internet Protocol (TCP/IP) is a catchall nickname
given to a large set of protocol specifications. More accurately, it might be cailed

TCP/IP/ARP/RARP/ICMP/IGMP/UDP/BOOTP/DHCP/FTP/HTTP

The point here is that TCP and IP are only two of the many protocols that exist
within this smorgasbord of specifications. When you say ‘TCP/IP’, you are really
saying what has become the accepted nickname for ‘the protocol suite that
includes TCP and IP, among many others’.

TCP/IP is based on the concept of layers - each layer performing a specific,
limited part of the networking job. The international standard model (ISO) defines
seven layers, whereas TCP/IP has a slightly different break arrangement.

Refer to Figure 1 - ISO Layers and TCP/IP, throughout the following discussion.

Figure 1 —ISO Layers and TCP/IP

APPLICATION PROGRAM

PRESEATATION
PROCESS PROCESS PROCESS PROCESS PROCESS PRESENTATON

| '} i ! i

B PORT[N PORT|N&1 PORT[X PORT|X+1
:_ 1 \ 1 1 _:
l TCP UDP | TRANSPORT LAYER
| i
L] S o J
ey Ty} i
[|
i ICMP - I P | NETWORK LAYER
| i
L] b J
F T T T T T T T Tty T T T T T T T
i |

_ | HARDWARE DATALINK LAYER
L LARP | ADAPTER |
Y o ————. S S ———— Y Aot

PHYSICAL LAYER

Micro/sys Embedded Netsock — An Introduction

The physical layer, for example, is electrical pulses on copper wire, or light
pulses on fiber optics. It is concerned with bits in motion. How do you define a 1
and a 0? '

The datalink layer worries about what sequences of bits mean at the lowest level.
Both sender and receiver must agree, for example, what the first 48 bits stand
for. Otherwise, there is no basis for meaningful communication. How is a data
packet defined? Ethernet is an example of a datalink layer protocol.

The network layer worries about how you direct a message to one computer
versus another. How do you assign names or numbers to computers so that
each one is unique, and each one can be the intended target of a message? IP
is an example of a network layer protocol.

The transport layer worries about the likely occurrence that a message will be
received by a specific computer (thank you, network layer!), but there may be a
number of possible final destinations for it within that machine. A good example
is a multitasking system where 10 applications are running at the same time on
the same computer. When a packet arrives off of the network, which application
should it be given to? TCP and UDP are examples of transport layer protocols.

The session layer worries about establishing a presence on the network for a
period of time. Starting up, resolving assigned addresses, and running network-
based programs.

Computers, Hosts, and Addressing

Iin TCP/IP networks, each atiached computer is called a host. While this term
may not be terribly descriptive, it is well entrenched, and will continue fo be seen
in many places. For example, in Visual Basic, the “RemoteHost™ property is
where you specify the number of the computer you want to send a message to.

To send a network message 1o a specific host, some form of network address is
needed to uniquely identify the host. At the lowest level - in the hardware
network adapter circuitry - there needs to be a unique address.

In the case of Ethernet, a 48-bit binary number is assigned to each Ethernet
adapter manufactured. The first 24 bits indicate the manufacturer, and the
second 24 bits indicate the sequence number of the specific adapter. Standard
notation for an Ethernet address is six two-digit hexadecimal numbers separated

with dashes. An Ethernet adapter manufactured by Micro/sys, for instance,
might be

00-60-92-00-C2-9A

Micro/sys Embedded Netsock — An introduction 5

The problem with physical addresses is that they are difficult to administer at the
network level. If a person’s deskiop computer is only known by its Ethernet
address, every other computer that wants to communicate with it will have to be
informed when its Ethernet adapter card is replaced.

This situation is overcome with the concept of a logical address - a way of
assigning a unique number to a host without the need for it to be in hardware.
Then a modifiable cross-reference list can be used fo convert logical addresses
into physical addresses.

The Internet Protocol (IP) is a network layer specification that provides a unique
logical numbering system used for all hosts. IP addresses are a 32-bit binary
number. Since nobody in their right mind would propose memorizing 32-bit
binary numbers as 1's and 0’s, a shorthand notation was developed. This
shorthand is the dotted decimal notation. The 32-bit binary IP address is broken
into four 8-bit values. The four values are written as decimal numbers, and are
separated with decimal points.

Figure 2 -- Dotted Decimal Notation

32—bit binary P oddress:

11000000101010000000000100000100

broken inte four 8-—bit seciions:

11000000 { | 10101000 | 00000001 | 00000100

and each section writien as ¢ decimal number:
162 168 1 4
to form "dotted decimal” notation:

182.168.1.4

Ideally, every host (computer) in the world would have one of the 2% possible IP
addresses. For this reason, any host that is {o be connected to the Internet must
obtain an IP address that is, ultimately, coordinated by InterNIC, the world-wide
administrator of all IP addresses that will be connected to the Internet. There
cannot be two hosts anywhere in the world with the same [P address if they are
to be connecied to the Internet.

Because an |IP address is a logical address, an IP address is simply assigned to
a particular machine. There is no hardware in the host that is built to respond to
this address. An IP address can be moved from one machine to another. In fact,
many servers hold a ‘pool’ of I[P addresses that they can ‘lease’ temporarily to

6 Micro/sys Embedded Netsock — An Introduction

any host that requests it. For instance, dialing into an Internet Service Provider
(ISP) will often cause the ISP to assign an IP address to the caller. This IP
address is only valid during this specific connection. When the modem hangs
up, the IP address will be available for assignment to the next calier.

When an Ethernet adapter is replaced in a deskiop computer, the physical
address changes, but the logical IP address can remain the same. Therefore, no
administrative changes need to be made concerning other hosts trying to reach
this host. 1t is left up to the TCP/IP protocol stack to update the cross-reference
listings at run-time (using the ARP protocol that will be discussed shortly).

Routing, Subnets, and Subnet Masks

The limited case of a simple TCP/IP network using Ethernet can be used to
illustrate routing and subnets. Imagine a facility where all hosts inside the facility
are interconnected on Ethernet wiring. In addition, a single gateway to the
outside networking world is attached to the same Ethernet wiring.

The concept of routing involves, in addition to other issues, determining where to
send a particular Ethernet packet. [f the destination host is inside the facility, it is
on the same Ethernet cable as the sender. If the destination host is not inside
the facility, it must be sent to the gateway, which will then retransmit it to some
external system for relaying to its final destination.

Figure 3 — Class Subnet Example

BUILDING CR _FACILITY

HOST A ETHERNET GATEWAY
192.168.1.2
“INSIDE"
ETHERNET ADDRESS
192.168.1.1
HOST B ETHERNET N TO ALL
192.168.1.3 OUTSIDE” HOSTS
ADDRESS - NOT
209.182.144.86 INSIDE
FACILITY
HOST C ETHERNET
192.168.1.4
HOST D ETHERNET
192.188.1.5

CLASS € RULES: 1) SUBNET MASK IS 255.255.255.0.

2} ARP PROTOCOL IS USED FOR A ONE-TO—ONE MAPPING
OF 1P ADDRESSES TO ETHERNET ADDRESSES.

2) PACKETS TO ANY [P ADDRESS BETWEEN 182.168.1.2 AND
192.168.1.255, INCLUSIVE, ARE SENT DIRECTLY TG THE
HOST OWNING THAT IP ADDRESS.

4) PACKETS TQ ANY ADDRESS NOT IN THIS RANGE ARE SENT
TO 192.168.1.1 FOR FURTHER ROUTING.

Micro/sys Embedded Netsock — An Introduction 7

Defining subnets, based on ranges of IP addresses, provides an easy way of
determining whether an intended 1P address is on the same wiring or not. For
example, if all internal network hosts are assigned IP address from 192.168.1.1
through 192.168.1.254 (i.e. only the last number changes), network software can
easily determine where 0 send a packet. If the first three numbers of the
destination IP address are 192.168.1, the destination host is inside the facility,
and the packet can be sent directly over the Ethernet wiring. If the first three
numbers are not 192.168.1, the destination host is not inside the facility, and the
packet must be sent to the gateway for forwarding to its uliimate destination.

In the example above, hosts are determined to be on the same subnet if their first
three IP numbers are the same. This is technically called a Class C subnet, and
it provides IP addresses for 254 hosts on one subnet (0 and 255 are special
cases, and are not available).

A subnet mask is a value that tells the networking software how many of the four
IP numbers are needed to determine if two hosts are on the same subnet. For a
Class C subnet, the subnet mask, in dotied decimal notation, is 255.255.255.0.
As can be seen, this tells the networking software that the first three IP numbers
hold significance. :

Class B subnets have a subnet mask of 255.255.0.0, indicating that only the first
two |IP numbers must match for two hosts to be on the same subnet. A Class B
subnet can obviously have many more hosts than a Class C subnet. Finally,
Class A subnets have a subnet mask of 255.0.0.0, which provides the largest
number of hosts on the same subnet.

Most embedded networks will probably use Class C subnets. If not connected to
the Internet, the IP range that we have been using so far, 192.168.1.1 through
192.168.1.254, is the preferred IP range to use for a Class C network. This
special “testing” IP subnet is known to be localized, and is safe to use.

If an outbound message is to a host whose IP address, according to the subnet
mask, is not on the same subnet as the sending host, that message will need to
be sent to a gateway. The gateway will have one IP address that is on the same
subnet, and another [P address out the other end that will atiach to other
systems for forwarding packets to their ultimate destinations. What happens on
the other side of a gateway is beyond the scope of this introduction,

8 Micro/sys Embedded Nelsock — An Introduction

Logical-to-Physical Address Mapping - the ARP Protocol

Once a packet is determined fo be on the same subnet as its intended
destination, it is merely sent to the Ethernet (physical) address that corresponds
to the IP (logical) address that the packet is destined for. This requires a logical-
to-physical lookup table.

Such a table is built with the Address Resolution Protocol (ARP). An ARP table
is dynamic, and is kept in RAM within a host.

Figure 4 - Address Resolution Protocol

1. An ARP cache is created in RAM, and initialized to an empty slate.

2. Each time an outbound IP packet is ready to be sent, the ARP cache is
checked fo see if the target IP address has a corresponding Ethemet
address eniry.

3a. If so, the Ethernet address is added to the packet, and it is sent directly
to the host, which is on the same subnet.

3b. If there is no entry for this IP address, a broadcast message Iis
transmitted that will be received by all hosts on this subnetl. In effect, this
ARP request says “does anybody know the Ethernet address associated
with this IP address?”

4. Most often, the host who owns the IP address in question will respond o
this ARP request by examining the received packet, and sending it back
to the originator after entering its Ethernet address in the proper location
in the reply packet.

5. The requesting host receives the ARP reply, extracis the new IP-to-
Ethernet mapping, creates a new ARP cache entry, and sends the
outbound packet to the newly discovered Ethernet address.

6. Future packets to this IP address will use the ARP cache entry to quickly
determine the Ethernet address of the destination.

Because ARP is a dynamic protocol, the ARP cache is built at run time. If an
Ethernet adapter in a host is changed, a new |P-to-Ethernet mapping is needed.
To allow for this, most ARP cache implementations cause cache entries to be
purged after a reasonable amount of time has passed. This will automatically
cause new mappings to be picked up as needed.

Transport Protocols - TCP and UDP

While the [P protocol handies logical addressing - getting packets to the right
host - other protocols carry the actual messages. These protocols have their

Micro/sys Embedded Netsock — An introduction 9

own formats. A completed packet is passed to the IP layer, which adds IP
addressing in an IP header, and sends the packet out through lower level layers.
The process is reversed for receive.

The two major transport protocols are Transport Control Protocol (TCP) and User
Datagram Protocol (UDP). Both of these protocols add another level of
addressing - called a port - to the logical addressing provided by the 1P protocol.
Therefore, the destination of either a TCP or a UDP packet requires that two
elements be specified: the IP address of the host, and the port within that host
that the packet should be delivered to.

Remember that our definition of the transport layer involved the issue of
determining which application a particular packet should be delivered to once it
has arrived at the correct host. The port part of the address accomplishes this.

UDP is the simpler of the two transport protocols. It is open-ended: a packet is
sent from one host to the other, and that's it. There is no acknowtedgement back
to the sender that the packet ever arrived at its destination. UDP packets are
called datagrams. They are like postcards you drop into the mail. They are one-
way, and you must take further action if you want to know if they arrived.
Technically, UDP is classified as a connectionless protocol.

By riding inside IP packets, UDP packets inherit all of the logical addressing,
subnet issues, and logical-to-physical mapping features previously discussed.
UDP is great for embedded systems sending informational packets easily and
quickly from one host to another.

The TCP protoco! is another animal. t is classified as a connection-oriented or
stream protocol. TCP is more analogous to a telephone conversation between
two people. It is bi-directional, real-time, and it allows a stream of data 1o be
passed from one location o the other. In embedded systems thinking, it is more
like an RS232 cable between two stations. However, it is a virtual circuit, using

existing Ethernet cabling to simulate a direct, private conversation between the
two hosts.

In addition, TCP is classified as a refiable protocol, while UDP is not. When you
send a TCP packet, the protocol makes sure that it is received.
Acknowledgements are required, and lost packets are resent. TCP is far more
complex, and takes larger protocol drivers and more configurations than UDP.

10 Micro/sys Embedded Netsock — An Introduction

Figure 5 — Transport Layer: UDP Ports

CLIENT COMMUNICATING WITH DNS SERVER SERVER
APPLICATION e ey (o) N
PROGRAM SERVER SERVER SERVER SERVER
REMOTE HOST 204.188.125.5
PORT | 37 PORT| 53 PORT | 67 PCRT| 137
REMQTE PORT 53 ‘ r
]

i

1
= HiE
1 | 204.188.125.5

DATALINK AND PHYSICAL LAYERS DATALINK AND PHYSICAL LAYERS

Interestingly, TCP, a reliable protocol, is built on top of IP, which is an unreliable
protocol. Thus, you can add reliability to an unreliable protocol by implementing
additional actions. This can be important in embedded systems.

Naming Hosts, and Finding IP Addresses

Under TCP/IP, the IP address of a host must be known in order to contact it. But
192.168.1.38 is tough to remember. So a number of “user-friendly” host naming
systems have been developed over the years. The two that remain important are
the Domain Name Server (DNS) scheme of the Internet, and Microsoft's
Windows Internet Naming Service (WINS).

DNS implements a hierarchical naming system. It is the form of Internet names,
such as www.embeddedsys.com (Micro/sys’ web site). Every host on the
Internet has a unique fully qualified domain name (FQDN) under DNS.

DNS is a worldwide, distributed, FQDN-to-|P-address lookup system. A
hierarchical set of DNS servers breaks down all possible domain names into
zones, and DNS servers share their databases with each other. DNS is very
demanding in terms of administration. There are many complex record types,
and detailed pointers are needed to keep everything working.

From earlier desktop networking systems, there is a legacy of NetBIOS names.
NetBIOS is a flat naming system - a name can only be used once. It does not
scale to global networks. NetBIOS names for a host are 15 ASCH characters
long.

Micro/sys Embedded Netsock — An Introduction 11

Because of the number of NetBIOS hosts installed, Microsoft devised the WINS
system for NetBIOS-name-to-1P-address lookup system. It works well for limited

networks, much like those of embedded systems. WINS requires less
administration than DNS.

Dynamic Host Configuration Protocol (DHCP)

To centralize network administration, Windows NT Server, and some other
systems, inciude Dynamic Host Configuration Protocol (DHCP) servers. DHCP
accomplishes just what its name implies - it automatically configures various
network hosts (computers) as they come online.

With DHCP protocols, a host can power up, and download virtually all necessary
network configuration from a DHCP server. For instance, the hosts’ assigned IP
address, the associated subnet mask, the IP address of a name server (either
DNS or WINS), and other network configuration items can be requested. The
DHCP server will manage many network configurations that would normally
require the attention of an administrator.

Configuring embedded systems with the services of a DHCP server significanily
simplifies the setup and configuration requirements of the network system.

Other Protocols - ICMP, FTP, HTTP, etc.

The TCP/IP protocol suite includes many additiona!l protocols. Internet Control
Message Protoco! (ICMP) deals with reporting and addressing various network
errors and reconfiguration needs. Most people know of it for the echo command,

also known as ping. This is one of the most imporiant diagnostic utilities within -
the TCP/IP suite. '

File Transfer Protocol (FTP) deals with moving files from one host to another.
Hypertext Transfer Protocol (HTTP) is the basis for the World Wide Web. These
protocols are extremely operator intensive. While they have some applicability to
embedded systems, these complex protocols may be overkill in most situations.
| ess complex protocols may be better choices.

12 Micro/sys Embedded Netsock — An Introduction

The Winsock API

Originally, UC Berkeley researchers tried to fit network-based inter-processor
communication into the UNIX file /O model. It just wouldn't fit. So they
developed the sockets model.

Under sockets, you create an endpoint, which is the IP address and port
associated with a particular network attachment point for a process (like an
Ethernet adapter and the application assigned a specific processing task behind
the adapter). With a socket created on two different hosts, packets can be sent
from one socket to the other, and therefore, from one process to the other.
Underlying network details are mercifully hidden from the programmer.

The sockets model was widely embraced by Windows programmers - with one
major problem. Windows and UNIX are very, very different in internal operation.
Therefore, industry-wide participation in creating a Windows version of sockets
was aggressively undertaken. The result is the Winsock Application
Programming Interface (API).

Winsock is fairly simple to use. You starfup the network with one call, create a
socket with another call, then bind the local |P address and a specific port
number to that socket. Thereafter, connection-oriented protocols like TCP send
and recv packets, while connectionless protocols like UDP sendto and recvfrom.

Figure 6 — Datagram Sockets (SOCK_DGRAM) Operation

CLIENT USING DATAGRAM SQCKETS SERVER USING DATAGRAM SOCKETS

socket()

l

socket(}

recvirom{)

bind

0

n
|

WAITS UN‘EF"\T'E
-_—l DATA IS RECEIVED
sendto() —
I:_.__l i
PROCESS REQUEST
FROM CLIENT
i recvframn{) I
YT e -
DATA IS
"‘ sendto()

PROCESS SERVER
RESPONSE

Micro/sys Embedded Netsock — An Introduction 13

At the time of creation, connection-oriented sockeis are given the type
SOCK_STREAM and use TCP, while connectioniess sockets are given the type
SOCK_DGRAM and use UDP.

A Winsock Quirk - Network Order vs. Host Order

One significant difference between computers in the UNEX world, and computers
derived from the PC architecture is byte ordering. Byie ordering involves the
order in which multi-byte values are stored. Most computers that UNEX was
originally developed on store bytes in memory from high byte to low byte. PC
architectures store bytes in memory from low byte to high byte. |P addresses are
4-byte values; port numbers and protocol specifiers are 2-byte values.

Where this causes trouble is when a multi-byte value is sent out on the network.
TCP/IP protocols were developed on UNIX machines, and therefore, high bytes
were naturally sent first by the hardware. Therefore, multi-byte values on the
network are sent high byte first. This is now called network order.

inside the host, the storage order is call host order. On many UNIX machines,
network order and host order are identical. But on PC architecture, network
order and host order are opposite.

Take the example of a port number to send a UDP packet to. Say the desired
port is 5001 decimal. This is equivalent to 1389 hex. In PC architecture, this is
stored, by the hardware, with 89 in the first byte and 13 in the second byte.
Sending this to network hardware will cause the 89 to be transmitted first,
followed by the 13. But the destination host is looking for port 5001 in network
order, which is 13 followed by 89. Without conversion, the packet will not arrive
at its intended destination.

Under Winsock programming, great care must be taken to remember which order
a value you are using is currently in. A number of byte-order conversion
functions are always provided with Winsock implementations.

Limiting the TCP/IP - Winsock Universe

With the foregoing, abbreviated discussion of TCP/IP and sockets, it's time to
start limiting the networking universe to the core of what's needed for embedded
systems.

For instance, in an academic, purist world, absolute separation between the
TCP/IP layers can be argued. Any datalink protocol should be able to work on

top of any physical protocol; any transport controi shouid be able to work on top
of any network protocol.

14 Micro/sys Embedded Netsock — An Introduction

On the surface this all sounds nice; But this means that almost nothing can be
‘known’ about the adjacent layer. There must be a continual passing of
information about, for instance, how many bytes are needed for a network layer
address. You may never change it, but, theoretically, it must be able to change.
So you continually pass around the unchanging information about the size of the
addressing protocol you have chosen.

And when a packet is received from the network, it must be passed from one
layer to the next, to the next, to the next, until it is finally delivered to its intended
destination. This could result in a message being copied from one memory
buffer to another five times before anyone iooks at the data to take action on it.

This can steal precious processing bandwidth from an embedded system’s
processor.

So Embedded Netsock is more concemed with efficiency than with theory.
Some of the norma! networking choices have been limited. Some of the

implementation takes liberties. This keeps the Embedded Netsock system
smaller and faster.

Here is the basic networking mindset that Embedded Netsock is based on, and
some of the rationale:

1. The embedded systems will be connected to the same Ethernet subnet.
Without intervening gateways, modems, phone lines, routers, etc., expected
reliability is greatly increased. A ‘unreliable’ protocol such as UDP is all but
guaranteed to be successful, as Ethernet packets on the same subnet are
extremely reliable. There are no issues of packet fragmentation, re-assembly,
etc. Therefore, Embedded Netsock is targeted for embedded networks within
a single facility.

2. A Windows 95/98/NT computer willi be on the same Ethernet subnet.
While not mandatory for Embedded Netsock operation, the addition of such a
network master provides an excellent means of controlling, monitoring, and
administrating the embedded network. Specifically, Windows NT Server
provides such a wealth of network capabilities - right out of the box - that it is
highly recommended as the supervisory computer in a network of embedded
systems. Built-in NT Server services, like the DHCP, WINS, and DNS
servers, allow centralized, automatic management of embedded network
issues such as IP addresses and name servers.

3. Network communication between facilities and between networks, if
needed, is better performed between Windows 95/98/NT computers than
between embedded systems. With a Windows machine collecting and
managing all data within a single facility over the Ethemet link, there is an
easy way to expand to include other facilities. Merely use the built-in, larger

Micro/sys Embedded Netsock — An Introduction 15

16

scale networking of the Windows machines to network between the facilities.
And if a corporate Management Information System (MIS) network wants to
have access to a summary (or even gory details) of what is going on in the
embedded network, a Windows machine with two network adapters - one for
each network - is the ideal link. It can collect, organize, and summarize
embedded network data for the MIS network’s use.

Connectionless sockets using the UDP protocol provide excellent
embedded network capabilities. The speed, simplicity, and small code size
of UDP, coupled with the reliability due to the assumption of a common
Ethernet subnet, make this the ideal embedded network protocol. UDP
datagrams can be sent from any embedded system to any other, or to a
supervisory Windows 95/98/NT computer. If desired, a small amount of
acknowledgement code can be added to the top level application to ensure
data reception. This is no different than embedded systems communicating
over RS232 or RS485 serial links - just faster and easier. And more reliable
due to checksums performed on packets at lower protocol levels.

A client-server network model, more than a peer-to-peer model, is
applicable to most embedded networks. While Embedded Netsock
supports peer-to-peer networking (you can send a UDP packet to any host
whose IP address you know), more than likely it is less important that one
piece of machinery talk to another. Very often, though, a centrally located
supervisory computer will want to query, or poll, the various embedded
systems to receive current status, or to send updated operating parameters.
in the client-server model, this makes each embedded system a server: the
embedded servers continuously operate the machine in which they are
embedded, and respond to queries and updates they receive from the
supervisory computer, which is acting as a cliemt. Application programs

operating on such embedded servers are straightforward and easy to
implement.

Embedded web servers are not necessarily the answer to embedded
networking. We worry about a high school student in Des Moines pointing
his browser to a kidney dialysis machine at County/USC Hospital, or to a
high-speed injection-molding machine in Houston. With the ease of
development of client-server applications, thanks to TCP/IP and sockets,
custom coding on both ends of the network application is quite feasible, and
even preferred. The risks of unauthorized browser access to embedded
systems should not be ignored. In addition, when an application requires the
use of an off the shelf web browser for control, you never know how or when
periodic browser software updates may adversely affect the application.
These issues can be addressed by using these other TCF/IP technologies.

Micro/sys Embedded Netsock — An Introduction

Embedded Netsock Application Development

Embedded Netsock is pre-installed in flash memory on selected Micro/sys
embedded PCs. Included are all levels of drivers, from the Winsock AP! through
the hardware Ethernet adapter driver.

Network-based application programs can be written, and then compiled with 16-
bit Microsoft or Borland C/C++ compilers, with DOS .EXE files as the target file
type. Verified compilers include:

Borland C++ 3.1 Microsoft C/C++ 5.1
Borland C++ 4.5 Microsoft C/C++ 6.0
Borland C++ 5.0 Microsoft C/C++ 7.0

Microsoft Visual C++ 1.5

By merely including the NETSOCK H include file in your program, ali Embedded
Netsock functions are available to the application program. No libraries need to
be linked into the application.

Using the standard Micro/sys development process, an Embedded Netsock
application can be downloaded into RAM on the embedded PC through a COM
port. Borland’s Turbo Debugger can then be used to debug the program. (Some
Microsoft compilers generate less than complete debug info, and may not offer
all debug capabilities available from Borland compilers.)

Alternatively, the application can be downloaded to flash memory, and executed
automatically when the embedded PC is powered up or reset.

Micro/sys Embedded Netsock — An introduction 17

The Embedded Neisock APIs
Embedded Netsock offers two distinct APls.
The first is a subset of the Winsock API that is very close to the syntax and

operation of standard Winsock calls. This APl is ideal for programmers that have
experience in Winsock development. This APl includes:

bind() niochs(}
closesocket() recvirom()
ENgetnetconfig() sendto()
getsockopt() setsockopt()

htonl() socket()

htons() WSACieanup()
inet_addr() WSAGetLastError()
inet_ntoa() WSASetLastError()
ioctlsocket() WSAStartup()
ntohl()

Because the Winsock APl includes a number of unchanging parameters, and
requires care in handling network byte order versus host byie order, Embedded
Netsock offers a second APl. This aliemmative APl eliminates redundant
parameters, and uses only host byte order values. Functions are similar, but
simpler than standard Winsock functions.

This second Embedded Netsock API is ideal for first time network programmers
who will not be writing standard Winsock programs in addition to Embedded
Netsock programs. These programs are easier to understand when source code
is read. This alternative API includes:

ENclosesocket() ENrecvirom()
ENgetnetconfig() ENsendto()
ENgetsockopi() ENsetsockopt()
IPaddress() ENsocket()
IPstring() ENClieanup()
ENgetsockrxavail() ENStartup()

The structure of a typical Embedded Netsock application

A typical Embedded Netsock application program starts up the network then
enters a “do forever” loop wherein it handles local process or machine control
functions. At the end of the processing loop is a check to see if there are any
network messages to be handled. If so, it handles them prior to restarting the
main control locp.

18 Micro/sys Embedded Netsock — An introduction

The following program skeleton shows this structure, using the standard Winsock
API calis.

/* SRVR_PRO.C

*

* process control system using Embedded Netsock to allow supervisory
* computer to set setpoint and monitor conditions over TCP/IP link.
*

* 8/5/88

*®

/

$include <stdlib.h>
#include <conic.h>
4include <dos.h>
#include <biocs.h>
#include <stdio.h>
#include <memory.h>
#include <string.h>
#inciude <ctype.h>

tdefine NETSOCK_MASTER
#include *netsock.h"

#define PROCCNTRL_PORT 5002 // the UDP port this server will listen on
tdefine FLAGS_ZERO { // flags parameter for recvirom() and sendtol()

// local prototypes

void DelayUntilNextLoopUpdate(void);
void UpdateLoop (veoid);

int StartNetwork (void};

void HandleNetwork({void)}:

int MessageReceived (SOCKET s}

int analogrd(int chan);

void analogwr {int chan, int dta);

// glcbal variables
int setpoint, processvar;
int debug;

SOCKET msgsock:
struct sockaddr_in local, from;

Micro/sys Embedded Netsock — An Infroduction 19

int main{void)
{
int err;

setpoint = §;

processvar 0;

printf ("\n\r\n\rMicro/sys Embedded Netsock Process Controli\rin\ri\n*);
// Initialize Embedded Netsock and start the network

err = WSAStartup();
if (err == SOCKET_ERROR])
{
printf ("Errcer %d from WSAStartup{)\n\r".err);
WsaCleanup () ;
returni{-1);

}

// Create a socket to use for network communications
msgsock = socket {AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (msgsock == SOCKET_ERROR)
{
printf ("Error %d from socket{)\r\n",msgsock);
WSACleanup (};
return(-1);
H

local.sin_family = AF_INET;
local.sin_port = htons {(PROCCNTRL_PORT):

// Associate a local address to the socket
err = bind{msgsock, &local, sizecf(local));
if {(err == SOCKET_ERRCR)}
{ S
printf{*Error %d from kind{)\r\n",err);
WSACleanup () ;
return{-1j;
}

printf ("Starting server mode, UPP port %d...\r\n\r\n", PROCCNTRL_PORT}) ;

for (;;}
{
DelayUntilNextLoopUpdate () ;
UpdateLcop () ;
HandleNetwork() ;

20 Micro/sys Embedded Netsock - An Introduction

7/
I MessageReceived ()
I .
/7 check for any recevied messages from the supervisory computer,
// and return 1 if so, 0 if not.
/7
J mm e e - ——
int MessageReceived{SCCKET s)
{
unsigned long RXAvail;
// Check to see if Netsock has received a2 datagram
icctlsocket (s, FIONREAD, (unsigned long *)&RXavaill;
if (RXAvail)
return(l);
alse
return{0);
)
J J e e e — oo
//
I¥ HandleNetwork
I
I¥ check for any received messages from the supervisory computer,
/7 perform any recquested action, and return an acknowledgement
7/ message.
I
7/ It is here that a command set is defined and implemented.
I In this case, three inbound commands are handled:
I
// sp to set new setpoint value
/f DV to cause current process variable to be returned
/7 ~C to cause the program to exit
¥4
it i el

void HandleNetwork(void)
{
int fromlen,numbvtes, commanddone, err;
char datagram[80];
char command[1C];
char parameters(10];

if (MessageReceived (msgsock))

{
/* Get the datagram and process it */

fromlen = sizeof (from):
numbytes = recvfrom(msgsock, datagram, sizeof({datagram),
FLAGS_ZERO, &from, (int far *)} &fromlen):

memepy (command, datagram, 2};
command[2] = 0;

memcpy (parameters, datagram+2, 10};
commanddone = 0;

Micro/sys Embedded Netsock — An Introduction

21

22

if (stricmp{command, "sp") == 0)
{ .
sscanf (parameters, "=%d", &setpoint);
sprintf {parameters, "%s",""};
commanddone = 1;

}
/* ___ */
if (stricmp(command, "pv"} == 0)
{
sprintf {parameters, "%d",processvar);
commanddone = 1;
}
/* ___ */

// return response to host in recvirom{) 'from" structure
strepy (datagram, command): // start with command

if (commanddone)

strcat (datagram, parameters); // append valid command results
else

strecat (datagram, "?7"}); // append invalid cmd response

// Send the datagram through the socket

// to the sender of the last message

err = sendto(msgsock, datagram, strlen{datagram), FLAGS_ZERO,
&from, sizeof{from)};

if (err == SOCKET_ERROR)

printf(*sendto{) error.\r\n");
/* ___ */
if {(stricmp(command, "~C"} == {)

{

exit{(Q);

}

/* ___ */

Micro/sys Embedded Netsock — An Introduction

Embedded Netsock™

Reference Manual

Release 1.10

MICRO/SYS, INC.
3730 Park Place
Glendale, CA 91020
Phone: (818) 244-4600
FAX: (818) 244-4246
www.embeddedsys.com

DOC 1239

5/1/00

Micro/sys Technical Support

Micro/sys offers the best technical support in the business — and it's freel

Our application engineers are ready to assist you in getting your Embedded Netsock
project up and running as quickly as possible. You can contact us as follows:

Micro/sys Technical Support

Phone: (818) 244-4600

FAX: (818) 244-4246

Email: techsupport @ embeddedsys.com
Web: www.embeddedsys.com

We can also upload and download programs by modem whenever that will assist you.

Thanks for specifying Micro/sys products. We'll be glad to be a part of your team as you
use our products.

RUN.EXE, Flash Setup, and Embedded Netsock are trademarks of Micro/sys, Inc.

DOC1239
® 2000 Micro/sys, Inc.
All rights reserved.

i Embedded Netsock Reference Manual

U Table of Contents

Aboui Embedded Netsock

Configuration of Embedded PC Networking
Using Flash Setup
Using Command Line

Programming Overview

The Embedded Netsock Header File

Programming Under the Winsock API|
Structures
Global Variables
Error Returns
Standard Winsock APl Functions

Programming Under the Alternate API
Structures
Global Variables
Error Returns
Alternate APl Functions

Embedded Netsock Reference Manual

~ND W W —

w

11
12
16
17
19

49
50
51
52
53

i

Embedded Netsock Reference Manual

O About Embedded Netsock

The Embedded Netsock™ firmware system from Micro/sys provides a turnkey, built-in
TCP/IP network driver system for use with Ethernet networks.

Embedded Netsock is carefully specified to include the subset of TCP/IP that is most
applicable to embedded systems. Please refer to Embedded Netsock™ - an Overview
(Micro/sys part number DOC1238) for general information on the design of Embedded
Netsock.

The Embedded Netsock firmware system is pre-installed on a Micro/sys Embedded PC
OEM computer to create a particular product order number. For example, the
Netsock/100 product is a Micro/sys SBC1190 Embedded PC with the Embedded
Netsock firmware installed.

This document provides full documentation covering the usage of all user-cailabie

Embedded Netsock functions. It is intended for software programmers who are creating
programs to run on one of the Micro/sys Netsock products.

Embedded Netsock Reference Manual 1

Embedded Netsock Reference Manual

O Configuration of Embedded PC Networking

Depending upon the version of the Netsock computer you are using, there is one of two
ways to pass parameters such as IP address network mask to the Embedded Netsock
stack:

Method Netsock Versions See Page

Flash Setup Utility All Netsock versions 3
except Netsock/410

Command Line Parameters Netsock/410 only 6

Flash Setup Utility (all versions except Netsock/410)

Micro/sys embedded PCs include on-board Flash Setup™ utilities that can be used fo
configure the embedded PC, including some aspects of network operation. These Flash
Setup utilities are part of the BIOS Boss™ firmware that is factory-instalied.

Access to BIOS Boss, and therefore Flash Setup, is accomplished by attaching the
Micro/sys-supplied Download Cable to the COM2 serial port (or COM B on 80C188

computers). Resetting or powering up the embedded PC will cause the BIOS Boss
firmware to run.

The Flash Setup utility can be used to configure the following networking parameters:

{ ocal computer IP address

Local computer subnet mask
Local computer name

Single other important IP address

Alternatively, Flash Setup can indicate that the first two or three items above are to be |
obtained at startup from a Dynamic Host Configuration Protocol (DHCP) server
somewhere on the same Ethernet subnet.

Each time the Embedded Neisock firmware is started, it accesses the parameters set
previously in the Flash Setup screens. If any of the settings require that a remote DHCP
server be accessed, Embedded Netsock will perform DHCP initialization. Any values
requested and received from the DHCP server will override vaiues previously entered
into the Flash Setup screens. The Flash Setup values, however, will not be changed by
received DHCP values.

When the CPU card is powered up in the ‘LOAD’ mode, the firmware prompis you as to
whether or not you wish to start the BIOS Boss. Details on the initial BIOS Boss screens
are documented in the CPU card’s User's Manual. However, if the Embedded Netsock
is installed, an additional menu selection (N<e>twork setup) is added to the Flash setup
menu.

Embedded Netsock Reference Manual 3

The “N<e>twork setup” selection is used to enter the Network setup menu screen. Note
that items from the menu are selected by hitting the key corresponding to the leiter in the
brackets (e.g. To select the Ethernet /R<Q> menu selection, the letier ‘Q’ shouid be

typed).

-— Network setup menu Micro/sys, Inc.

1P address <S>ocurce: Specify an IP address
<I»P address: 192.168. 1. 50
S<urbnet mask: 255.255.255. 0

<L»ocal name source: Specify a local name

Local <N>ame: NETSO0OCK1Q0

Ethernet Address: 00-60-92-00-10-00

Ethernet base address: 300h

Ethernet IR<Q>: IRQ4

<A>dvanced network menu

The usage of each of the menu selections is as follows:

IP address <S>ource

This selection aliows you to change the source of the IP address between one of two
locations. When Obtain IP address from DHCP server is selected, there must be a
server on the network which can supply an IP address from a given pool of addresses.
DHCP (Dynamic Host Configuration Protocol) ensures that unique addresses are

supplied to each remote host on the network (assuming they ali have unique Ethernet
addresses).

When Specify an IP address is selected, two additional menu selections (</>P address
and S<u>bnet mask) are then made visible and must be filled in. The IP address is then
static rather than allocated dynamically. The network administrator is then responsible
for making sure that the IP address of each host is unigue.

<I>P address

This menu selection is only made visible when /P address <S>ource is selected and
changed to Specify an IP address. An IP address that is unique to this particular remote
host must then be entered. The four-octet address is entered in the standard IP address
format (i.e. four decimal numbers from 0 to 255, separated by periods).

S<u>bnet mask

When [P address <S>ource is set to Specify an IP address, this field is made visible
along with the </>P address field. The subnet mask is used to determine whether a
packet should be routed to a host on the same physical network, or whether it should be
routed through a gateway to a different physical network. For example, a subnet mask
of 255.255.255.0 allows for 254 hosts on a single physical network (254 instead of 256
due to the fact that the octets of 0 and 256 are reserved).

4 Embedded Netsock Reference Manual

<l >ocal name source

This field can be changed to one of two different selections. It can be set to either
Specify a local name or to Obtain a local name from DHCP server. When it is set to
Obtain a local name from DHCP server, a server on the network must be configured to
supply a unique name to each remote host.

When Specify a local name is selected, an additional field (Local <N>ame) is made
visible and must be set. The network administrator must then fili the Local <N>ame field

with a name that is unique to that remote host if a DNS or WINS type of server is being
used.

Local <N>ame

This item is only made visible when <L>ocal name source is selected and changed to
Specify a local name. It is used to descriptively identify the remote host. This name can
be retrieved by the user application.

Ethernet Address

This field is supplied for information only and cannot be changed. The Ethernet address
is of the form:

00-60-92-xx-yy-zz

where xx, yy, and zz are hexadecimal numbers assigned by Micro/sys. The first three
numbers are managed by the IEEE (Institute of Electrical and Electronics Engineers) in
an effort to ensure that all Ethernet addresses are unique. This allows any mixture of
single-board computers and desktop computers to coexist on a network without conflicts
in network access.

Ethernet base address

This field displays the base I/O port address of the Ethernet interface chip. The base
address is for information only and cannot be changed. If any other boards are plugged
into the expansion bus of the CPU card, they should be configured for addresses that
will not conflict with this address.

Ethernet IR<Q>
This menu selection aliows you to rotate the IRQ line used by the Ethernet chip through

one of four different settings. The IRQ line selected should not be shared with any other
on-board or off-board peripherals.

Embecdded Netsock Reference Manual 5

<As>dvanced network menu

Selecting this item takes you to a different screen that shows the advanced network
options.

advanced network menu — Miero/sys, Inc.
<g>ignificant other IP: 0. 6. 0. O

<S>ignificant other IP

Selecting this item from the menu allows you to enter another IP address that may be
retrieved and used within your program. Embedded Netsock makes no use of this
address.

Command Line Parameters (Netsock/410 only)

The Netsock/410 version has a different BIOS and uses a different load method than
other Netsock models.

After DOS is booted on the Netsock/410, you can load and run the ZIP.COM file transfer
utility on both the Netsock/410 and on the host development PC. First connect the
‘RUN’ end of the CA4038 cable to the COM2 port of the Netsock/410, and the far end of
the CA4038 cable to your development PC. Use the ZIP.COM menus to transfer the
specific sample application you are interested in to the C: drive on the Netsock/410.

To launch the application, reboot the Netsock/410. then log onto C: and make three
entries at the Netsock/410 command prompt. The first is to load the Intel 82559 device
packet driver with a single parameter, which is the software interrupt number to be used.
This is traditionally in the range 0x70 o Ox7F. The second is to load the Embedded
Netsock Protocol TSR. The third is to launch the sample program. For example:

C:> el00bpkt 0Ox7e <CR>
C:» netsi1l0 IP=192.168.1.41 Mask=255.255.255.0 <CR>
C:>» machine <CR>

The Embedded Netsock Protoco! TSR has a number of command line options to set P
address and subnet mask. All command line entries are case insensitive.

If a DHCP server is to be used to assign an [P and mask to the Netsock computer at
startup, use the following command line:

C:>» netsll) IP=DHECP <CR>

If there is no command line IP specified, the IP address defaults to 192.168.1.50. If
there is no command line mask specified, the mask defaults to 255.255.255.0.

b6 Embedded Netsock Reference Manual

O Programming Overview

Embedded Netsock offers a subset of a standard TCP/IP driver stack. The
programming model offered, is that of the "sockets” model created by UC Berkeley
researchers.

This document assumes that you have a basic understanding of TCP/IP and sockets.
Micro/sys document DOC1238 can be consulted for an overview of these concepts.

Each network endpoint creates a “socket" through which messages can be sent. When

created, a socket is given an access number, which is then used for all further accesses

through this socket.

~ A number of sockets can be active at any time.

Embedded Netsock offers two different Application Programming Interfaces (APls):
Standard Winsock API: a subset of the standard Winsock API used for

network programming under Windows. Programmers familiar with
Winsock can immediately write programs under Embedded Netsock.

Alternate APIl: a simplified set of functions that mirror the Winsock
functions, but that require fewer housekeeping chores, and fewer
parameters io be passed. This APl is much easier to learn, as it does not
carry any historical baggage with it.

The goals of the Alternate AP are:

1) To eliminate the cumbersome sockaddr_in and in_addr structures,
2) To eliminate host vs. network byte-ordering issues, and
3) To directly return error values instead of requiring a second cail.

The API you intend to program under needs to be indicated to the Embedded Netsock
system with a single definition prior to including the NETSOCK.H file, as shown in the
following section.

Embedded Netsock Reference Manual 7

Embedded Netsock Reference Manual

O The Embedded Netsock Header File

To use Embedded Netsock on all versions except Netsock/410, you merely need to
include the file NETSOCK.H in your program.

NETSOCK.H defines all necessary structures, creates global variables, defines error
codes, and resolves function calls.

For applications consisting of multiple source files, NETSOCK.H requires one and only
one source file to have the line:

tdefine NETSOCK_MASTER

Therefore, the following lines are needed, according to the number of source files
needing to access Embedded Netsock functions:

Applications with a Single Source File:

#define NETSOCK_MASTER
#include "netsock.h"

Applications with Multiple Source Files:

One selected source file: All other source files:

#define NETSOCK_MASTER #include "netsock.h"
#include "netsock.h'

In addition, you can tell NETSOCK.H which of the two programming APIls you intend to
use. For the standard Winsock AP1 (the defauit), you do not have to do anything.

To use the Aliernate API, you must define the constant ALTERNATE_API before
including the NETSOCK_H file, as follows:

#define NETSOCK_MASTER
#define ALTERNATE_APIT
#include "netsock.h”

The two APl1s should not be mixed in the same program.

Embedded Netsock Reference Manual G

10

Embedded Netsock Reference Manual

O Programming Under the Winsock API

The Winsock API uses a well-known model to create networked applications.
First, a call to socket{} creates a socket of a particular type.

Next, a call to bind() associates a local port number to the newly created socket.
Calls to setsockopt()} can be made to modify the attributes of the socket.

To send a message to a remote computer, a sockaddr in structure is built. This
structure holds the IP address and destination port number that the message wilt be sent
to. Then a call to sendto() causes the message to be sent.

A receive buffer can be established and passed in a call to recvfrom(). This function will
then return any messages received by this computer that indicates a destination port
number matching the local port number specified in the previous bind(} call. In this way,
a number of processes can be "waiting" or “listening" on a number of different port
numbers, and respond accordingly. A sockaddr_in structure will be returned by
recvfrom() indicating the sender of the message. This structure can be turned around
and used in a sendto() cal! to reply.

The receive status of a socket can be checked with a call io ioctlsocket(). This will
return the number of bytes currently received, but unread, in the socket's receive buffer.

A number of other Winsock API functions exist to assist in conversions and other
functions.

Embedded Netsock Reference Manual i1

Structures

IP Addresses (in_addr)

An IP address is a 32-bit unsigned integer. For historical and flexibility reasons, this 32-
bit integer is held in a struciure, the in_addr (or internet address) structure. As
complicated as this structure looks, it is only a 32-bit unsigned integer.

This classic definition of an IP address overlays three definitions of the 32-bit unsigned
integer - four bytes, two words, or a single long. The IP address is always a 32-bit
unsigned integer, but the in_addr structure allows any component of it to be accessed
randomiy.

The in_addr structure goes a long way in making TCP/IP programs difficult to read.
Remember, it’s just a 32-bit unsigned integer.

The IP address stored in an in_addr structure must be in network order, that is, high-
order bytes stored before low-order bytes. If the value to assign to the in_addr structure
is a value returned from a call to inet_addr(), it will already be in network byte order. if it
is to be assigned to a 32-bit value that is in host byte order, a call to htonl() will be
required to reverse the byte order.

// Standardized 32-bit IP address structure
// Confusing because of ability to access as bytes, words, or long
styuct in_addr {

union {
struer { unsigned char s_bl, =_b2, s_b3, s_b4; } S_un b; // byvte access
struct { unsigned short s_wl, s_w2; } S_un_w; // word access
unsigned long $_addr; // long access
} s_ung;
}:
#define s_addr S_un.S_addr // nickname for accessing in_addr as long

12 Embedded Netsock Reference Manual

Socket Addresses or Names (sockaddr_in)

Under the Winsock model, each ‘endpoint of a network connection is a socket. There
are two components to a TCP/IP endpoint - the IP address of a computer, and the
transport layer “port” number that routes inbound messages to the correct application or
subfunction within that computer.

The sockaddr in structure is a 16-byte structure for compatibility with other protocol
families. The generic structure is called sockaddr, with sockaddr_in denoting an
Internet, or TCP/IP, socket address. Much Winsock literature calls the sockaddr_in
structure the “name” of the sccket.

Note that the 1P address field sin_addr is the standard 32-bit in_addr structure
described above, and is therefore in network byte order. The sin_port field must be set
by the programmer to the desired port number. If set from a literal value, the htons()

function must be used to convert the port number from host byte order to network byte
order.

// standardized structure for specifying socket address (name} under TCP/IP
struct sockaddr_in {

short sin_familyv; // address family (i.e. AF_INET)
unsigned short sin_port; // transport layer port in netwerk order
struct in_addr sin_addr; // 32-bit IP address structure {(above)
char sin_zerol(8]; /7 filler

Embedded Netsock Reference Manual 13

WSAData returned from WSAStartup()

The WSAStartup() function returns a structure describing the Winsock system currently
running.

// standard structure for detailled information regarding the Winsock implementation
typedef struct {

tnsigned int wversion;
unsigned int wHighVersion;
char szDescription [WSADESCRIPTION_LEN+1];
char szSystemStatus [WSASYSSTATUS_LEN+1];
unsigned short iMaxSockets;
unsigned short iMaxUdpDg:
char far * lpVendorinfoe;
} WSAbData;
wVersion

The version of Winsock API that the caller is expected to use. This will be 0x0101,
indicating Winsock API version 1.1.

wHighVersion
This will be the same as wVersion, 0x0101.

szDescription

A null-terminated ASCII string into which Embedded Netsock copies a description of the
Embedded Netsock implementation. The text may contain any characters except control
and formatting characters, and will indicate “Embedded Netsock” and the running
version of Embedded Netsock.

szSystemStatus
A nuli-terminated ASCIHl string into which Embedded Netsock copies relevant status or
configuration information. Typically, the string “Running” is returned.

iMaxSockets
The maximum number of sockets that can be supported by Embedded Netsock.

iMaxUdpDg
Maximum size that can be sent as a UDP datagram. getsockopt() can also be used to
retrieve this value, as option SO_MAX_MSG_SIZE, after a socket has been created.

IpVendorinfo

Pointer to an byte value representing the Embedded Netsock version. This is the same
version number expressed in ASCIl in the szDescription field. The high-order byte
specifies the minor version (revision) number; the low-order byte specifies the major
version number.

14 Embedded Netsock Reference Manual

Network Configuration

The NetsockConfig structure is filled in by Embedded Netsock in response 1o a call to
the ENgetnetconfig() function. This structure defines the operating parameters that
Embedded Netsock is currently operating with.

The structure is initially set to the values entered into the Flash Setup system of the
embedded PC. If DHCP is not used at run-time, these values will be unchanged.
However, if DHCP is used to obtain any network parameters at run-time, this structure
will be updated with the parameters obtained from the DHCP server, whose IP address
will be placed in the DHCPServeriP field.

Note that many of the fields are reserved for future use, and are not applicable to the
current release of Embedded Neisock.

Also note that on Netsock/410 only, the only valid fields returned are |Paddr and
Netmask.

struct NetsockConfig {
unsigned char DHCPGetIP_mask_gate;
unsigned char IPAddAr4]:
unsigned char NetMaski4l;
unsigned char reservedl[4]:
char LocalName([40]:
char reservedz[40];

unsigned int AdaptorIQPort;
unsigned char AdaptorIRQnum;
unsigned char AdaptorEtheraddrisé];

unsigned char NumSockets;
unsigned char reserveds;
unsigned char SignificantOtherIP[4]:
unsigned char DHCPGetLocalName;
unsigned char reservedd;
unsigned char reserved3;
unsigned char DHCPServerIP[4]:
unsigned char reserveds(4l:
unsigned char reserved7[4]:
unsigned char reserveds;
unsigned char reservedd;

i

Embedded Netsock Reference Manual 15

Global Variables

Embedded Netsock uses approximately 96k of system RAM for code, working variables,
and network buffers. This memory is obtained from the run-time system through the use
of a_dos_allocmem() call. This memory is outside of the memory being used by your
.EXE application program. Note that this places restrictions on the size of .EXE files that
will run under Embedded Netsock. You must have at least 96k more system RAM than
the size of the .EXE application program.

The Embedded Netsock system is initialized in RAM by either the Winsock API
WSAStartup() function, or by the Alternate APl ENStartup() function. During this
initialization process, four global variables are set. These variables are as follows:

unsigned int EmbeddedNetsockBaseSegment;
unsigned int EmbeddedNetsockSize;
unsigned int EmbeddedNetsockConfigSize;
unsigned int EmbeddedNetsockVersion;
unsigned int EmbeddedNetsockLoadError;

EmbeddedNetsockBaseSegment is the segment address in system memory where
the Embedded Netsock software resides. Embedded Netsock uses approximately 96k
of RAM from this point. Any call from the application .EXE file to _dos_allocmem() will
return system memory above Embedded Netsock, up to the maximum physical RAM
installed in the lower 640K address space.

EmbeddedNetsockSize is the size in bytes of the loaded Embedded Netsock system.

EmbeddedNetsockConfigSize is the size in bytes of the internal Flash Setup network
configuration data area. This is not normally accessible to application programs. Use
the ENgetnetconfig() function in application programs to get the current configuration of
the Embedded Netsock system.

EmbeddedNetsockVersion is the version number of the Embedded Netsock system
currently loaded. [f version-dependent code is inciuded in application programs, this
global variable can be checked for verification that the required version level is in
memory and initialized. The lower byte is the MAJOR version number; the higher byte is
the MINOR version number. This value will change with each release of Embedded
Netsock.

EmbeddedNetsocklLoadError is the error value that is set during a call to

WSAStartup(). This variable should be checked after WSAStartup() to ensure that
Embedded Netsock is available and running.

16 Embedded Netsock Reference Manual

Error Returns

Socket creation and use errors

INVALID_SOCKET (SOCKET)(~0)
SOCKET_ERROR (-1)

Error codes returned by WSAGetLastError()

WSAEACCES 10013
WSAEFAULT 10014
WSAEINVAL 10022
WSAEMFILE 10024
WSAENOTSOCK 10038
WSAEDESTADDRREQ 10039
WSAEMSGSIZE 10040
WSAEPROTOTYPE 10041
WSAENOPROTOOPT 10042
WSAEPROTONOSUPPORT 10043
WSAEAFNOSUPPORT 10047
WSAENOBUFS 10055
WSAETIMEDOUT 10060
WSAEHOSTUNREACH 10065
WSASYSNOTREADY 10091
WSAVERNOTSUPPORTED 10092

WSANOTINITIALISED 10093

Embedded Netsock Reference Manual

18

Embedded Netsock Reference Manual

Standard Winsock APl Functions

The following pages list full descriptions for the functions that may be used when
programming under the Standard Winsock API. If programming under the Alternate API,
please refer 1o the section on Alternate AP1 functions.

Embedded Netsock Reference Manual 19

bind()

The bind() function associates a local address with a socket. By convention, the local
address is referred to as a name.

int bind (

SOCKET s,

const struct sockaddr_in FAR* name,
int namelen

);
Parameters

s
[in] A descriptor identifying an unbound socket.

name
[in] The address to assign to the socket, stored in a sockaddr_in structure.

namelen
[in} The length of the name.

Remarks

Each socket must have four items defined in order to be used for end-to-end
communication: 1) the local IP address, 2) a local port number to be used by the
application using this socket, 3) the remote host's IP address, and 4) the remote host
application's port number.

bind() is used to associate a local port number to the specified socket (the locai IP
address is already known by the TCP/IP system).

The bind() function is used on a socket before subsequent calls to the sendto() or
recvirom() functions. When a socket is created with a call to the socket() function, it
has no local port number assigned to it. Use bind() to establish the local association of
the socket by assigning a local name to an unnamed socket.

A name consists of three parts under TCP/IP: the address family, a host IP address,
and a port number that identifies the application. The first two bytes in this block
(corresponding to the sa_family member of the sockaddr_in structure) must contain the
address family that was used to create the socket, in the case of Embedded Netsock,
AF_INET. Otherwise, the error WSAEFAULT will occur.

Return Values

If no error occurs, bind() returns zero. Otherwise, it returns SOCKET_ERROR, and a
specific error code can be reirieved by calling WSAGetLastError().

20 Embedded Netsock Reference Manual

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this

function.

WSAEFAULT The namelen parameter is too smail or the sin_family field of
the specified name is not AF_INET.

WSAENOTSOCK The descriptor is not a socket.

See Also

socket(), WSAGetLastError()

Embedded Netsock Reference Manual 21

closesocket()

The closesocket() function closes an existing socket.

int closesocket (
SOCKET s

);
Parameters

s
[in] A descriptor identifying a socket to close.

Remarks

The closesocket() function closes a socket. Use it to release the socket descriptor s s0
further references to s will fail with the error WSAENOTSOCK. The associated naming
information and queued data are discarded.

An application should always have a matching call to closesocket() for each successful
call to socket() to return any socket resources to the system.

Return Values

If no error occurs, closesocket() returns zero. Otherwise, a value of SOCKET __ERROR
is returned, and a specific error code can be retrieved by calling WSAGetLastError().

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this
function.
WSAENOTSOCK The descriptor is not a socket.

See Also

ioctisocket(), setsockopt(), socket()

22 Embedded Netsock Reference Manual

ENgetnetconfig()

The ENgetnetconfig() function retrieves the structure detailing the current configuration
of Embedded Netsock.

int ENgetnetconfig (
struct NetsockConfig * ¢fg,

int length
);

Parameters

cfg
[in] A far pointer to an area of user memory to hold the configuration data.

length
[in] The size in bytes of the user memory area.

Remarks

The ENgetnetconfig() function causes Embedded Netsock to write current configuration
data 1o the user's buffer. If the length of the user buffer is smaller than the size of the
NetsockConfig structure being returned, /ength bytes will be copied to the user area,
and an error will be returned.

Return Values

If no error occurs, ENgetnetconfig() returns zero. Otherwise, a specific error code is
returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful WSAStartup() must occur before using this
function.

ENE_BUFFERSOOSMALL The flengith was not large enough to hold the entire
structure.

See Also

WSAStartup()

Embedded Netsock Reference Manual 23

getsockopt()

The getsockopt() function retrieves the specified socket option.

int getsockopt (
SOCKET s,

int level,

int optname,
char FAR* opival,
int FAR* optlen

);
Parameters

s
[in] A descriptor identifying a socket.

level

[in] The level at which the option is defined. Under Embedded Netsock, the only
supporied level is SOL_SOCKET.

optname
[in] The socket option for which the value is to be retrieved.

optval
[out] A pointer to the buffer in which the value for the requested option is to be returned.

optlen
[infout] A pointer to the size of the opival buffer.

Remarks

The getsockopt() function retrieves the current value for a socket option associated with
a socket of any type, in any state, and stores the result in opival. Options affect socket
operations, such as the timeouts and debug status.

Under Embedded Netsock, options are only present at the uppermost "socket” level,
requiring the level parameter to be SOL_SOCKET.

The value associated with the selected option is retumed in the buffer optval. The
integer pointed to by optlen should originally contain the size of this buffer; on return, it
will be set to the size of the value retumned. For most options, it will be the size of an
integer.

The application is responsible for allocating any memory space pointed 0 directly or
indirectly by any of the parameters it specifies.

24 Embedded Netsock Reference Manual

lf the option was never set with setsockopt(), then getsockopt() returns the default
value for the option.

Embedded Netsock supports the following options for getsockopt(). The Type column
identifies the type of data addressed by optval.

Value Type Meaning

SO_BROADCAST BOOL Socket is configured for the transmission of
broadcast messages.

SO_DEBUG BOOL Debugging is enabled.

SO_MAX_MSG_SIZE unsigned int Maximum size of a message for
SOCK_DGRAM sockets.

SO_RCVTIMEO int Receive time-out

SO_SNDTIMEO int Send time-out

Calling getsockopt() with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from WSAGetLastError().

SO_BROADCAST
A broadcast message can be sent through this socket. Defauit is off (0).

SO_DEBUG

Embedded Netsock will supply output debug information if the SO_DEBUG option is set
by an application. Default is off (0).

SO_RCVTIMEO
The number of milliseconds the recvirom() function will wait for a message from the
specified remote host. A value of 0 indicates wait forever; this is the default value.

SO_SNDTIMEO

The number of milliseconds the sendto(} function will attempt to send a message to the
specified remote host. A value of O indicates try forever; this is the default value.
Timeouts may be caused by a number of underlying network issues, such as IP-to-
Ethernet address resolution failure, ete. it is important to note that with SOCK_DGRAM
type sockets using UDP protocol, there is no expected response from the remote host.
A timeout on a sendto() call indicates that the message could not be sent out from the
local system.

SO_MAX_MSG_SIZE

The maximum size (in bytes) of a datagram message that is allowed by Embedded
Netsock.

Return Values

If no error occurs, getsockopt() returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLastError().

Embedded Netsock Reference Manual 25

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this

function.

WSAEFAULT One of the opival or the optlen parameters is not valid, or the
optlen parameter is too small.

WSAEINVAL The level parameter is invalid.

WSAENOTSOCK The descriptor is not a socket.

See Also

setsockopt(), socket(), WSAGetLastError()

26 Embedded Netsack Reference Manual

htonl()

The htonl() function converts a u_long (32-bit unsigned integer) from host to TCP/IP
network byte order.

u_long hton! (

u_long hostlong

);
Parameters

hostiong
[in] A 32-bit number in host byte order, that is, low byte fo high byte storage in memory.

Remarks

The htonl(} function takes a 32-bit number in host byte order and returmns a 32-bit
number in the network byte order used in TCP/IP networks.

Return Values

The htonl({) function returns the value in TCP/IP's network byte order.

The host order value 0xCOA80121 will be returned as network order 0x2101A8CO.

See Also

htons(), ntohk)}, ntohs()

Embedded Netsock Reference Manual 27

htons()

The htons() function converts a u_short (16-bit unsigned integer) from host to TCP/IP
network byte order.

u_short htons (
u_short hostshort

);
Parameters

hostshort
[in] A 16-bit number in host byte order, that is, low byte to high byte storage in memory

Remarks

The htons() function takes a 16-bit number in host byte order and returns a 16-bit
number in network byte order used in TCP/IP networks.

Return Values

The htons() function returns the value in TCP/IP network byte order.

The host order value 0x5001 will be returned as network order 0x0150.

See Also

htoni(), ntohl(), ntohs()

28 Embedded Netsock Reference Manual

inet_addr()

The inet_addr() function converts a string containing an IP "dotted decimal” address into
a proper address for an in_addr structure, which is network byte ordering.

unsigned long inet_addr (
const char FAR * cp

Y
Parameters

cp
[in] A null-terminated character string representing a number expressed in the IP
standard "dotted decimal® notation (i.e. "192.168.1.39").

Remarks

The inet_addr() function interprets the character string specified by the ¢p parameter.
This string represents a numeric IP address expressed in the standard "dotted decimal”
notation. The value returned is in TCP/IP’s network order, and is therefore suitable for
use as an |P address to be assigned to a socket address structure.

Values specified using the “dotted decimal” notation take the form:

a.b.c.d

Each part is interpreted as a byte of data and assigned, from left to right, to the four
bytes of an IP address. When an IP address is viewed as a 32-bit integer quantity on
the PC architecture, the bytes referred to above appear as "d.c.b.a”. That is, the bytes
on an Intel processor are ordered from right to left because low-order bytes are stored in
memory before high-order bytes. ‘

Return Values

If no error occurs, inet_addr() returns an unsigned long value containing a suitable
binary representation of the IP address given. If the string in the cp parameter does not
contain a legitimate IP address {(e.g. if a portion of an "a.b.c.d” address exceeds 255),
inet_addr() returns the value INADDR_NONE.

The inet_addr() function returns an unsigned long value in TCF/iP's network order. For
display within a PC architecture, a call to ntohl{) will be needed to reverse the byle
order.

See Also

inet_ntoa(), ntohl()

Embedded Netsock Reference Manual 29

inet_ntoa()

The inet_ntoa() function converts a network address into a string in IP standard dotted
decimal format.

char FAR * inet_ntoa (
struct in_addr in

);

Parameters

in
fin] A in_addr structure that represents a TCP/IP host address.

Remarks

The inet_ntoa() function takes a TCP/IP address structure specified by the in parameter

and returns an ASCI! string representing the address in "dotted decimal” notation as in
"a.b.cd".

The string returned by inet_ntoa() resides in memory that is allocated by Embedded
Netsock. The application should not make any assumptions about the way in which the
memory is allocated. The data is guaranteed to be vaiid untii the next Embedded
Netsock function call, but no longer. Therefore, the data should be copied to local
application memory before another Embedded Netsock call is made.

Return Values

If no error occurs, inet_ntoa() retums a char pointer to a static buffer containing the IP
address in standard "dotted decimal” notation. Otherwise, it returns NULL.

See Aiso

inet_addr()

30 Embedded Netsock Reference Manual

ioctisocket()

The ioctlsocket() function provides additional information about a socket.

int ioctlsocket (
SOCKET s,

long cmd,

u_long FAR* argp
)2

Parameters

s
fin] A descriptor identifying a socket.

cmd
[in] The command to perform on the socket s. Must be FIONREAD.

argp
[infout] A pointer to a parameter for cmd.

Remarks

The ioctlsocket() function can be used to determine how many bytes of received data
are available at a specific socket. Use to determine the amount of data pending in the
network's input buffer that can be read from socket s. The argp parameter points to an
unsigned long value in which ioctlsocket() stores the result. For type SOCK_DGRAM
sockets, FIONREAD returns the size of the first datagram queued on the socket.

Return Values

Upon successful completion, the ioctisockel() returns zero. Otherwise, a value of

SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError().

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this

function.
WSAENOTSOCK The descriptor s is not a socket.
WSAEINVAL The cmd parameter is not valid.

See Also

getsockopt(), setsockopt(), socket()

Embedded Netsock Reference Manual . 31

ntohl()

The ntohl() function converts a u_long (32-bit unsigned integer) from TCP/IP network
order to host byte order.

u_long ntohl (
u_long netiong

%
Parameters

netlong
[in] A 32-bit number in TCP/IP network byte order, that is, high byte to low byte storage
in memory.

Remarks

The ntohl{) function takes a 32-bit number in TCP/IP network byte order and returns a
32-bit number in host byte order.

Return Values

The ntohl{) function returns a 32-bit value in host byte order.

The network order value 0x2101A8CO will be returned as host order OxXCOA80121.

See Also

htonl(), htons(), ntohs()

32 Embedded Netsock Reference Manual

ntohs()

The ntohs() function converts a u_short (16-bit unsigned integer) from TCP/IP network
byte order to host byte order.

u_short ntohs (
u_short netshort

)
Parameters

netshort

[in] A 16-bit number in TCP/IP network byte order, that is, high byte to low byte storage
in memory.

Remarks

The ntohs() function takes a 16-bit number in TCP/IP network byte order and retumns a
16-bit number in host byte order.

Return Values

The ntohs() function returns a 16-bit value in host byte order.

The network order value 0x0150 will be returned as host order 0x5001.

See Also

htonl{), hions(), _ntohl()

Embedded Netsock Reference Manual 33

recvirom()

The recvirom() function receives a datagram and stores the source iP address and port
from which the datagram was sent.

int recvirom (

SOCKET s,

char FAR* buf,

int fen,

int flags,

struct sockaddr_in FAR* from,
int FAR* fromlen

);
Parameters

s
[in] A descriptor identifying a bound socket.

buf
fout] A buffer for the incoming data.

len
[in] The length of buf.

flags
[in] Included for completeness, must be 0.

from
[out] A pointer to a buffer that will hold the source address upon return.

fromlen
[infout] A pointer to the size of the from buifer.

Remarks

The recvirom() function is used to read incoming data on a socket, and to capture the
address from which the data was sent.

For SOCK_DGRAM sockets, data is extracted from the first enqueued message, up to
the size of the buffer supplied. If the datagram or message is larger than the buffer
supplied, the buffer is filled with the first part of the datagram, and recvfrom() generates
the error WSAEMSGSIZE. With the UDP protocol (SOCK_DGRAM sockets), the
excess data is lost.

The from parameter will be set to the network address of the remote host that sent the
data. The from parameter should point to a sockaddr_in structure. The value pointed

34 Embedded Netsock Reference Manual

to by fromlen is initialized by the caller to the size of this structure and is modified, on
return, to indicate the actual size of the address stored in the sockaddr_in structure.

if no incoming data is available at the socket, the recvirom() function waits for data to
arrive. If the SO_RCVTIMEQ option has been set with setsockopt(), the recvirom()
function will return with an error condition if no message is received within the timeout
specified.

The flags parameter is included only for compatibility. 1t must be set to 0, as Embedded
Netsock does not support any flags. NETSOCK.H defines the FLAGS_ZERO constant
that can be used, if desired.

Return Values

If no error oceurs, recvirom() returns the number of bytes received. Otherwise, a value
of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
WSAGetLastError().

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this

function.

WSAEFAULT The fromlen parameter is too small to accommodate the from
address or the from parameter was not specified.

WSAEINVAL The socket has not been bound with bind(), or a non-zero flag
was specified.

WSAENOTSOCK The descriptor is not a socket.

WSAEMSGSIZE The message was too large to fit into the specified buffer and
was truncated.

WSAETIMEDOUT A message was not received within the time set by an earlier

call to setsockopt() with the SO_RCVTIMEQ option name.

See Also

socket(), sendto(}, setsockopt()

Embedded Netsock Reference Manuai 35

sendto()

The sendto{) function sends datarto a specific destination host IP address and pori.

int sendito (

SOCKET s,

const char FAR * buf,

int /en,

int flags,

const struct sockaddr_in FAR * io,
int tolen

);
Parameters

s
[in] A descriptor identifying a socket.

buf
[in] A buffer containing the data to be transmitted.

len
[in] The length of the data in buf.

flags
[in] Included for completeness, must be 0.

to
[in] A pointer to the address of the target socket.

tolen
[in] The size of the address in fo.

Remarks

The sendto() function is used to write outgoing data through a socket. For
SOCK_DGRAM sockets, care must be taken not to exceed the maximum packet size of
the underlying network, which can be obtained by using to retrieve the value of socket
option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the
underlying protocol, the error WSAEMSGSIZE is returned and no data is transmitted.

The to parameter can be any valid IP address and port, including a broadcast address.
To send to a broadcast address, an application must have used setsockopt() with
SO_BROADCAST enabled. Otherwise, sendto() will fail with the error code
WSAEACCES.

36 Embedded Netsock Reference Manual

The successful completion of a sendto() does not indicate that the data was

successfully delivered. 1t merely indicates that the message was sent out on the
physical medium.

The sendto() function is used to send a datagram to a specific peer socket on a remote
computer identified by the to parameter. The fo parameter is required.

To send a broadcast on a SOCK_DGRAM type socket, the address in the fo parameter
should be constructed using the special IP address INADDR_BROADCAST, together
with the intended port number. It is generally inadvisable for a broadcast datagram to
exceed the size at which fragmentation can occur, which implies that the data portion of
the datagram should not exceed 512 bytes.

Calling sendto(} with a fen of zero is permissible and will return zero as a valid value.
For SOCK_DGRAM type sockets, a zero-length UDP datagram is sent.

The flags parameter is only included for compatibility. It must be set to 0, as Embedded
Netsock does not support any flags.

Return Values

If no error occurs, sendto() returns the total number of bytes sent, which can be less
than the number indicated by fen. Otherwise, a value of SOCKET_ERROR is returmned,
and a specific error code can be retrieved by calling WSAGetLastError().

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this

function.

WSAEACCES The requested address is a broadcast address, but the
SO_BROADCAST option was not set in an earlier cail to
setsockopt() . ‘

WSAEINVAL A non-zero flag was specified.

WSAEFAULT The folen parameter is too small.

WSAENOTSOCK The descriptor is not a socket.

WSAEMSGSIZE The socket is SOCK_DGRAM type, and the message is larger

than the maximum supported by Embedded Netsock.
WSAEDESTADDRREQ A destination address is required in a fo parameter.
WSAETIMEDOUT The message could not be sent within the time set by an
earlier call o setsockopt() with the SO_SNDTIMEQO option
name.
WSAEHOSTUNREACH The remote host cannot be reached from this host at this time.

See Also

recvirom(), socket(), setsockopt()

Embedded Netsock Reference Manual 37

setsockopti()

The setsockopt() function sets a socket option.

int setsockopt (
SOCKET s,

int fevel,

int optname,

const char FAR * opival,
int optlen

);
Parameters

s
[in] A descriptor identifying a socket.

level

[in] The level at which the option is defined. Must be SOL_SOCKET for Embedded
Netsock.

optname
[in] The socket option for which the value is to be set.

optval
[in] A pointer to the buffer in which the value for the requested option is supplied.

optlen
[in] The size of the optval buffer in bytes.

Remarks

The setsockopt() function sets the current value for a socket option associated with a
socket. Options affect socket operations, such as whether broadcast messages can be
sent on the socket, or how long to wait before timing out on a sendto() or recvirom().

There are two types of socket options: Boolean options that enable or disable a feature
or behavior, and options that require an integer value or structure. To enable a Boolean
option, optval points to a nonzero integer. To disable the option optval points to an
integer equal to zero.

The optlen parameter should be equal to sizeof(int) for Boolean options. For other

options, optval points to an integer or structure that contains the desired value for the
option, and optlen is the length of the integer or structure.

38 Embedded Netsock Reference Manual

The following options are supported by Embedded Netsock for setsockopi(). The Type
column identifies the type of data addressed by optval.

Value Type | Meaning

SO_BROADCAST BOOL Allow transmission of broadcast messages on the
socket.

SO_DEBUG BOOL Record debugging information.

SO_RCVTIMEO int recvirom() time-out

SO_SNDTIMEO int sendto() time-out

SO_BROADCAST
A broadcast message can be sent through this socket. Default is off (0).

SO_DEBUG

Embedded Netsock will supply output debug information if the SO_DEBUG option is set
by an application. Default is off (0).

SO_RCVTIMEO
The number of milliseconds the recvfrom() function will wait for a message from the
specified remote host. A value of 0 indicates wait forever; this is the default value. ifa

value greater than O but less then 500 is specified, the value will be saved but the
effective timecut will be 500 ms.

SO_SNDTIMEO
The number of milliseconds the sendto() function will attempt to send a message to the
specified remote host. A value of 0 indicates try forever; this is the default value. If a

value greater than O but less then 500 is specified, the value will be saved but the
effective timeout will be 500 ms.

Timeouts may be caused by a number of underlying network issues, such as IP-to-
Ethernet address resoiution failure, etc. 1t is important to note that with SOCK_DGRAM
type sockets using UDP protocol, there is no expected response from the remote hosi.
A timeout on a sendto() call indicates that the message could not be sent out from the
local system.

Return Values

if no error occurs, setsockopt() returns zero. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code can be retrieved by calling WSAGetLasiError().

Ernbedded Netsock Reference Manual 39

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this o

function.

WSAEFAULT The optlen parameter is incorrect.

WSAEINVAL level is not SO_SOCKET, or the information in opitval is not
valid.

WSAENOPROTOOPT The option is unknown or unsupported.

WSAENOTSOCK The descriptor is not a socket.

See Also

bind(}, getsockopi(}, socket()

40 Embedded Netsock Reference Manual

socket()

The socket() function creates a socket that is set to a specific address family and
protocol.

SOCKET socket (
int af,

int type,

int profocol

);
Parameters

af
fin} An address family specification.

type
[in] A type specification for the new socket.

protocol

[in] A particular protocol to be used with the socket that is specific to the indicated
address family.

Remarks

The socket() function causes a socket descriptor and any related resources to be
allocated and bound to a specific low-leve! protocol.

The af parameter is the addressing family to use. Embedded Netsock only supports the
TCP/IP address family, so the af parameter must be AF_INET.

The fype parameter is the type of socket fo create. Embedded Netsock supports two
types:

Type Explanation

SOCK_DGRAM Supports datagrams, which are connectionless buffers of a fixed
maximum length. Embedded Netsock uses UDP as the protocol
for this type of socket.

SOCK_RAW Supports low-level protocols. Embedded Netsock uses ICMP as
the protocol for this type of socket.

SOCK_DGRAM sockets allow sending and receiving of datagrams to and from arbitrary
remote hosts using sendto{} and recvirom(}.

SOCK_RAW sockets allow the programmer to use ICMP protocols, which can be used

for troubleshooting (i.e. echo/ping), and various network routing and error reporting
systems.

Embedded Netsock Reference Manual 4]

Return Values

if no error occurs, socket() returns a descriptor referencing the new socket. Otherwise, a
vaiue of INVALID_SOCKET is returned, and a specific error code can be retrieved by
calling WSAGetLastError().

Error Codes

WSANOTINITIALISED A successful WSAStartup() must oceur before using this
function.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

WSAEPROTOTYPE The specified protocol is the wrong type for this socket.

See Also

bind(), getsockopt(), recvirom(), sendto(), setsockopt()

42 Embedded Netsock Reference Manuai

WSACIleanup()

The WSACIeanup() function terminates use of the Embedded Netsock TCP/IP stack.

int WSACIleanup (void);

Remarks

An application is required to perform a successful WSAStartup(} call before it can use
Embedded Netsock services. When it has completed the use of Embedded Netsock,
the application may call WSACIleanup() to free any resources allocated on behalf of the
application.

Any sockets open when WSACleanup() is called are reset and automatically
deallocated.

Return Values

The return value is zero if the operation was successful. Otherwise, the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLasiError().

Error Codes

WSANOTINITIALISED A successful WSAStartup() must occur before using this
function.

See Also

WSAStartup()

Embedded Netsock Reference Manual 43

WSAGetLastError()

The WSAGetLastError{) function gets the error status for the last operation that failed.

int WSAGetLastError {void);

Remarks

This function returns the last network error that occurred. When a particular Embedded
Netsock function indicates that an- error has occurred, this function should be called to
retrieve the appropriate error code.

A successful function call, or a call to WSAGetLastError(), does not reset the error

code. To reset the error code, use the WSASetLastError() function call with iError set
to zero.

Return Values

The return value indicates the error code for the last Embedded Netsock operation that

failed. See the Error Code section for a description of the errors returned by
WSAGetLastError().

See Also

WSASetLastError()

44 Embedded Netsock Reference Manual

WSASetLastError()

The WSASetLastError() function sets the error code that can be retrieved through the
WSAGetLastError() function.

void WSASetLastError (
int iError

)=

Parameters

iError
[in] Specifies the error code to be returned by a subsequent WSAGetLastError() call.

Remarks

This function allows an application to set the error code to be returned by a subsequent
WSAGetLastError() call. Note that any subsequent Embedded Netsock routine calied
by the application will override the error code as set by this routine.

Return Values

None

Error Codes

None

See Also

WSAGetLastError()

Embedded Netsock Reference Manual 45

WSAStartup()

The WSAStartup() function initiates use of the Embedded Netsock TCP/IP stack, and
starts all underlying network layers.

int WSAStartup (
WORD wVersionRequested,
LPWSADATA ipWSAData

)
Parameters

wVersionRequested

[in] The version of the Winsock API that the Embedded Netsock programmer wants {o
program to.

IpWSAData

[out] A pointer to the WSAData data structure that is to receive details of the Embedded
Netsock support available.

Remarks

This function must be the first Embedded Netsock function called by an application. It
allows an application to start up Embedded Netsock, and to retrieve details of the
Embedded Netsock support available. The application may only call other Embedded
Netsock functions after a successiul WSAStartup() call.

Embedded Netsock supports Winsock APl version 1.1. Therefore, the
wVersionRequested parameter must be set to 0x0101.

The Embedded Netsock revision level, which is different from the Winsock API version,
is available in global variable EmbeddedNetsockVersion. This variable is valid after a
call to WSAStartup().

The following code fragment demonstrates how an application makes a WSAStartup()
call:

WORD wVersionReguested;
WSADATA wsalData;
int err;

wVersionRequested = 0x0101;
err = WSAStartup () { wVersionRequested, &wsaData);

if (err i= 0)
{ handle error }

Once an application has made a successful WSAStartup() call, it may proceed to make
other Embedded Netsock calls as needed.

A4 Embedded Netsock Reference Manual

When it has finished using the services of Embedded Netsock, the application can call
WSACleanup() in order to allow Embedded Netsock to iree any resources for the
application.

Details of the actual Embedded Netsock capabilities are described in the returned
WSAData structure, defined as follows:

struct WSaData {

WORD wVersion;

WORD wHighVersion;

char szDescription [WSADESCRIPTION_LEN+1];
char szSystemStatus [WSASYSSTATUS_LEN+1];

unsigned short iMaxSockets;

unsigned short iMaxUdpDg;

char FAR * lpVendorInfo;
i

The members of this structure are:

wVersion

The version of Winsock API that the caller is expected to use. This will be 0x0101,
indicating Winsock API version 1.1.

wHighVersion
This will be the same as wVersion, 0x0101.

szDescription
A null-terminated ASCIl string into which Embedded Netsock copies a description of the
Embedded Netsock implementation. The text may contain any characters except control

and formatting characters, and will indicate “Embedded Netsock” and the running
version of Embedded Netsock.

szSystemStatus

A null-terminated ASCII string into which Embedded Netsock copies relevant status or
configuration information. Typically, the string “Running” is returned.

iMaxSockets
The maximum number of sockets that can be supporied by Embedded Netsock.

iMaxUdpDg
Maximurm size that can be sent as a UDP datagram. getsockopt() can also be used to
retrieve this vaiue, as option SO_MAX_MSG_SIZE, after a socket has been created.

lpVendorlnio

Pointer to an integer representing the Embedded Netsock version. This is the same
version number expressed in ASCll in the szDescription field. The high-order byte
specifies the minor version (revision) number; the low-order byte specifies the major
version number.

Embedded Netsock Reference Manual 47

Return Values

WSAStartup() returns zero if suécessful. Otherwise, it returns one of the error codes
listed below. Note that the normal error mechanism whereby the application calls
WSAGetLastError() to determine the error code cannot be used.

Error Codes

WSASYSNOTREADY Indicates that the underlying network subsystem is not
ready for network communication.

WSAVERNOTSUPPORTED The version of the Winsock AP1 requested is not provided
by Embedded Netsock.

See Also

WSACleanup()

48 Embedded Netsock Reference Manual

O Programming Under the Alternate API

The Alternate API also uses the concept of sockets to create networked applications.
However, the functions are simplified. -

First, a call to ENsocket() creates a socket of a particular type, and associates a local
port number to the newly created socket.

Calls to ENsetsockopt() can be made to modify the atiributes of the socket.

To send a message to a remote computer, a call is made 1o ENsendto(), with the IP
address and destination port passed as parameters..

A receive buffer can be established and passed in a call to ENrecvirom(). This function
will then return any messages received by this computer that indicates a destination port
number matching the local port number specified in the ENsocket() call. In this way, a
number of processes can be "waiting" or "listening” on a number of different port
numbers, and respond accordingly. The IP address and sending port number will be
returned by ENrecvirom() indicating the sender of the message. These values can be
turned around and used in an ENsendto() call to reply.

The receive status of a socket can be checked with a call to ENgetsockrxavail(). This
will return the number of bytes currently received, but unread, in the socket's receive
buffer.

A number of other alternate API functions exist to assist in conversions and other
functions.

Embedded Neitsock Reference Manual 49

Structures

Network Configuration

The NetsockConfig structure is filled in by Embedded Netsock in response to a call to
the ENgetnetconfig() function. This structure defines the operating parameters that
Embedded Netsock is currently operating with.

The structure is initially set to the values entered into the Flash Setup system of the
embedded PC. I DHCP is not used at run-time, these values will be unchanged.
However, if DHCP is used to obtain any network parameters at run-time, this structure
will be updated with the parameters obtained from the DHCP server, whose [P address
will be placed in the DHCPServeriP field.

Note that many of the fields are reserved for future use, and are not applicable to the
current release of Embedded Netsock.

struct NetsockConfig {
unsigned char DHCPGeiLIP_mask_gate;
unsigned char IPAddr(4];
unsigned char NetMask(4];
unsigned char reservedl[4]:
char LocalName[401;
char reserved2([40];

unsigned int AdaptorIQPort:
unsigned char AdaptorIRQnum;
unsigned char AdapterEtherAddr([6]:;

unsigned char NumSockets;
unsigned char reserved3;
unsigned char SignificantOtherIPi4];
unsigned char DHCPGetLocalName;
unsigned char reserved4d;
unsigned char reserveds;
unsigned char DHCPServerIP[4];
unsigned char reservedt[4]:
unsigned char reserved7[4]:
unsigned char reserveds;
unsigned char reservedd;

T:

50 Embedded Netsock Reference Manual

Global Variables

Embedded Netsock uses approximately 96K of system RAM for code, working variables,
and network buffers. This memory is obtained from the run-time system through the use
of a _dos_alloecmem({) call. This memory is outside of the memory being used by your
_EXE application program. Note that this places restrictions on the size of .EXE files that
will run under Embedded Netsock. You must have at least 96K more system RAM than
the size of the .EXE application program.

The Embedded Netsock system is initialized in RAM by either the Winsock API
WSAStartup() function, or by the Alternate API ENStartup()} function. During this
initialization process, four globat variables aré set. These variables are as follows:

unsigned int EmbeddedNetsockBaseSBegment;
unsigned int EmbeddedNetsockSize;
unsigned int EmbeddedNetsockConfigSize;
unsigned int EmbeddedNetsockVersion;
unsigned int EmbeddedNetsockLoadErrox;

EmbeddedNetsockBaseSegment is the segment address in system memory where
the Embedded Netsock software resides. Embedded Netsock uses approximately 96K
of RAM from this point. Any call from the appiication .EXE file to _dos_allocmem() will
return system memory above Embedded Netsock, up to the maximum physical RAM
installed in the lower 640K address space.

EmbeddedNetsockSize is the size in bytes of the loaded Embedded Netsock system.

EmbeddedNetsockConfigSize is the size in bytes of the internal Flash Setup network
configuration data area. This is not normally accessible to application programs. Use
the ENgetnetconfig() function in application programs to get the current configuration of
the Embedded Netsock system.

EmbeddedNetsockVersion is the version number of the Embedded Netsock system
currently loaded. If version dependent code is included in application programs, this
global variable can be checked for verification that the required version level is in
memory and initialized. The lower byte is the MAJOR version number; the higher byte is
the MINOR version number. This value will change with each release of Embedded
Netsock.

EmbeddedNetsockLoadError is the error value that is set during a call to

WSAStartup(). This variable should be checked afier WSAStartup(} to ensure that
Embedded Netsock is available and running.

Embedded Netsock Reference Manual 51

Error Returns

Socket creation and use errors

Embedded Netsock Alternate API errors

52

INVALID_SOCKET
SOCKET_ERROR

ENE_LDERR_BIOS
ENE_LDERR_ADAPTER
ENE_LDERR_MEM
ENE_LDERR_NETSOCK

ENE_NETWORKSTART
ENE_NOTRUNNING
ENE_SOCKTYPE
ENE_INVALIDSOCKET
ENE_MAXSOCKETS
ENE_MEMORY
ENE_BUFFERTOOSMALL
ENE_MSGTOOBIG
ENE_TIMEQUT
ENE_PARAM
ENE_NOBROADCAST
ENE_HOSTUNREACH

(SOCKET)(~0)

-1

Embedded Netsock Reference Manual

Alternate API Functions

The following pages list full descriptions for the functions that may be used when
programming under the Alternate Winsock API. If programming under the Standard AP,
please refer to the section on Standard AP functions.

Embedded Netsock Reference Manual 53

ENCleanup()

The ENCleanup() function terminates use of the Embedded Netsock TCP/IP stack.
int ENCleanup (void);
Remarks

An application is required to perform a successful ENStartup() call before it can use
Embedded Netsock services. When it has completed the use of Embedded Netsock,
the application may call ENCleanup() to free any resources allocated on behalf of the
application.

Any sockets open when ENCleanup() is called are reset and automatically deailocated.

Return Values

The return value is zero if the operation was successful. Otherwise a specific error code
is returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this
function.

See Also

ENStartup()

54 Embedded Netsock Reference Manual

ENclosesocket()

The ENclosesocket() function closes an existing socket.

int ENclosesocket (
ints

¥
Parameters

s
[in] A descriptor identifying a socket to close.

Remarks

The ENclosesocket() function closes a socket. Use it to release the socket descriptor s

so further references to s will fail with the error ENE_NOTSOCK. The associated port
and queued data are discarded.

An application should always have a matching call to ENclosesocke() for each
successful call to ENsocket() to return any socket resources to the system.

Return Values

If no error occurs, ENclosesocket() returns zero. Otherwise, a specific error code is
returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this

function.
ENE_INVALIDSOCKET The descriptor is not a socket.

See Also

ENgetrxavail, ENsetsockopt(}, ENsocket()

Embedded Netsock Reference Manual 85

ENgetnetconfig()

The ENgetnetconfig() function retrieves the structure detailing the current configuration
of Embedded Netsock.

int ENgetnetconfig (

struct NetsockConfig * cfg,
int length

);

Parameters

cfg
[in] A far pointer to an area of user memory to hoid the configuration data.

fength
[in] The size in bytes of the user memory area.

Remarks

The ENgetnetconfig() function causes Embedded Netsock to write current configuration
data to the user's buffer. If the length of the user buiffer is smaller than the size of the
NetsockConfig structure being returned, fength bytes will be copied to the user area,
and an error will be returned. —

Return Vaiues

if no error occurs, ENgetnetconfig() returns zero. Otherwise, a specific error code is
returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this
funetion.

ENE_BUFFERSOOSMALL The length was not large enough to hold the entire
structure.

See Also

ENStartup()

56 Embedded Netsock Reference Manual

ENgetsockopt()

The ENgetsockopt() function retri‘eves the specified socket option.

int ENgetsockopt (
int s,
int optname,

);
Parameters

s
[in] A descriptor identifying a socket.

optname
[in] The socket option for which the value is to be retrieved.

Remarks

The ENgetsockopt() function retrieves the current value for a socket option associated
with a socket of any type, in any state, and returns the result. Option values must be
positive integers (0 - 32767). Options affect socket operations, such as the timeouts
and debug status.

If the option was never set with ENsetsockopt(), then ENgetsockopt(} returns the
default value for the option.

Embedded Netsock supports the following options for ENgetsockopt() .

Value Meaning

SO_BROADCAST Socket is configured for the transmission of
broadcast IP messages.

SO_DEBUG Debugging is enabled. (Not implemented.)

SO_MAX_MSG_SIZE Maximum size in bytes of a message for
SOCK_DGRAM sockets.

SO _RCVTIMEO Receive time-out in milliseconds

SO_SNDTIMEO Send time-out in milliseconds

Calling ENgetsockopt(} with an unsupported option will result in an error code of
ENE_PARAM being returned.

SO_BROADCAST
A broadcast message can be sent through this socket. Default is off (0).

SO_DEBUG
Embedded Netsock will supply output debug information if the SO_DEBUG option is set
by an application. Default is off (0). Currently unimplemented.

Embedded Netsock Reference Manual 57

SO_RCVTIMEO

The number of milliseconds the ENrevcfrom function will wait for a message from a
remote host. A value of O indicates wait forever; this is the default value. Values less
than 500 milliseconds can be set and read back, but in these cases the system wiil use
500 milliseconds as the actual timeout value.

SO_SNDTIMEO

The number of milliseconds the ENsendto() function will attempt to send a message to
the specified remote host. A value of 0 indicates try forever; this is the default value. It
is important to note that with SOCK_DGRAM type sockets (using UDP protocol), there is
no expected response from the remote host. A timeout on a ENsendto() call indicates
that the message could not be sent out from the local system. In most cases, this will be
due to the inability to resolve a destination IP address to an Ethernet address. Values
less than 500 milliseconds can be set and read back, but in these cases the system will
use 500 milliseconds as the actual timeout value.

SO_MAX_MSG_SIZE
The maximum size in bytes that can be sent through a SOCK_DGRAM socket.

Return Values

If no error occurs, ENgetsockopt() returns zero. Otherwise, a specific error code is
returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this

function.
ENE_INVALIDSOCKET The descriptor is not a socket.
ENE_PARAM The optname is invalid.

See Also

ENsetsockopt(), ENsocket()

58 Embedded Netsock Reference Manuat

ENgetsockrxavail()

The ENgetsockrxavail{) function provides the number of receive bytes available at a
socket.

int ENgetsockrxavail (
int s,

)
Parameters

s
[in] A descriptor identifying a socket.

Remarks

The ENgetsockrxavail{) function can be used to determine how many bytes of
received data are available at a specific socket. Use to determine the amount of data
pending in the network’s input buffer that can be read from socket s.

Return Values

Upon successful completion, the ENgetsockrxavail() returns zero. Otherwise, a
specific error code is returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this
function.
ENE_INVALIDSOCKET The descriptor s is not a socket.

See Also

ENgetsockopt(), ENsetsockopt(), ENsocket()

Embedded Netsock Reference Manual 59

ENrecvfrom()

The ENrecvirom() function receives a datagram and stores the source IP address and
port from which the datagram was sent.

int ENrecvfrom (

int s,

char * buf,

int fen,

unsigned long* fromiF,
unsigned int * fromport

)
Parameters

s
[in] A descriptor identifying a bound socket.

buf :
[out] A buffer for the incoming data.

fen
[in] The length of buf.

from|P
[out] A pointer to a long variable that will hold the source [P address upon return.

fromport
[ouf] A pointer to an integer variable that will hold the source port upon return.

60 Embedded Netsock Reference Manual

Remarks

The ENrecvirom() function is used to read incoming data on a socket, and to capture
the address from which the data was sent.

For SOCK_DGRAM sockets, data is extracted from the first enqueued message, up 1o
the size of the buffer supplied. If the datagram or message is larger than the buffer
supplied, the buffer is filled with the first part of the datagram, and ENrecvfrom()
generates the error ENE_BUFFERTOOSMALL. With SOCK_DGRAM sockets (UDP
protocol), the excess data is lost.

The fromIP parameter will be set to the IP address of the remote host that sent the data.
The formiP parameter should point to a unsigned long. The vaiue pointed to by fromport
will be set to the port number the remote host used when sending the data.

If no incoming data is available at the socket, the ENrecvfrom() function waits forever
for data to arrive. If the SO_RCVTIMEO option has been set with ENsetsockopt(), the
ENrecvfrom() function will return with an error condition if no message is received within
the timeout specified.

Return Values

If no error occurs, ENrecvirom(} returns the number of bytes received. Otherwise, a
specific error code is returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this
function.

ENE_INVALIDSOCKET The descriptor is not a socket.

ENE_BUFFERTOOSMALL The message was too large to fit into the specified buffer
and was truncated.

ENE_TIMEOUT A message was not be received within the time set by an
earlier call to ENsetsockopt() with the SO_RCVTIMEO
option name.

See Also

ENsocket(), ENsendto(), ENsetsockopt()

Embedded Netsock Reference Manual 61

ENsendto()

The ENsendto() function sends data to a specific destination host IP address and port.

ini ENsendto (

int s,

const char FAR * buf,
int fen,

unsigned long destlP,
unsigned int destport

);
Parameters

s
[in] A descriptor identifying a socket.

buf
[in] A buffer containing the data to be transmitted.

len
[in] The length of the data in buf.

destiP
fin] The IP address of the remote host to send the message to.

desiport
[in] The port number on the remote host to send the message to.

Remarks

The ENsendto() function is used to write ouigoing data through a socket. For
SOCK_DGRAM sockets, care must be taken not to exceed the maximum packet size of
the underlying network, which can be obtained by using ENgetsockopt(} to retrieve the
value of socket option SO_MAX_MSG_SIZE. If the data is too long to pass atomically
through the underlying protocol, the error ENE_MSGTOOBIG is refurned and no data is
transmitted.

The destiP parameter can be any valid IP address, including a broadcast address. To
send to a broadcast address, an application must have used ENsetsockopt() with
SO_BROADCAST enabled. Otherwise, ENsendto() will fail with the error code
ENE_NOBROADCAST.

It is generally inadvisable for a broadcast datagram to exceed the size at which
fragmentation can occur, which implies that the data portion of the datagram should not
exceed 512 bytes.

62 Embedded Netsock Reference Manual

The successful completion of a ENsendto() does not indicate that the data was

successfully delivered. It merely indicates that the message was sent out on the
physical meduim.

The ENsendto() function is used to send a datagram 1o a specific peer socket on a
remote computer identified by the dest/P parameter.

Calling ENsendto() with a /en of zero is permissible and will return zero as a valid value.
For SOCK_DGRAM type sockets, a zero-iength UDP datagram is sent.

Return Values

If no error occurs, ENsendto{) returns the fotal number of bytes sent, which can be less
than the number indicated by len. Otherwise, a specific error code is returned. All error
codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this
function.

ENE_NOBROADCAST The requested address is a broadcast address, but the
SO_BROADCAST option was not set in an earlier call to
ENsetsockopt() .

ENE_INVALIDSOCKET The descriptor is not a socket.

ENE_MSGTOOBIG The socket is SOCK_DGRAM type, and the message is larger
than the maximum supported by Embedded Netsock.

ENE_TIMEOUT The message could not be sent within the time set by an
earlier call to ENsetsockopt() with the SO_SNDTIMEO option
name.

ENE_HOSTUNREACH The remote host cannot be reached from this host at this time.

See Also

ENrecvirom(), ENsocket(), ENsetsockopt(}

Embedded Netsock Reference Manual 63

ENsetsockopt()

The ENsetsockopt() function sets a socket option.

int ENsetsockopt {
int s,

int optname,

int optval,

);
Parameters

s
[in] A descriptor identifying a socket.

optname
[in] The socket option for which the value is to be set.

optval
[in} The value for the requested option.

Remarks

The ENsetsockopt() function sets the current value for a socket option associated with
a socket. Options affect socket operations, such as whether broadcast messages can
be sent on the socket, or how long to wait before timing out on a ENsendto() or
ENrecvirom().

The following options are supported by Embedded Netsock for ENsetsockopt()-

Value Meaning

SO_BROADCAST Allow transmission of IP broadcast messages on
the socket.

SO_DEBUG Output debugging information. (Not implemented.)

SO_RCVTIMEO ENrecvfrom() fime-out

SO_SNDTIMEO ENsendto(} time-out

SO_BROADCAST

A broadcast message can be sent through this socket. Default is off (0).

SO_DEBUG

Embedded Netsock wili supply output debug information if the SO_DEBUG option is set
by an application. Default is off (0). Not implemented.

64 Embedded Netsock Reference Manual

SO_RCVTIMEO

The number of milliseconds the ENrecvirom() function will wait for a message from the
specified remote host. A value of O indicates wait forever; this is the default value.
Values less than 500 milliseconds can be set and read back, but in these cases the
system will use 500 milliseconds as the actual timeout value.

SO_SNDTIMEO

The number of milliseconds the ENsendto() function will attempt to send a message 1o
the specified remote host. A value of 0 indicates try forever; this is the default value. It
is important to note that with SOCK_DGRAM type sockets (using UDP protocol}, there is
no expected response from the remote host. A timeout on a ENsendto() call indicates
that the message could not be sent out from the local system. In most cases, this will be
due to the inability to resolve a destination |P address to an Ethernet address. Vaiues
less than 500 milliseconds can be set and read back, but in these cases the system will
use 500 milliseconds as the actual timeout vaiue.

Return Values

If no error occurs, ENsetsockopt() returns zero. Otherwise, a specific error code is
returned. All error codes are negative.

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this
function.

ENE_PARAM optval is invalid or negative.

ENE_INVALIDSOCKET The descriptor is not a socket.

See Also

ENgetsockopt() . ENsocket()

Embedded Netsock Reference Manual 65

ENsocket()

The ENsocket() function creates a socket that is set to a specific address family and
protocol.

int ENsocket (
int fype,
unsigned int Jocalport

)
Parameters

type
[in] A type specification for the new socket..

localport
[in] The port number to use when sending or receiving data on this socket.

Remarks

The ENsocket() function causes a socket descriptor and any related resources to be
allocated and bound to a specific lower level protocol.

The type parameter is the type of socket to create. Embedded Netsock supports two
types:

Type Explanation

SOCK_DGRAM Supports datagrams, which are connectionless buffers of a fixed
maximum length. Embedded Netsock uses UDP as the protocol
for this type of socket.

SOCK_RAW Supports low-level protocols. Embedded Netsock uses ICMP as
the protocol for this type of socket.

SOCK_DGRAM sockets allow sending and receiving of datagrams to and from arbitrary
remote hosts using ENsendto() and ENrecvirom().

SOCK_RAW sockets allow the programmer to use ICMP protocols, which can be used
for troubleshooting (i.e. echo/ping), and various network routing and error reporting
systems.

Return Values

If no error occurs, ENsocket() returns a descriptor referencing the new socket.
Otherwise, a specific error code is returned. All error codes are negative.

66 Embedded Netsock Reference Manual

Error Codes

ENE_NOTRUNNING A successful ENStartup() must occur before using this

function.
ENEL_MAXSOCKETS No more socket descriptors are available.
ENE_MEMORY No buffer space is available. The socket cannot be created.
ENE_SOCKTYPE The specified type is not supported.

See Also

ENgetsockopt() , ENrecvfrom(), ENsendto(), ENsetsockopt()

Embedded Netsock Reference Manual 67

ENStartup()

The ENStartup() function initiatés use of the Embedded Netsock TCP/IP stack, and
starts all underlying network layers.

int ENStartup (void);

Remarks

This function must be the first Embedded Netsock function called by an application. It
allows an application to start up Embedded Netsock, and to retrieve details of the
Embedded Netsock support available. The application may only cali other Embedded
Netsock functions after a successful ENStartup() call.

The Embedded Neisock revision level is available in global variable
EmbeddedNetsockVersion. This variable is valid after a call to ENStartup()-

Once an application has made a successful ENStartup() call, it may proceed to make
other Embedded Netsock calls as needed.

When it has finished using the services of Embedded Netsock, the application can call
ENCleanup() in order to allow Embedded Netsock to free any resources for the
application.

Return Values

ENStartup() returns zero if successful, or the ENE_NETWORKSTART error code if not.

Error Codes

ENE_NETWORKSTART Indicates that the underlying network subsystem is not
ready for network communication.

See Also

ENCleanup()

68 Embedded Netsock Reference Manual

Embedded Netsock™

Sample Programs

Release 1.10a

MICRO/SYS, INC.
3730 Park Place
Glendale, CA 91020
Phone (818) 244-4600
FAX: (818) 244-4246
www.embeddedsys.com

DOC 1240

10/25/00

Micro/sys Technical Support

Micro/sys offers the best technical support in the business — and it's freel

Our application engineers are ready to assist you in getting your Embedded Netsock project up
and running as quickly as possible. You can contact us as follows:

Micro/sys Technical Support

Phone: {818) 244-4600
FAX: (818) 244-4246
Email: techsuppori@embeddedsys.com

We can also upload and downtoad programs by modem whenever that will assist you.

Thanks for specifying Micro/sys products. We'll be glad to be a part of your team as you use
our products.

RUN.EXE, Flash Setup, and Embedded Netsock are trademarks of Micro/sys, Inc.

DOC1240
© 2000 Micro/sys, Inc.
All rights reserved.

1.0 Introduction

This document details the installation, operation, and theory of operation of the sample
programs that accompany the Micro/sys Netsock™ computer with it's buili-in Embedded
Netsock™ TCP/IP software system.

We hope that one of the sample programs will somewhat similar to the application that you have
to create. If so, you may be able o modify one of these programs to suit your needs.

If not, these sample applications are a good tutorial on using the Micro/sys Embedded- Netsock
system.

The sample applications are:

Machine Control: An Netsock computer manages a "machine” it is installed inside,
and accepts commands from Windows computer on the same
TCP/\P network. The Windows computer can start, stop, speed
up, and slow down the "machine” (blinking LEDs).

Remote Data Acquisition: A Netsock computer waits for requests from a Windows computer
on the same TCP/IP network, and responds when queried. The
Windows computer can set digital outputs and D/A converter
outputs, and read digital inputs and D/A inputs.

Remote Data Acquisition Similar to the Remote Data Acquisition example except that the
from Multiple Sites: Windows computer can monitor up io five controliers.

Process Control: A Netsock computer manages the process of heating and cooling
an environmenta! chamber to maintain the desired set point. The
Windows computer monitors the state of the system as reported
by the Netsock computer and can also change the set point if
desired.

Tank Status/Control A Netsock computer, embedded inside a remote control panel
with VGA and a touchscreen, controls the parameters of a local
system controller for a storage tank.

Each sample application is composed of two parts: an application that runs on a desktop
Windows system and an application that runs on Micro/sys Netsock embedded PC hardware.
These two applications communicate over an Ethermnet link.

The Windows application, written in Visual Basic, uses the Winsock DLL to perform Ethernet
fransfers.

The Netsock application, written in C, uses the Micro/sys Embedded Netsock firmware to
perform Ethernet transfers.

In each sample application, a small set of commands and responses are created. These

commands and responses are related to the task at hand - in one case they implement data
acquisition functions, and in another they implement machine control functions.

Embedded Netsock Sample Programs 1

We chose ASCH commands for each sample application, hoping that they would help us create

more readable programs. You can use any type of commands and responses appropriate to
your fask at hand.

In network terms, these applications are client/server. The Netsock computer is a server,
waiting for requests from a remote computer, and then satisfying them. In one case, the
Machine Control application, the Netsock application has other things to do while waiting for
requests. In the other case, the Remote Data Acquisition application, the Netsock computer
does nothing during the wait for network requests.

The Netsock computer ships with a specified IP address of 192.168.1.50, and a subnet mask of
055.255.255.0. In addition, the Machine Control application is downioaded into the Netsock
computer. Therefore, if you have a Windows computer that you can setup to be on the
192.168.1.n subnet, you can test the system without any further configuration by running the
Windows Machine Control application.

If you have an installed TCP/IP network that you want to use with the Netsock system, you will
have to run the Flash Setup™ configuration software built into the Netsock computer. See

Micro/sys document DOG1139, Embedded Netsock Reference Manual, for details on using
Fiash Setup. _ : . :

If you have a DHCP server on a Windows NT server on the same subnet as the Netsock
computer, you can use Flash Setup to enable DHCP on the Netsock embedded PC. Embedded
Netsock™ can then use DHCP to acquire an |P address on the proper subnet.

2 Embedded Netsock Sample Programs

2.0 Installing Sample Applications on Windows System

The Windows sample applications are written in Visual Basic version 5.0. Windows 95 or above
is required to run them. This installation program does not currently work with Windows NT 4.0.

The Netsock computer sample applications are written in Borland C++ version 5.0. The

supplied executables can be downloaded into the Netsock computer without the need for
compiling.

To modify the sample applications, it is advisable fo use the development tools listed above, as
no porting is necessary.

2.1 Network Setup on Windows System

The Windows workstation that is to be communicating with the Netsock computer must have a
network adapter installed, and must have the TCP/IP protocol installed and configured.

If network is not configured for TCP/IP protocol, do the following:

Go into Control Panel. Select the Network icon, Configuration tab. Click Add|Protocol{Add.
Select Microsoft as the Manufacturer and TCP/IP under Network Protocols. Click OK.

Windows will now install the needed files and ask you to reboot.

if your system does not already have an IP address assigned to it, simply click
ControlPanel|Network|Configuration, select TCP/IP|Properties, select Specify an P
address and enter the |IP address and subnet mask you want to use. Click OK.

if you do not already have an IP address set up, here are some recommendations. The
standard “test network" for Class C TCP/IP networks is 192.168.1.n. We recommend that you
use this unless you are trying to run on an existing TCP/IP installation. Use 192.1 68.1.1 for the
IP address and 255.255.255.0 for the subnet mask on the Windows computer.

In fact, Micro/sys ships the Netsock computer with a specified IP address of 192.168.1.50. The
subnet mask is set to 255.255.255.0. This allows you to immediately test the Netsock computer
on a TCP/IP network without having to do any configuration, as long as the Windows computer
is also given an IP address from 192.168.1.1 through 192.168.1 254,

Embedded Netsock Sampile Programs 3

2.2 Installation of Sample Executables

Close any open applications.

insert the “SAMPLE APPLICATIONS — Disk 1” {Programs & DLLs) floppy disk into drive A..
Start|Run, then enter A:\Setup.exe, click OK. Follow the instructions. Insert Disk #2 and Disk
#3 when prompted. The setup program will create a C:\Program Files\Ensamples directory by
defauit and place the sample application files there. (To install the files in another directory,
enter a new path when prompted for the directory location.)

The setup program places the required support files {.DLL and .OCX) in the Windows\System
directory, and the Windows registry is updated. Although the setup program places Ensamples
on the Windows Start Menu, it only calls the Machine Control program. You will need to go to
the sample program directory (C:\Program Files\Ensamples by default) to run the other sample
programs.

The Netsock direciory contains the C++ sample programs to be downloaded 1o the Netsock
embedded PC.

2.3 Installation of Sample Sources

An empty folder named VBprojects is included that can be used to hold the source files, which
are located on the “Source files” (Disk 4}. You can copy the source files there, or anywhere you
like. They are not needed in order to run the installed applications (Disks 1-3).

4 Embedded Netsock Sample Programs

3.0 Downloading and Launching Applications

There are two download methods used for Netsock products, as follows:

Method Used On
BIOS Boss XMODEM downioad All Netsock versions except Netsock/410
ZIP.COM file transfer Netsock/410 only

3.1 BIOS Boss XMODEM Download

When you power up the Netsock computer, the onboard firmware checks for the 'LOAD
configuration of the CA4035 cabie connected to COM 2 (COM B) of the Netsock computer.
When the "LOAD’ end of the cable is used on COM 2 (COM B), powering up the system
invokes the BIOS Boss. The BIOS Boss is a built in utility for altering system information and

programming. By using the BIOS Boss, stand-alone executable files may quickly be
downloaded onto the Netsock computer.

Applications are launched automatically when the “load” cabie is removed and the Netsock
board is reset.

3.2 ZIP.COM File Transfer (Netsock/410 only)

After DOS is booted on the Netsock/410, you can load and run the ZIP.COM file transfer utility
on hoth the Netsock/410 and on the host development PC. First connect the ‘RUN’ end of the
CA4038 cable to the COM2 port of the Netsock/410, and the far end of the CA4038 cable to .
your development PC. Use the ZIP.COM menus io transfer the specific sampie application you
are interested in to the C: drive on the Netsock/410.

To launch the application, reboot the Neisock/410. then log onto C: and make three entries at
the Netsock/410 command prompt. The first is to load the Intel 82559 device packet driver with
a single parameter, which is the software interrupt number to be used. This is traditionally in
the range 0x70 to Ox7F. The second is to load the Embedded Netsock Protocot TSR. The third
is to launch the sample program. For example:

C:> elQ0bpkt 0x7e <CR>

C:> netsllQ IP=19%2.168.1.41 Mask=255.255.255.0 <CR>
C:> machine <CR>

The Embedded Netsock Protocol TSR has a number of command line options to set IP address
and subnet mask. All command line entries are case insensitive.

Embedded Netsock Sample Programs 5

If a DHCP server is to be used to assign an IP and mask to the Netsock computer at startup,
use the following command line:

C:> netsll0 IP=DHCP <CR>

If there is no command line 1P specified, the |P address defaults to 192.168.1.50. If there is no
command line mask specified, the mask defaults to 255.255.255.0.

6 Embedded Netsock Sample Programs

4.0 Sample Application: Remote Machine Control

This sampie application is composed of a server program, machine.exe, which runs on the
Netsock embedded PC, and a client program, MachCtrl.exe that runs on a Windows computer.

machine.exe is downloaded into the Netsock computer prior o shipment from Micro/sys, and
does not need to be reloaded unless a different application has been downloaded since receipt
of the computer. H required, download machine.exe file from the Embedded Netsock Sample
Programs diskette according to Section 3.0.

On the Windows computer,

1. StartiRun and then enter the path and MachCitrl.exe. Click OK.
Enter the IP Address of the server in the dialog box that comes up and press Enter.

2. Click on the Start button to send a "start" message to the server and begin polling
for speed. This enables the other buttons you increase/decrease speed and stop.
Each click of the Faster or Slower bution sends a message to increment or
decrement the speed by 1. The speed display text box is updated when a response
with the new speed is received. Clicking the Stop button sends a message to stop
the machine and all buttons except for the Start button are disabled when a
message is received indicating that the speed is 0 {machine stopped).

3. Clicking the Exit button in the upper right hand corner ends the program.

4.1 Theory of Operation

For this sample application, a set of command strings, from the Windows client and a set of
matching response strings from the Netsock server, were created. The following table shows
the command and response set created for this application:

Command Response Comment
1 1 Start
+ + Faster
- - Slower
0 0 Stop
8 Sz Read current speed
#=01t0 12

Embedded Netsock Sample Programs 7

411 Visual Basic Application Implementation Details

This application has a single form, frmMachineControl, and a single code module, Module1,
which contains the giobal variables needed by the program.

When MachCtrl.EXE is launched, the form frmMachineControl is loaded. This form includes a
single Winsock control, which is given the name Winsock All Ethernet communication is done
through this single Winsock control. The Protocol property is set to UDP, the RemotePort and
Bind properties are set to 5001. You can load the Winsock conirol with the RemoteHost

property set to a generic IP address (e.g. "1.0.0.0") and then change that property later to
connect to an actual server IP address.

An InputBox is used to enter the |P address of the Netsock embedded PC. The Winsock
control RemoteHost property is then set to this address.

A timer control named tmrSpeedUpdate is enabled to begin polling the server for speed values.
The BackColor property of the form is set when the form loads to prevent Windows 95 from
changing the form color to biack, which makes the black labels on the form unreadable.

There are command buttons for Start, Faster, Slower, Stop and Exit. If the machine is stopped
(Speed Value = 0} the Faster, Slower and Stop buttons are disabled. Clicking the Start button
causes a message of "1" to be sent, which tells the server to start the machine.

Any button clicked causes the polling to stop while the application waits for a response from the
server. This is accomplished by disabling the timer control tmrSpeedUpdate, which does the

speed polling. The polling is begun again by enabling tmrSpeedUpdate, once a response is
received.

When data is received the Winsock Data Arrival event occurs. !f the message received is "1",
the Faster, Slower and Stop butions are enabled and the Start button is disabled. If the
message received starts with "S", the Speed Value is extracted from the string and the Text
property of the textbox named ixtSpeed is updated with the number. If the Speed Value is 0,
command buttons are enabled/disabied as mentioned earlier.

Each click of the Faster or Slower bution sends a message to the server telling it to
increment/decrement the Speed Value of the machine by 1. Pressing the Stop bution causes a
message of "0" to be sent, which is a request to stop the machine.

There is a command button named ecmdCancel with the caption "Exit". Clicking this ends the
program.

8 Embedded Netsock Sample Programs

41.2 Embedded PC application implementation details

The program that runs on the Netsock computer has a simple task. It controls three different

outputs on the Netsock computer but does so at a rate controlled by the remote Machine
Control program.

When the program begins, Embedded Netsock is loaded and initialized:

err = WSAStartup (0x101l, &SocketData);

msgsock = socket {AF_INET, SOCK_DGRAM, IPPROTOC_UDP) ;

local .sin_family = AF_INET;
local .sin_port = htons(DACQ_PORT) ;
err = bind{msgsock, &locazl, sizeof(locall);

After Netsock is up and running, the application simply waits for direction from the remote
Machine Gontrol program. In the beginning, the outputs of the Netsock computer are frozen
because the default speed of the machine is 0. Uniil the speed is changed by the remote
system, the Netsock computer outputs will remain still.

Once the machine has been started, it does the following functions:

» Blinks the LED

+ Rotates a signal across Port A of the Digital /O connector
» Periodically sends a *." out the COM port.

While it is performing these functions, the program is constantly watching for messages coming
in over the network from the remote Machine Control program. This is done by making
frequent calls to ioctisocket() to determine if a message has come in:

err = ioctlsocket{msgsock, FIONREAD, smessagesize);

Once a message has been received, the program views the message and, if the message is a
valid command, the appropriate action is performed:

If a ‘+ is received, then it speeds up the rate of it's functions.
If a -* is received, then it slows the rate of it’s functions.

(This is done by changing the delay vaiue used by vdelay().
If a ‘0’ is received, then it stops all functions and waits for a ‘1’
In this example, the slowest speed setting is 0, which is off.
The fastest speed is 10.

The application will continue to perform the above mentioned functions indefinitely, until it is
directed to stop.

Embedded Netsock Sample Programs Q

10

Embedded Netsock Sample Programs

5.0 Sample Application: = Remote Data Acquisition

This sample application allows a deskiop PC to acquire and disptay both analog and digital
inputs from a Netsock embedded PC that is running the dataserv.exe program.

if required, download dataserv.exe file from the Embedded Netsock Sampie Programs diskette
according to Section 3.0.

On the Windows computer,
1. StartlRun and enter the path and RembDatAcq.exe. Click OK.

2. Enter the |P Address of the Netsock computer server in the dialog box that comes up
and press Enter. The default is 192.168.1.50.

The Main screen comes up with buttons that open the other screens when clicked.

3. Click View All Analog In buiton to view the display for the Analog In channels. To view
a channel in detail, click the channel button on the left. This opens up the View All
Analog In Detail screen which does a display for a single channel. There is a digital
display of volitage, as well as a gauge display. Clicking the close button {(with the door
icon) returns to the previous display. Clicking the close button on the View All Analog
In screen returns to the Main screen.

4, Click Control Analog Out button to go to that screen. There are four slider controis
(one for each analog output channel) set to be moved horizontally. Click on one of
these controls to activate it. Clicking to the right or left of the slider increases/decreases
the voltage by 1.00 V. Clicking the right or left arrow keys on the keyboard increases
the voltage by .01V. When the slider is moved, a message is sent 1o the server
requesting the new voltage for that channel and the new voitage value is displayed in

the text box to the right of the slider control. Clicking the close button returns to the
main screen.

5. Clicking the Digital O button opens that screen. Ports A and C are for output while
Port B is only for input. Opening this form causes the application to begin sending
messages requesting update information for the three ports. Clicking the mouse on one
of the buttons for Port A or C causes a message to be sent to tumn that bit on or off and
the application waits for a response telling it that this has occurred. If this is successiul,
the color of the "light" changes, indicating that it has been turned on or off.

6. Clicking the Exit button ends the program.

Embedded Netsock Sample Programs 11

5.1 Theory of Operation

For this sample application, a set of command strings from the Windows client and a set of
matching response strings, from the Netsock embedded PC were created. The following table
shows the command and response set created for this application:

Command Response Comment
WR_AOT_#i=HHH WR_AOT Outputs to DAC channel

#=0TO 3 (channel)
HHH = 12-bit cutput value,

hexadecimal
RD_AIN_# RD_AIN_#=HHH Reads ADC channel
#=0107 HHH = 12-bit input value,
hexadecimal
RD_RNG RD_RBNG=# Reads output range of DAC
#=0 0 to +5v range
1 -5 to +5v range
2 0 to +10v range
3 -10 to +10v range
WR_DIO a#=# WR_DIO Qutput to 82C55 output bit

a=A, B or C (82C55 port)
= 0 to 7 {port bit number)
=0 or 1 (clear or set)

RD_DIO_a RD_DIO_a=HH Reads 82C55 input port
a=A, BorC (82C55 port) a=A,BorC
HH = 8-bit input value,
hexadecimal

The 82C55 digital /O device on the Netsock embedded PC is initialized so that ports A and C
are output ports, and port B is an input port.

12 Embedded Netsock Sample Programs

5.1.1 Visual Basic Application Implementation Details

This application has five forms, frmRemDataAcg, frmAOUTControl, frmAINDisplay,
frmAINDetailDisplay and frmDIO. It has a single code module, Module1, which contains the
global variables needed by the program.

When RemDataAcq.EXE is launched, the form frmRemDataAcq is loaded. This form includes
a single Winsock conirol, which is given the name Winsock. All Ethernet communication is
done through this single Winsock control. The Protocol property is set to UDP, the RemotePort
and Bind propetrties are set to 5001. It was found that you can load the Winsock control with
the RemoteHost property set to a generic IP address (e.g. "1.0.0.0") and then change that
property later to connect to an actual server IP address. The BackColor property of the form is
set when the form loads to prevent Windows 95 from changing the form color to black. This
form is the main form, and containg four command buttons. The first three open other forms.
The Winsock conirol DataArrival Event occurs when new data arrives. The GetData method is
used to retrieve the data as a string. The string is then parsed and important data is assigned
to variables and used to update control values.

View All Analog in

The top command button, cmdAINDisplay, has the caption "View All Analog In". When it is
clicked, form frmAINDisplay is loaded and shown, and the timer control tmrAINUpdate is
enabled. This starts the polling for the Analog Input values. This is done by sending the
message "RD_AIN_#" where # is the Analog In Channel number. There are 8 Analog In
Channels, 0 to 7, and controls to display the voltage value of each one.

When data is received, the Winsock Data Arrival event occurs. The data is assigned to the
variable gstrData. if the data received begins with RD_AIN, the hex string that represents the
voltage is extracted and converted to an integer between 0 and 4095. The channel number is
also extracted and used to update the correct controls on the form. This integer is divided by a
constant and the result is used as the Value property of the AINVoliage progress bar control,
which displays the voltage. A textbox control named xtAIN is used for a digital display of the
voltage. This is done by using the Value property of AlNVoltage.

There is a command button with the name of cmdCancel with the icon of a door closing on it.
When this is clicked, the form frmAINDispiay is hidden, the timer control tmrAINUpdate is
disabled to stop the polling for Analog In display data, and the appliication returns to the main
form.

Embedded Netsock Sample Programs 13

View Analog In Detail

On form frmAINDispfay there are 8 command buitons with channel names. When one of these
is pressed, the form frmAINDisplay is hidden and controls on the form frmA/NDetailDisplay are
set up to display the channel selected in detail. The caption property of a panel control named
PanelAINDisplay is assigned the voltage value from the textbox on the form frmAINDisplay for
that channel.

The caption property of a label control named /biChannel is assigned the channel number to
display. The "needle" of a "gauge conirol" is set to display the correct voltage. This is
accomplished by using a line control named LineNeedle and setting the correct X1, X2, Y1 and
Y2 coordinates. The form frmAINDetailDisplay is then shown. When the form is loaded, a dial
face, for the gauge control, is set up by using line controls on a rectangle shape controi.

There is a command buiton with the name of emdCancel with the icon of a door closing on it.
When this is clicked, the form frmAINDetailDispiay is hidden and the application returns to the
previous form frmAINDisplay.

Control Analog Out

When the main form bution with the caption "Control Analog Out" is clicked, the form
frmAQUTControl is shown. There is a slider control named SliderAOT for each of the Analog
Output channels 0 to 3. If a slider control is moved, the slider control value is converied to a
voliage decimal. The number is multiplied by a constant so that it can be represented as hex,
and if the hex number is too short in length, it is padded on the left with zeroes to make it 3
characters long.

The text property of a textbox control named txtAOUTDisplay is used to display the voltage
setting of the slider control. This is derived from the value property of the slider control. A
message starting with "WR_AOT" and containing the channel number and voliage setiing is
sent to the server. Both Change and Click events are used for the slider controls. The Change
event allows changes to be made by using the keyboard right and left arrow keys, while the
Click event allows changes to be made with the mouse.

There is a command button with the name of cmdCancel with the icon of a door closing on it.

When this is clicked, the form frmAOUTControlis hidden and the application returns to the main
form.

14 Embedded Netsock Sample FPrograms

Digital /O

When the main form button with the caption "Digital /O" is clicked, the form frmDIO is loaded
into memeory, the timer control tmrDIO is enabled and the form is shown. Enabiling the timer
control tmrDIO starts the polling for Digital I/O information.

There are 3 Digital /O ports A, B and C. The output ports A and C are each represented by 8
command buttons with the name cmdLight. The picture property of these command buttons is
set to a bitmap image file of either a black light (off) or a red light (on). When the form loads,
the picture property is initially set to the black light image (off). The input port B is represented
by 8 image controls with the name img/NLight The picture property of these image controls
uses the same bitmap image files as the ¢mdLight command buttons, and is initially set to the
black light image (off).

When a cmdLight button is clicked, the color of the light is changed by changing the picture
property of the control, and a message is sent to server to turn the light on or off there. When
the timer control #mrDIO is enabled, messages are sent requesting the settings for the
individual ports.

When data is received, the Winsock Data Arrival event occurs. The data is assigned to the
variable gstrData. If the data received begins with RD_DIO, the hex string that represents the
Digital I/O port settings is extracted and each of the two characters is converted to a binary
number string by using the user-defined H2Bin (Hex to Binary) function. This function simply
takes a singie character hex number that is passed to it and returns the equivalent binary string.
The two binary number strings that are returned are then combined into one 8 character binary
string that represents the port line settings (On or Off). The picture property of the image
controis or command buttons is used to display this.

There is a command button with the name of cmdCancel with the icon of a door closing on it.
When this is clicked, the form frmDIO is hidden and the application returns to the main form.
The timer control fmrDIQO is disabled to stop the poliing for Digital /O settings.

Exit

Clicking this button ends the program.

Message Handling

When the application sends a message to the server, it waits for a response. When the
message is sent by code in a timer control Timer event, this is accomplished by disabling the
timer control untit the response is received, so that a second message is not sent before an
answer is received. On messages starting with "WR_AOT" or "WR_DIO", the code in the
SendMsg function of frmRemDatAcq set a global variable gWaiting to TRUE. No other
messages are sent until this gWaiting is set {o FALSE again. This occurs when the correct
response is received and is handled by the code in the Winsock controt DataArrival event.

Embedded Netsock Sample Programs 15

5.1.2 Embedded PC application implementation details

The program that runs on the Netsock computer has two primary functions. First it supplies
information to the Remote Data Acquisition program regarding the input ports of the Netsock
computer. [t also performs sets the output ports of the Netsock computer as requested by the
Remote Data Acquisition program.

Once the system has been started and the network connections initialized properly, the
program simply waits for commands from the remote system. This program does not perform
any function until it is requested to do so by the remote system.

Initially, the digital /O ports of the Netsock computer are set as follows:

Port A OouTPUT
Port B INPUT
Port G OUTPUT

This program uses the function recvfrom() to retrieve messages from the network. Unless a
receive timeout option has been specified by a call fo setsockopt(), the recvirom() function will
wait indefinitely for a message to arrive through the network. However, since this example has
no duties to perform while it is waiting for messages, the use of recvirom() is sufficient.

Once a message has been received, the program views the message and, if the message is a
valid command, the appropriate action is performed:

The program first views the first six characters of the message which are saved as the
command. The remaining portion of the message contains the parameters for the command.

The program must parse the parameters portion of the message differently depending on the
command.

numbytes = recvfrom{msgsock, datagram, sizeof (datagram), FLAGS_ZERQC,
&from, {int far *) &fromlen):

memcpy (command, datagram, 6);

command[6] = 07

memcpy (parameters, datagram+6, numbytes-6);
parameters [numbytes-6] = 0;

commanddone = 0;

For write commands, the program performs the appropriate write to either the D/A converters or
one of the two digital IO output ports. [t then sends the command back to the sender as
confirmation that the original message was received properly.

For read commands, the program reads the specified input port and returns the command with
that port’s value appended to the command.

See the Theory of Operation section for a detailed description of the valid commands and
parameters.

16 Embedded Netsock Sample Programs

6.0 Sample Application: = Remote Data Acquisition
from Multiple Sites
This sample application allows a desktop PC running MultiStationAcq.EXE, to acquire and

display both analog and digita! inputs from up to & Netsock embedded PCs that are running the
dataserv.exe program.

First, download the dataserv.exe file from the Embedded Netsock Sample Programs diskefte
according to Section 3.0.

On the Windows computer,
1. StartiRun enter the path and MultiStationAcq.EXE. Click OK.

2. When the form opens type in the IP Address of the first board and press tab when done.
You can now enter the IP address of the next board. Addresses for up to five boards are
aliowed by the application.

3. After entering an IP address, you can click with the mouse on the option button below that
board's IP address to select it. The Analog Channel 1 and Digital Inputs Port B values are
displayed. To display another board, click the option button for that board after entering the
IP address. You can switch back and forth between boards by clicking the option buttons.
Only one board is displayed at a time.

4. Clicking the Exit button in the lower right hand corner ends the program.

Embedded Netsock Sample Programs 17

6.1 Theory of Operation

In this example, the Windows client and the Netsock embedded PC communicate in the same
way as the in the previous sample application. In fact, although this Windows client program
may be quite different than in the previous application, the program that runs on the Netsock
computer is the same. Please refer to section 5.1 for a detailed description of the
command/response set.

18 Embedded Netsock Sample Programs

6.1.1 Visual Basic application implementation details

This application has a single form, frmMuftiRemDataAcq, and a single code module, Modulet,
which contains the global variables needed by the program.

When MultiStationAcq.EXE is launched, the form frmMuftiRemDataAcq is loaded. This form
includes a single Winsock control, which is given the name Winsock. All Ethernet
communication is done through this single Winsock control. The Protoco! property is set to
UDP, the RemotePort and Bind properties are set to 5001. You can load the Winsock control
with the RemoteHost property set to a generic I[P address (e.g. "1.0.0.0") and then change that
property later to connect to an actual server IP address. The BackColor property of the form is
set when the form loads to prevent Windows 85 from changing the form color to black, which
makes the black labels on the form unreadable.

IP addresses of the Netsock computer boards are typed into the text boxes. There are five
textboxes for up to five IP addresses. When something is typed into a textbox, the option
button below it is enabled. Selecting an option button sets the Winsock control RemoteHost
property to that |P address. Disabling the option button when the textbox is empty prevents the
accidental setting of the IP address to a null value.

When an option button is selected, this enables the timer control named tmrUpdate, which
begins poiling for data from the selected Netsock computer board. In this application only one
Netsock computer board is selected at a time, so only one Winsock control is needed.

The tmrUpdate Timer event causes messages to be sent which request the Analog Channel 1
input data and the Digital /O data. The gCounter variable determines which message is sent at
a given time, and tmrUpdate is disabled afier a message is sent so that the application waits for
a response before sending a new message.

When data is received, the Winsock Data Arrival event occurs. The data is assigned to the
variable gstrData. If the data received begins with RD_AIN, the hex string that represents the
voitage is extracted and converted to an integer between 0 and 4095. This integer is divided by
a constant and the result is used as the Value property of the AINVoftage progress bar control,
which displays the voltage. A panel control named PanelAINDisplay is used for a digital display
of the voitage. This is done by using the Value property of AINVoliage. If the data received
begins with RD_DIO, the hex string that represents the Digital 1/O Port B setting is extracted
and each of the two characters is converied to a binary number string by using the user-defined
H2Bin (Hex to Binary) function, which simply takes a single character hex number that is
passed {o it and returns the equivalent binary string. The two binary number strings that are
returned are then combined into one 8 character binary string that represents the Port B line
settings (On or Off). A series of 8 image controls is used to display this. “Lights" are turned on
or off by changing the Picture property of the image controls.

A command button named cmdCancef (with the Caption “Exit") is used 1o end the program.

Embedded Netsock Sample Programs 19

6.1.2 Embedded PC application implementation details

The program dataserv.exe that runs with MultiStationAcq.exe is the same program as in the
previous sample application. For details on this program, please refer to section 5.1.2

20 Embedded Netsock Sample Programs

7.0 Sample Application: Process Control

This sample application allows a desktop PC running ProcessControl.EXE to communicate
with a single Netsock computer and send/receive process control data to an Netsock
embedded PC that is running the process.exe program. The example used in this application
uses a temperature set point and monitors the current temperature of some sort of
environmental chamber. The Netsock computer adjusts the ouiput to a heating/cooling unit in
order to achieve the set temperature.

Before running ProcessControl.EXE, downioad process.exe from the Embedded Netsock
Sample Programs diskette according io Section 3.0.

On the Windows computer,

1.

2.

StartlRun enter the path and ProcessControl.EXE. Click OK.

Enter the IP Address of the Netsock computer server in the dialog box that comes up and
press Enter. The default is 192.168.1.50.

The Controller form opens. Click on the & or 6 arrows to increase/decrease the temperature
set point. Hold down the mouse on an arrow to increase/decrease the set point more
quickly. Click in the set point text box to type in a number with the keyboard. Up to 3 digits
will be accepted. Press tab to exit the text box. When the set point is changed, a message
is sent to the server to request a new set point. The program is consistently polling for
updates on the current temperature. When a response is received, the current temperature
digital display is updated.

Polling is done for the current Output Value. A shape control is used to display this as a
bar. Cooling is represented as blue, heating as red. When the value is near 0, the bar is
white.

Clicking the Exit button in the upper right hand corner ends the program.

Embedded Netsock Sample Programs 21

7.1 Theory of Operation

The process.exe program on the Netsock computer runs independently of any monitoring
programs. It continuously monitors the temperature and adjusts the output accordingly. In the
event that ProcessConirol.EXE is running on a network computer, then the Netsock computer
must also respond to the many requests sent by that program.

The following command and response set was created for this application:

Command Response Comment

GT GT = Get the current temperature
GP GP=#### Get the current setpoint
GO GO=H#### Get the output value.

The output value will range from 0 1o 4095
where 2047 is the midpoint representing
no output.

SP=##iH SP Set the desired temperature in °F
= -100 to 300

22 Embedded Netsock Sample Programs

7.1.1 Visual Basic application implementation details

This application has a single form, frmProcessControl, and a single code module, Module1,
which contains the global variables needed by the program. The application uses global
variables for Current Temperature and Set Point.

When ProcessControl.EXE is launched, the form frmProcessControf is loaded. This form
includes a single Winsock control, which is given the name Winsock. Al Ethernet
communication is done through this single Winsock contfrol. The Protocol property is set to
UDP, the RemotePort and Bind properiies are set o 5001. You can load the Winsock control
with the RemoteHost property set to a generic IP address (e.g. "1.0.0.0") and then change that
property later to connect to an actual server IP address. An InputBox is used to enter the IP
address of the Netsock embedded PC. The Winsock control RemoteHost propenrty is then set
to this address. A timer control names tmrGTUpdate is enabled to begin polling for
temperature values from the server.

There are two image controls named imgUp and imgDown, and two timer controls named
tmrDown and tmrUp. When the mouse is held down over the up arrow image, the "up” timer
event is started, which increases the Set Point value. When the mouse is held down over the
down arrow image, the "down” timer event is started, which decreases the Set Point value.
When the mouse is released, the Set Point stops changing. This is accomplished by enabling
the Up and Down timer controls when the mouse is held down, and disabling these timer
controls when the mouse is released. A textbox named ixtSetPoint displays the current set
point as its Text property. This textbox accepts editing. Clicking on it with the mouse and
typing in the new number can change the Set Point value. Pressing the keyboard Tab key exits
the textbox its Change event occurs, which causes a message to be sent to the server with the
new Set Point value. The timer control imrGTUpdate is disabled to stop the polling and wait for

a response to the message. Once the response is received, polling begins again by enabiing
the timer control again.

If the textbox txtSetPoint is edited, the length of the string that is entered is checked to make

sure that it is less than 5 characters long. [It is larger than 5, then only the first 4 characters
are accepted.

When the timer tmrGTUpdate is enabied, separate messages are sent to the server requesting
update values for Current Temperature, Set Point, and Output Value. The timer is then
disabled to stop the poliing and wait for a response from the server. When the response is
received, the timer is enabled and polling resumes.

When a message is sent, the timer control tmrConnection is enabled. This checks to see if
there is a connection error by waiting 3 seconds for a response. [f there is no response in that
time, a message box is displayed indicating that there may be a connection error. When the
OK button is clicked, a message is sent to see if the connection has been reestablished. If a
response is received (Data Arrival event) tmrConnection is disabled.

Embedded Netsock Sarmple Programs 23

When data is received from the server, the Winsock control Data Arrival event occurs.

If the string received starts with "GO", the string contains the Output Value. A shape control
with the name OQutputValue is used for a "bar graph" style graphical respresentation of this.
When a reply to the message "GO" (get Output Value) is received, the Output Value is
extracted from the string and converted to a number between O and 4085. For display
purposes, an Output Value of 2000 or less represents "cooling” and the shape control (bar)
FiliColor property is set to blue. If the Output Value is between 2000 and 2100, it is considered
to be zero for display purposes and is represented by a small white box. If the Output Value is
greater than or equal to 2100, it represents "heating” and the FillColor property is set to red.
The magnitude of the Output Value is displayed by changing the Left and Width values of the
shape control OutputValue.

If the string received starts with "GT" (get Current Temperaiure), the temperature value is
extracted from the string. The Caption property of a panei control named panelCurrentTemp is
then updated with this string represented as degrees Fahrenheit.

If the string received starts with "GP" (get Current Set Point), the temperature value is extracted
from the string. The Text property of a textbox control named xtSetPoint is then updated with
this string represented as degrees Fahrenheit.

If the string received starts with *SP", this means that a message sent to the server with a Set
Point value was received and responded to.

A command button with the name ecmdCancel and the caption "Exit" ends the program when
clicked.

24 Embedded Netsock Sample Programs

7.1.2 Embedded PC application implementation details

The program that runs on the Netsock computer is responsible for monitoring and controlling an
environmental control system. [t is responsible for the following tasks:

. Check the temperature of the unit in question
. Make any necessary adjustments to the temperature control output
. Watch for and respond to messages coming in from a monitoring system on the network

Once the system has been started and the network connections initialized properly, the
program begins continuously performing the above mentioned tasks. The general idea of this
example is that the Netsock computer will be controling the temperature inside an
environmental chamber. Since the Netsock computer has A/D and D/A converters optional, it is
well suited to this task. However, in this example, since we do not have a thermometer
connected, nor is there a heating/cooling element to control, aspects of this example are
simulated.

The function ReadTemperature() simply returns a local temperature value. In an actual
application, the A/D converters would probably be employed to read the temperature from a
thermometer.

Every second, the function SimulateTemperatureChange() is calied to adjust the simulated
temperature value from -5 10 +5 degrees depending on the vaiue of outputvaiue.

outputvalue is an integer value from 0 to 4085 which is set by the function SetOutput().
outputvalue was chosen to be a 12-bit value so that it may be sent directly to a 12-bit D/A
converter controiling a heating/cooling unit. Because this example can cool as well as heat the
environment, the outputvalue must be used for both cooling and heating. Therefore, the
median value of 2047 is used as a neutral/off position for the heating/cooling unit. 0 is the
coldest setting and 4095 is the hotiest selting.

The desired temperature set point, output value of the heating/cooling unit, and the current
temperature of the system are all kept and managed by the Netsock computer. Ali of this
information is, however, available to any monitoring system that requests it. Remote monitoring
systems can also change the set point with a simple request 1o the Netsock computer.

The program is constantly watching for messages coming in over the network from the remote
Process Control program. Once again, this is done by making frequent calls to ioctisocket() to
determine if a message has come in. Once a message has been received, the program views
the message and, if the message is a valid command, the appropriate action is performed:

See the Theory of Operation section for a detailed description of the valid commands and
parameters.

Embedded Neisock Sampie Programs 25

26

Embedded Netsock Sample Programs

8.0 Sample Application: Remote Tank Controlier

This sample application simulates a remote storage tank process controlfler. A single Netsock
embedded PC running the control.exe program communicates with the local control system of
a storage tank. The remote controller utilizes a touchscreen panel and video display. The
application demonstrates communication between the remote controller and the tank status
display on the desktop PC that is running the TankStatus.exe program.

Before running TankStatus.exe, downioad control.exe file from the Embedded Netsock
Sample Programs diskette according to Section 3.

On the Windows computer,

1.

2.

StartlRun and enter the path and TankStatus.exe. Click OK.

Enter the IP address of the Netsock computer remote coniroller in the dialog box that
comes up and press Enter. The default is 192.168.1.50. The main screen comes up with a
tank status display. Upon communication with the deskiop PC, the remote control panel will
be enabled and the red indicator will turn green. The remote controller’s display will show
“REMOTE CONTROLLER ENABLED”.

The remote control panel touchscreen can now be used to change the tank parameters.
There are three tank parameters that can be set from the remote controller. These are the
tank inlet rate, the tank outlet rate, and the tank level. In the real world, the tank level would
be a function of the input and output rates. For demonstration purposes, the tank level can
be changed also. These functions demonstrate communication from the remote controlier to
the local tank process control system.

The “SET” button on the remote controller initiates the command sequence. After hitting
“SET”, you are prompied to select one of the three tank parameters. After selecting one, the
user is prompted to enter a value for the parameter. The range of values that are valid is
also displayed. After a valid value is entered, the “SEND” button will send the command to
the local tank conirol system. Any out of sequence keystrokes will cause error messages to
be displayed. At any time, hitting the “CLR” button will restart the command sequence.

The tank status display can also send a message to the remote controller and enabie or
disable the remote control panel. These functions demonstrate communication from the
tocal tank process conirol system to the remote controiler unit.

To display a message on the remote controller’s display, type the desired message and
then hit the “SEND” button on the tank status display. To disable or enable the remote
contro! panel, hit the “DISABLE REMOTE” or “ENABLE REMOTE" button, which will have
different text depending upon whether the remote controiler is enabled or disabled. A
message will be displayed on the remote controller display showing the state of the remote
panel. The remote indicator will be green if the remote panel is enabled or red if it is
disabled. If disabled, the remote panel’s buttons wiil be inoperative.

Clicking the Exit bution in the upper right hand corner ends the program.

Embedded Netsock Sample Programs 27

8.1 Theory of Operation

For this sample application, a set of command strings was created for sending commands
between the Netsock embedded PC and the Desktop PC. A set of matching response strings,
when appropriate, was also created for responding to the command strings. The foliowing table
shows the command and response set, in both directions, that was created for this application.

Netsock computer to Desktop

Command Response

ST IN=### None
#=0109

ST_OT=d### None
#=0109

ST_LV=#HiHi# None
#=0109

Desktop 1o Nelsock computer

Command Response

ST_MS=###. . # ST_MS=0K
= Message (42 Char MAX)

ST_ST=# ST_ST=0K
= 0 {Siop)
#=1 (Start)

ST_IP= ST_IP=0K

28

Comment

Sets input rate of tank
from O to 500 (GPM)

Sets output rate of tank
from 0 to 400 (GPM)

Sets level of tank
from 1000 to 9000 (G)

Comment

Write message to
remote control panel

Enabie / disable remote
control panel

Set IP address of PC
upon commurication

Embedded Netsock Sample Programs

8.1.1 Visual Basic Application Implementation Details

This application has a single form, frmTankStatus, and a single code module, Module1, which
contains global variables needed by the program.

When TankStatus.EXE .is launched, the form frmTankStatus is loaded. This form includes a
single Winsock control, which is given the name Winsock. All Ethernet communication is done
through this single Winsock control. The Protocof property is set to UDP, the RemotePort and
Bind properties are set to 5001. The Winsock control is loaded with the RemoteHost property
set to a generic IP address (e.g. "1.0.0.0") and then the RemoteHost property is changed later
to connect to an actual server IP address. An /nputBox is used to enter the IP address of the
Netsock embedded PC. The Winsock conirol RemoteHost property is then set fo this address.
A timer control named tmrConnect loads o begin polling the remote controller for the message
ST_IP=0K, which indicates that the remote controller has found the IP address of the desktop
PC running the TankStatus application and a connection has been made. Once this message
is received, the timer control is disabled, which stops the poiling. The BackColor property of the
form is set when the form ioads to prevent Windows 95 from changing the form color to black,
which makes the black labels on the form unreadable.

There are command buttons for Send, Enable Remote, and Exit. If the Send bution is clicked,
a message of “ST_MS=" plus the contents of the "Send Manual Message to Remote” textbox is
sent to the remote controller. if the message texibox is empily, only "ST_MS=" is sent as a
message. When the Enable Remote button is clicked, the picture property of the image of a
light to the right of the button changes to indicate that the remote controller is enabled (green
light). The caption property of the button is changed so that it now reads "Disable Remote". A
message of ST_ST=1 is sent to the remote controller to tell it to enable. When the Disable
Remote button is clicked, the picture property of the image of a light to the right of the button
changes to indicate that the remote controller is disabled (red light). The caption property of the
button is changed so that it now reads "Enable Remote". A message of ST_ST=0 is sent to the
remote controller to tell it to disable. ”

When data is received the Winsock Data Arrival event occurs. If the message received is
"ST IP=0K", the timer control tmrConnect is disabled, as mentioned above. The remote
controller is enabled by calling the cmdEnable_Click routine (same as clicking the Enable
Remote button). If the message received begins with *ST_IN=", the Inlet value is changed and
the Inlet textbox is updated. If the message received begins with "ST_OT=", the Outlet value is
changed and the Outlet textbox is updated. if the message received begins with "ST_LV=", the
Tank Level value is changed.

Ernbedded Netsock Sample Programs 29

The updating of the Tank Level display is done by code in the fmrChangelevel timer event
routine. A timer control called imrChangelevel is used. Limits of 1000 gallons (lower limit) and
9000 gallons (upper limit) have been established as a safe operating range for the tank (for
demonstration purposes).: ‘When the tank level value is between these limits, the Tank Level
textbox value is updated, changes-in the Tank Level are calculated, "and the new Tank Level is
simulated in the Tank Status display. The Tank display is simulated by usmg "water colored"
shape controls and changing their Top and Height propertles to move the "water level” up and
down. [f the tank level drops below 1000 gallons, a warning message is displayed in the Send
Message textbox and the Iniet value is made higher than the Outlet value, so that the tank
begins to fill up again. A limit of 500 galions per minute is placed on the Inlet value to keep it
realistic. The warning-message is also sent to the remote controller to be-displayed there. A
timer control tmrWarning is enabled to change the message in five seconds. The tank level
display is updated. If the tank level goes above 8000 galions, a warning message is dispiayed
in the Send Message textbox and the Inlet value is set to 0 to simulate closing the Inlet valve.
The tank begins to empty again. Again, a warning message is-also sent to the remote
controiler o be displayed there, the timer control tmrWarning is enabled to time the warning
message and the fank level dxsplay is updated.

The timer control teramrng has an interval property of five seconds. This changes the
message dlsplayed after five seconds. If the message in the textbox was "WARNING - TANK
LEVEL LOW...", the message is changed to "INCREASING INLET RATE TO (value)“ If the
message in the textbox was "WARNING - TANK LEVEL HIGH::." the message !S ‘changed to
"CLOSING INLET VALVE". Five seconds later, this second message is erased. “Thé routine
cmdSend_Click is calied which sends the contents of the message textbox to the remote
controlier. The timer control is then disabled to stop the messages. The last- message that is
sent to the remote controller clears the message there

A user—deﬂned SendMsg rout:ne uses the Wmsock SendData method to send the messages.

There is a commana button named cdeanceI mth the captlon "Exat“ Clicklng thlS ends the
program. - - LR

T g B

I

Kb

30 Embedded Netsock Sample Programs

81.2 - Embedded PC Application lmplementatlon Details

The program that runs on the Netsock embedded .PC- IS respons:ble for implementlng the full
‘ functlonairty ofa remote process control panel. It i is responsrble forthe foi!owmg tasks:

. ~ Draw the Graphical User Interface (GUI) for the remote contro! panel
Control the functionality of all the GU! components
) . Control communications between the remotie control panel and the deskiop PC

When the system is started,. the followmg sequence of events occurs

| The network functlons are lnltlallzed with Ithetwk() ThiS functlon initializes the Netsock
. computer network functions and binds the socket used for network communication. After the
. successful completron of thrs function, the communication between the host and remote can
- begin. : ~

The video display and touchscreen functions are initialized with the SetMPC204Base(),
.InstallDebounce(), and setuptranslation() functions. SetMPC204Base() smply sets the base
‘address -of the MPC204 video card. InstallDebounce() installs thé software needed to
-debounce the press of a touchscreen cell. The' setuptransiation(} function translates the
_ touchscreen coordinates for the size ot. touchscreen used The GUI is drawn on the display
wrtbtheDrawGUl()iunctlon N

apd e
e i

The GUI conS|sts ofa 16 button keypad with numbers zero through nine and six function keys,
a 43 character text display window, an:enabled / disabled indicator, a “Tank #4 Controller” title
biock, and a Micro/sys logo with “Micro/sys Netsock computer Demo” written under it. The six
function keys are Set, Clear, Send, In Rate, Qut.Rate, and Tank Level. After the GUI is drawn,
the program checks for a message from the deskiop PC while no key is hit on the remote
controller. As long as no key is pressed, the remote will check for migssages. The command
sequence is started when the “SET” key is pressed. If any other key is pressed, the remote will
go back and check for messages from the PC. When the command sequence is begun with
the press of “SET”, the operator must then enter one of the three functions (In Rate, Out Rate,
or Tank Level). The desired value is then entered for the function. All numeric ranges and
error checking for each function are performed during the command sequence. [f the wrong
vaiue is entered, the operator is sent a user prompt message in the text display window. Upon
the pressing of the “SEND” key, the command is sent. At any time during the command

sequence, hitting the “CLR” button clears the display and restarts the checking of messages
from the PC.

Embedded Neisock Sample Programs 31

This program uses the function recvfrom{) io retrieve messages from the desktop PC. This
function is called in the function checkmessages(). Once a message has been received, the
program views the message and, if the message is valid, the appropriate action is performed.
The first time checkmessages(} is called, the ST_IP= message will be received from the
desktop PC. The remote controller responds with a ST_IP=0OK message and sets the “to”
structure equal to the “from” structure. This tells the remote what the IP address of the desktop
PC is where it will be sending all further messages. The ST_IP= command will only be sent
and responded to once. The messages are processed as follows:

The program first views the first six characters of the message which are saved as the
command. The remaining portion of the message contains the parameters for the command.
The program must parse the parameters portion differently depending upon the command.

numbytes = recviromimsgsock, datagram, sizeof({indatagram), FLAGS_ZERO,

] : &from, (int far *j &fromlen) ;
memcpy (command, indatagram, 6);
command6] = 0;
memcpy {parameters, indatagram+6, numbytes-6):
parameters [numbytes - 6] = 0;
commanddone = 0;

For write commands, the command is built from the command and valuef] variables that are set
during the touchscreen command sequence. From these variables, the outdatagram is
constructed and sent fo the desktop PC after the SEND button is pressed. The program uses
the sendto() function to send messages to the desktop PC. The “to” structure has the IP
address of the desktop PC from the initial call to checkmessages(). If a socket error is received
by sendto(), the WSACleanup() function is called automatically.

err = sendto(msgsock, datagram, strlien(datagram), FLAGS_ZERO,

. &to, sizeoffto)):
if (err == SOCKET ERROR}
WSACleamup() ;

For write commands, no response is sent back to the remote control panel. For read
commands, an "OK" is appended to the command and seni back to the deskiop PC as a
confirmation that the original command was received properly.

See the Theory of Operation section for a detailed description of the valid commands and
parameiers.

32 Embedded Netsock Sample Programs

	Introduction
	Reference manual
	Sample Programs

